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Abstract
Background.  Diagnostic classification of diffuse gliomas now requires an assessment of molecular features, often 
including IDH-mutation and 1p19q-codeletion status. Because genetic testing requires an invasive process, an al-
ternative noninvasive approach is attractive, particularly if resection is not recommended. The goal of this study 
was to evaluate the effects of training strategy and incorporation of biologically relevant images on predicting ge-
netic subtypes with deep learning.
Methods.  Our dataset consisted of 384 patients with newly diagnosed gliomas who underwent preoperative MRI 
with standard anatomical and diffusion-weighted imaging, and 147 patients from an external cohort with anatom-
ical imaging. Using tissue samples acquired during surgery, each glioma was classified into IDH-wildtype (IDHwt), 
IDH-mutant/1p19q-noncodeleted (IDHmut-intact), and IDH-mutant/1p19q-codeleted (IDHmut-codel) subgroups. 
After optimizing training parameters, top performing convolutional neural network (CNN) classifiers were trained, 
validated, and tested using combinations of anatomical and diffusion MRI with either a 3-class or tiered structure. 
Generalization to an external cohort was assessed using anatomical imaging models.
Results. The best model used a 3-class CNN containing diffusion-weighted imaging as an input, achieving 85.7% (95% 
CI: [77.1, 100]) overall test accuracy and correctly classifying 95.2%, 88.9%, 60.0% of the IDHwt, IDHmut-intact, and 
IDHmut-codel tumors. In general, 3-class models outperformed tiered approaches by 13.5%-17.5%, and models that 
included diffusion-weighted imaging were 5%-8.8% more accurate than those that used only anatomical imaging.
Conclusion. Training a classifier to predict both IDH-mutation and 1p19q-codeletion status outperformed a tiered 
structure that first predicted IDH-mutation, then 1p19q-codeletion. Including apparent diffusion coefficient (ADC), a 
surrogate marker of cellularity, more accurately captured differences between subgroups.

Key Points

•	 MRI and deep learning can predict new molecular subtypes of glioma with 86% accuracy.

•	 Classifying IDH and 1p19q mutations together was advantageous over a tiered structure.

•	 Diffusion-weighted imaging increased the generalization capacity of our models.
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Since the restructuring of the categorization of gliomas by 
the World Health Organization (WHO) in 2016 to include var-
iations in underlying genetic and epigenetic alterations,1 the 
consortium that informs the WHO has begun to place even 
greater emphasis on the delineation of glioma categories 
by a mutation in isocitrate dehydrogenase 1 and/or 2 (IDH1 
and/or 2) and codeletion of 1p and 19q chromosomal arms, 
prioritizing these features over grade.2–5 In contrast to the 
WHO 2016 guidelines that first stratify by grade and then use 
genetic alterations to further differentiate patients within 
a designated grade, the new 2021 WHO guidelines now 
recommend that the first diagnostic delineation relies on 
IDH-mutation, followed by 1p19q-codeletion status, as sup-
ported by evidence that these distinct genetic subtypes indi-
cate drastic differences in overall survival and response to 
therapy.6–9 Due to this increasing emphasis on genetic alter-
ations as a diagnostic tool, it has become a clinical standard 
to perform genetic testing on tissue acquired during surgery 
to decide subsequent treatment.

Because genetic testing can be a costly and time-con-
suming process and there remains cases where resection 
is not recommended, an alternative, noninvasive approach 
for obtaining this crucial genetic information is highly at-
tractive. With a growing body of evidence that features 
from magnetic resonance imaging (MRI) are predictive of 
genetic alterations in IDH and 1p19q-codeletion,10–15 image 
analysis techniques have the potential to provide a fast, 
noninvasive complementary pathway for identifying ge-
netic alterations, which is highly relevant when these mo-
lecular markers are needed rapidly to determine clinical 
trial eligibility, sometimes even before surgery if the trial 
design involves initiating the drug prior to resection. Prior 
knowledge of genomics derived from imaging can also 
help patients with less aggressive phenotypes decide the 
timing of their treatment and provide an additional data 
point if a negative IDH result on immunohistochemistry 
(IHC) is found without the need to undergo genetic 
sequencing, which is often less accessible and even 
more costly.

Several prior studies have implemented radiomics, 
machine learning, and/or deep learning to accomplish 
this task of classifying tumors into their genetic sub-
type16–22 based on the premise that they will be better at 
detecting known hallmark features of each subgroup (such 
as the characteristic larger percentage enhancing com-
ponent often with necrotic core present in IDH-wildtype 

tumors, the more diffuse boundaries observed in both IDH-
wildtype and IDH-mutant 1p19q-codeleted lesions, and the 
“T2-FLAIR mismatch” sign specific to IDH-mutant 1p19q-
intact gliomas)23 as well as distinguishing subtle novel fea-
tures. In 2017, Li et al reported that the automatic extraction 
of radiomic features using deep learning successfully pre-
dicts IDH-mutation status in grade 2 glioma; however, this 
study was limited by requiring a priori knowledge of the 
tumor grade obtained through pathological tissue evalu-
ation, limiting its application in the presurgical setting.18 It 
was also marked with an uncommon enrichment of IDH-
wildtype grade II glioma in their patient cohort.18 Since 
then, many studies have leveraged The Cancer Imaging 
Archive, either alone or together with internal datasets, to 
evaluate the ability of deep learning and radiomics to pre-
dict a patient’s IDH-mutation.16,19–22 All of these studies use 
only anatomical MRI, which is advantageous in that these 
images are universally acquired with standard imaging 
protocols and require minimal preprocessing, but lack the 
associated benefits of physiological imaging that more 
closely reflects the underlying tumor biology. Even less 
emphasis has been placed on predicting 1p19q-codeletion, 
with few studies reporting attempts to separately clas-
sify this mutation, and those that have neglected to first 
exclude IDH-wildtype lesions from their classification.17,19 
We hypothesize that using a 3-class model that predicts 
genetic subgroup, rather than individual mutation status, 
plus a strategy that incorporates models that have been 
pre-trained on classifying large, publicly available im-
ages, will improve the accuracy over a tiered approach for 
predicting IDH and 1p19q mutations because of the shared 
imaging features of these mutations.

As diffusion-weighted imaging has become a standard 
in mainstream routine clinical imaging of gliomas at most 
institutions, there is a growing body of evidence that fea-
tures derived from MR diffusion-weighted imaging are pre-
dictive of both IDH-mutation and 1p19q-codeletion.13,15,24–26 
As part of this work, we also sought to evaluate whether 
the addition of maps of apparent diffusion coefficient 
(ADC) derived from diffusion-weighted imaging would 
improve both the accuracy and generalization to an un-
seen test set when included as one of the inputs to a deep 
convolutional neural network (CNN) trained to predict ge-
netic subtype. Because the “T2-FLAIR mismatch” sign has 
been shown to identify IDH-mutated gliomas with intact 
1p19q,10–13 we hypothesize that using T2 imaging together 

Importance of the Study

During 2019-2020, the consortium that informs the WHO 
has placed even greater emphasis on the delineation of 
glioma categories by a mutation in IDH and codeletion 
of 1p and 19q chromosomal arms, prioritizing these fea-
tures over grade. Although radiomics and deep learning 
have been successful in predicting IDH-mutation status 
from anatomical images, less emphasis has been 
placed on predicting 1p19q-codeletion. This study dem-
onstrates the benefit of: (1) using deep learning with 

transfer learning, (2) a single 3-class model over a 
2-tiered approach that first predicts IDH-mutation then 
1p19q-codeletion, and (3) including ADC maps from 
diffusion-weighted imaging in predicting new genetic 
subtypes of gliomas and evaluates the generalizability 
of our anatomical imaging models in an external multi-
site cohort. These insights will be highly valuable for fu-
ture larger, multi-site analyses of molecular subtypes.
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with T2-FLAIR and ADC will improve the accuracy of the 
IDH-mutant, 1p19q-intact classification, whereas including 
post-contrast T1-weighted images, ADC, and either the 
T2-weighted or T2-FLAIR images will improve the classifi-
cation of IDH-wildtype and IDH-mutant, 1p19q-codeleted 
subgroups.

Methods

Patient Characteristics and Study Design

Imaging, pathological, and clinical data from 502 adults 
who were newly diagnosed with a pathologically con-
firmed glioma at our institution between 2007 and 2019 
were assessed in this retrospective, IRB-approved study. 
Patients were excluded if either their molecular subgroup 
was indeterminable (n = 87) or their preoperative MRI ac-
quisitions did not include either T1-weighted post-contrast 
(T1c), T2-weighted (T2), or T2 Fluid Attenuated Inversion 
Recovery (T2-FLAIR) images (n  =  20) (Supplementary 
eFigure 1). The study design was comprised of 2 parts: 
hyperparameter search and model comparison. The 
hyperparameter search phase was first performed to select 
the best hyperparameters for each of our 3 deep learning 
models. The model comparison phase then investigated 
the benefits of (1) using a 2-tiered, binary classification 
approach as opposed to a single-tiered, 3-class classi-
fier, and (2) including ADC images as an input channel 
(Supplementary eFigure 2). The best performing models 
were then tested on the 2019 BRAin Tumor Segmentation 
(BraTS) challenge27–29 images from The Cancer Genome 
Atlas (TCGA) Research Network (www.cancer.gov/tcga) 
to determine generalization to external, multi-institutional 
cohorts.

Assessment of Genetic Alterations

IDH-mutation status for UCSF cases was evaluated 
by Sanger sequencing of IDH1 and IDH2 genes or 
by IHC (IDH1R132H, H09, Dianova GmbH, Hamburg, 
Germany) using standard techniques (details provided in 
Supplementary eDocument 1). Negative IDH-mutation 
results based on IHC in lower-grade gliomas or patients 
55 years of age or younger at diagnosis were either valid-
ated by sequencing or excluded. All patients with a GBM 
pathological diagnosis and negative IDH-mutation based 
on IHC who were >55 years of age were considered IDH-
wildtype, per the guidelines of the European Association for 
Neuro-Oncology.30 IDH-mutation status for all TCGA cases 
was assessed via Sanger sequencing. Confirmed negative 
IDH1 and IDH2 mutated samples were classified as IDH-
wildtype (“IDHwt”). Our IDH-mutated tumors were further 
classified based on either 1p19q-codeletion status or ATRX 
alterations for UCSF cases, or solely 1p19q-codeletion 
status for TCGA data. Since tumors with 1p/19q-codeletion 
(“IDHmut-codel”) almost invariably have IDH and TERT 
promoter mutations and are almost mutually exclusive 
with ATRX mutations, IDHwt gliomas and IDH-mutant 
(“IDHmut”) gliomas with ATRX alterations were not tested 
for 1p/19q-codeletion unless it was performed clinically. 

ATRX was assessed by IHC (HPA001906, Sigma Aldrich, 
St. Louis, MO, USA) performed at the UCSF Brain Tumor 
Research Center using previously published methods,31 
while the presence of a 1p/19q-codeletion was determined 
with clinical FISH assays. IDHmut tumors that either had an 
ARTX alteration or were lacking a 1p19q-codeletion were 
classified as 1p/19q-intact (“IDHmut-intact”).

Image Acquisition and Processing

All patients underwent MRI examinations on a 3T 
Discovery MR750 scanner (GE Healthcare, Waukesha, 
WI, USA) using an eight-channel phased-array head coil 
prior to surgical resection. The imaging protocol included 
T2-weighted FLAIR and fast spin echo (FSE) images, along 
with 3D T1-weighted IR-SPGR imaging pre- and post- the 
injection of a gadolinium-based contrast agent. Diffusion 
tensor images (DTI) were obtained in the axial plane with 
b = 1000 s/mm2 and either 6 gradient directions and 4 ex-
citations or 24 gradient directions and 1 excitation or 
b = 2000 s/mm2 and 55 gradient directions (repetition-time 
[TR]/echo-time [TE]  =  1000/108  ms, voxel size  =  1.7-2.0  × 
1.7-2.0 × 2.0-3.0 mm). To calculate the ADC maps, a pipeline 
that utilized components of FMRIB’s Diffusion Toolkit was 
applied to estimate relevant diffusion parameters from the 
DWI and DTI data as previously described.32

All images from the UCSF cohort were registered to 
the T1c image volume using either FMRIB’s FSL Linear 
Image Registration Tool (FLIRT) or 3D Slicer’s BRAINSFit 
tool with B-spline warping and resampled to an iden-
tical 1-mm isotropic spatial coordinate.32–34 Brain masks 
were derived using the Brain Extraction Tool (BET) (FSL, 
FMRIB) and were visually verified to have worked prop-
erly.32 All images were subjected to signal intensity nor-
malization through a multistep process: (i) the images 
were multiplied by the brain mask, (ii) pixels above the 
99.9th percentile were thresholded to the pixel inten-
sity denoting the 99.9th percentile; (iii) the mean was 
subtracted from each pixel and the result divided by 
the standard deviation; (iv) the images were scaled to 
lie between a value of 0 and 1 by subtracting the min-
imum and dividing by the difference between the max-
imum and the minimum pixels. The T2-lesion (T2L), 
defined as hyperintense signal on FLAIR images, and 
contrast-enhancing lesion (CEL), or hyperintense signal 
on the T1c images that was not enhancing on the original 
T1-weighted images, had been previously contoured for 
the UCSF dataset using either 3D Slicer, or in-house de-
veloped software.35 The 2019 BraTS data from the TCGA 
cohort were already preprocessed, segmented, and cur-
ated as part of this publicly available imaging dataset as 
described previously.27–29

Input images containing tumor were automatically 
selected and processed to form multi-contrast RGB 
colormaps according to Figure 1. Masks of the 3D seg-
mented lesion volumes were first used to automatically 
select the image slice containing the largest tumor area in 
each direction. Additional slices spaced 5 mm apart were 
added in each direction until the edge of the tumor mask 
was reached. Images were also automatically cropped to 
a rectangular bounding box surrounding each lesion of 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
http://www.cancer.gov/tcga
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
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interest. For each of the 4 cropping strategies shown in 
Figure 1C, combinations of 3 image modalities were then 
merged to create a multi-contrast RGB image for each le-
sion slice, where each image contrast was saved in as a 
red, green, or blue color channel, with values ranging 
from 0-256. The creation of the multi-contrast RGB image 
allowed us to take advantage of transfer learning from a 
pre-trained network that had exceptionally high accuracy 

in classifying a large-scale dataset of millions of color im-
ages (ImageNet).

Baseline Models From Clinical Metrics

Since age and the presence or absence of contrast en-
hancement are known predictors of IDH-mutation status, 

  
A  Use the segmentations to select the slices

T2-hyperintese
lesion (T2L) 5 mm

max ROI

Coronal

Axial

Sagitta
l

No crop

Brain mask

Standard

T2-lesion

Contrast
enhancing

lesion (CEL)

This will yield ~5 slices per patient, depending on T2 or CE lesion. This will yield ~25 slices per patient

C  Crop the images for all slices (one sample shown)

D  Choose 3 of 4 modalities and create an RGB image

T1c

T1c

T2-FLAIR

T2-FLAIR

T2

T2

RGB

ADC

B  Repeat selection in all directions

Fig. 1  Schematic of image processing strategy. (A) Segmented contrast-enhancing (CEL) or T2 (T2L) lesions were used to automatically select 
the slices by first selecting the central slice with maximum area and expanding every 5 mm until the boundary of the lesion was reached. (B) This 
process was repeated in each direction: axial, coronal, and sagittal. (C) Images were then cropped to either the brain mask, the T2L, a standard 
size, or were not cropped. (D) Three of the four sequences of interest (T2-FLAIR, T1c, T2, and ADC) were placed in the R, G, and B channels of a 
color image that was used as the input to the network.
  



643Cluceru et al. Deep learning classification of glioma genetic subtypes
N

eu
ro-

O
n

colog
y

and anatomical MR images of the brain can predict age 
with high accuracy,36,37 we first used logistic regression 
models in the scikit-learn package to establish an interpret-
able baseline prediction accuracy for which to compare our 
models.38 Age and the presence of contrast enhancement 
were included as independent variables and used in: (1) a 
tiered binomial logistic regression structure to predict IDH-
mutation status followed by 1p19q-codeletion status and 
(2) a 3-class multinomial logistic regression model to di-
rectly predict molecular subgroup. The presence of contrast 
enhancement was automatically quantified as having a CEL 
volume greater than 150 mm2, the cutoff for the lower 10th 
percentile, and included in the first-tier and 3-class models. 
In the 3-class model, multinomial loss fit was minimized 
across the entire probability distribution to balance class 
weights. We also tested whether the 2 datasets (UCSF and 
TCGA) differed significantly using the Mann-Whitney U test 
for age and the χ 2 test for categorical variables sex, muta-
tion status, and the presence of contrast enhancement.

Hyperparameter Search

In order to find a reasonable starting point to train our 
models, we first searched through a set of randomly gen-
erated hyperparameters that included various learning 
parameters, VGG and ResNet model architectures, whether 
or not the network was pre-trained on ImageNet, and image 
preprocessing strategies such as the extent of cropping, 
to find a reasonable starting point for each of our 3 classi-
fication models: IDH-mutation only, 1p19q-codeletion only, 
and 3-class molecular subgroups.39–41 Two different slice-
combining paradigms were also compared: (1) pooling slices 
for a single prediction per patient as performed in MRNet 
from Bien et  al42; and (2) treating each slice individually 
while training and combining slice predictions afterward as 
described by Chang et al.21 The individual hyperparameters 
that were tested are listed in Supplementary eTable 3, while 
hyperparameters that remained fixed were the learning rate 
cycling strategy (“One Cycle”),43 the optimization algorithm 
(“Adam”),44 and the weight decay coefficient (0.01). During 
this phase, model inputs were restricted to the T2, T2-FLAIR, 
and T1c images, and the 1p19q-codeletion experiments 
began with the model pre-trained on the IDH-mutation 
status classification. Overall model accuracy, defined as the 
total number of patients a model predicted correctly divided 
by the total number of patients evaluated, was used to eval-
uate the models’ efficacy. The top hyperparameter sets from 
each outcome were rerun 5 times with different seeds to ac-
count for stochasticity introduced during gradient descent. 
The set of hyperparameters with the best performance 
based on the mean overall classification accuracy of the 5 
seeds on the validation set that also had training and valida-
tion loss curves that were steadily decreasing or stable, was 
then chosen. The details describing the model development 
phase, including the hyperparameter search space, can 
be found in the Supplementary Materials (Supplementary 
eDocument 2 and Supplementary eTable 3).

Model Comparison

Using the set of hyperparameters for the top performing 
model for each classification experiment determined 

during the model development phase, we investigated the 
impact of using a 2-tiered vs single 3-class structure ap-
proach and the addition of ADC as one of the input image 
channels. As in the model development phase, training and 
validation loss plots were visually compared in order to en-
sure that there was appropriate reduction in validation loss 
as the model trained and to prevent overfitting at a certain 
epoch (examples of which can be found in Supplementary 
eFigure 6). For the 2-tiered approach, IDH-mutation status 
was predicted in the first tier, while 1p19q-codeletion was 
then classified from the IDH-mutated tumors in the second 
tier. The final class accuracy for the IDHwt subgroup was 
determined from the output of the first tier, while the class 
accuracy of predicting the other 2 subgroups was de-
termined by the prediction accuracies of the second tier. 
For each classification approach (2-tiered and 3-class), 
ADC maps were then included as 1 of the 3 input chan-
nels (in place of either the T1c, T2, or T2-FLAIR image vol-
umes) and trained with the same set of hyperparameters 
run with 5 different seeds. Confidence intervals (CI) were 
calculated using bootstrapping, whereby slices were ran-
domly selected with replacement until the number of orig-
inal slices was achieved, which results in approximately 
2/3 of the slices (with 1/3 repeated) for each bootstrapped 
sample. For each repetition, the per-patient prediction was 
calculated from these slices. This process was repeated 
1000 times for each of the training, validation, and test sets 
in order to generate the 2.5th and 97.5th percentile of these 
repetitions, which were reported as the 95% CI.

Model explanation was performed using GradCAM, a 
heatmap-based feature attribution method. In contrast to 
methods that use “guided” back-propagation as a part of 
feature attribution, GradCAM has been validated in the 
deep learning literature to assign feature importance to 
areas of the image.45 This allowed for quick visual confir-
mation that our models were behaving as expected by 
extracting features in the areas that align with human in-
terpretation. We used these GradCAM maps to help inter-
pret our best and worst predicted patient examples.

Model Generalization

In order to evaluate whether our developed anatomical 
models were able to generalize to data from multiple insti-
tutions acquired using different scanners and acquisition 
parameters that result in variations in image contrast and 
resolution, the publicly available TCGA dataset together 
with the post-processing and labeling performed for the 
BraTS challenge were used to establish an independent 
dataset for testing. The BraTS imaging dataset was pre-
processed with the same specifications as our data with 
expert segmentations, but because this dataset did not in-
clude diffusion data, we were only able to validate our best 
anatomical 2-tiered and 3-class models with this dataset.

Results

Characteristics of the Study Sample

The clinical characteristics of the entire dataset, consisting 
of 384 patients from UCSF and 147 patients from the TCGA 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
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dataset, are summarized in Table 1. While sex was not sta-
tistically significantly different between the 2 cohorts (59% 
male in UCSF vs 52% male in TCGA), patients at UCSF were 
statistically significantly younger than patients in the TCGA 
dataset, with mean age of 47.4 ± 15.3 years compared to 53 ± 
14.9  years (P < .001; Supplementary eFigure 3). UCSF and 
TCGA datasets also significantly differed in the proportion 
of IDH-mutation status, with 269 (62%) mutated UCSF pa-
tients and 56 (22.8%) mutated TCGA patients (P < .001), and 
the frequency of enhancement, with 206 (47%) UCSF patients 
enhancing and 120 (82%) TCGA patients enhancing (P < .001).

Baseline Models From Clinical Metrics

The detailed results of baseline clinical logistic regres-
sion models using solely age and the presence of con-
trast enhancement and trained on UCSF patients are 
presented with the average and class accuracies for the 
3-class and 2-tiered results shown in Supplementary 
eTables 1 and 2, respectively. The tiered logistic regres-
sion achieved 67% [0.65, 1.00] overall accuracy, while 
the 3-class logistic regression achieved 71% [0.57, 1.00] 
overall accuracy on the UCSF test sets, which served as 
the basis for comparison for our deep learning models. 
However, for both the tiered and 3-class baseline 
models, the bootstrapped CI were very wide for every 
metric, with the best prediction accuracy achieved for 
IDHwt tumors (95% [0.86, 1.00]/91% [0.83, 0.94] for the 
UCSF/TCGA test sets) and worst for the IDHmut-codel 
group (40% [0.29, 0.82]/23% [0.06, 0.44] for the UCSF/
TCGA test sets).

Hyperparameter Search

The impact of top features on patient validation accuracy 
is shown in Figure 2A–C (see Supplementary eFigure 4 
for all hyperparameter search results). The first compar-
ison, evaluating whether pooling slice predictions was 
advantageous compared to making slice-by-slice predic-
tions, demonstrated that taking the mean of slice-by-slice 
predictions achieved higher patient-level validation ac-
curacies compared with pooling (Figure 2A). The rest of 
the hyperparameter experiments were performed using 
slice-by-slice predictions only. The most notable find-
ings from subsequent analyses was that in both 3-class 
and IDH-mutation only experiments, cropping to the 
T2-hyperintense lesion decreased performance (Figure 
2B), while using models that were pre-trained on ImageNet 
improved performance (Figure 2C). The VGG-16 archi-
tecture performed the best for both the 3-class and IDH-
mutation status tier of the 2-tiered model, while ResNet-18 
outperformed other architectures in the 1p19q mutation 
tier. The results from the rest of the hyperparameter search 
can be found in Supplementary eFigure 4.

Model Comparison

Two-tiered vs single 3-class classifier. —When using an-
atomical images only, the best 3-class model resulted in an 
overall patient accuracy of 84.6% [0.826, 1.0], 82.0% [0.740, 
1.0], and 81.6% [0.735, 1.0] for the training, validation and 
testing sets of UCSF data, with individual test class accur-
acies of 90.5% [0.90, 0.95], 77.8% [0.579, 0.737], and 70% 

  
Table 1.  Clinical and Demographic Characteristics of the Patient Population Included in This Study

 UCSF, n = 384 TCGA, n = 147 UCSF and TCGA Difference

Age Mean SD Mean SD P-value (Mann-
Whitney U test)

P-value 
(χ 2 test)

47.7 15.6 53 14.9 .007 n/a

Sex Male Female Male Female   

(n) 231 153 76 70 .05 .088

IDH status IDHwt IDHmut IDHwt IDHmut   

(n) 151 233 87 59 <.0001 <.0001

WHO Grade Mutation status Non-
enhancing

Enhancing Non-
enhancing

Enhancing  <.0001

2 IDH-wildtype 0 1 2 0  

IDH-mutation + 1p19q intact 69 4 11 8

IDH-mutation + 1p19q-
codeletion

63 8 3 3

3 IDH-wildtype 6 1 2 7

IDH-mutation + 1p19q intact 54 5 7 14

IDH-mutation + 1p19q-
codeletion

6 7 1 6

4 IDH-wildtype 0 143 0 76

IDH-mutation + 1p19q intact 1 13 0 6

IDH-mutation + 1p19q-
codeletion

0 2 0 0

  

https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
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Hyperparameter Search

The impact of top features on patient validation accuracy 
is shown in Figure 2A–C (see Supplementary eFigure 4 
for all hyperparameter search results). The first compar-
ison, evaluating whether pooling slice predictions was 
advantageous compared to making slice-by-slice predic-
tions, demonstrated that taking the mean of slice-by-slice 
predictions achieved higher patient-level validation ac-
curacies compared with pooling (Figure 2A). The rest of 
the hyperparameter experiments were performed using 
slice-by-slice predictions only. The most notable find-
ings from subsequent analyses was that in both 3-class 
and IDH-mutation only experiments, cropping to the 
T2-hyperintense lesion decreased performance (Figure 
2B), while using models that were pre-trained on ImageNet 
improved performance (Figure 2C). The VGG-16 archi-
tecture performed the best for both the 3-class and IDH-
mutation status tier of the 2-tiered model, while ResNet-18 
outperformed other architectures in the 1p19q mutation 
tier. The results from the rest of the hyperparameter search 
can be found in Supplementary eFigure 4.

Model Comparison

Two-tiered vs single 3-class classifier. —When using an-
atomical images only, the best 3-class model resulted in an 
overall patient accuracy of 84.6% [0.826, 1.0], 82.0% [0.740, 
1.0], and 81.6% [0.735, 1.0] for the training, validation and 
testing sets of UCSF data, with individual test class accur-
acies of 90.5% [0.90, 0.95], 77.8% [0.579, 0.737], and 70% 

  
Table 1.  Clinical and Demographic Characteristics of the Patient Population Included in This Study

 UCSF, n = 384 TCGA, n = 147 UCSF and TCGA Difference

Age Mean SD Mean SD P-value (Mann-
Whitney U test)

P-value 
(χ 2 test)

47.7 15.6 53 14.9 .007 n/a

Sex Male Female Male Female   

(n) 231 153 76 70 .05 .088

IDH status IDHwt IDHmut IDHwt IDHmut   

(n) 151 233 87 59 <.0001 <.0001

WHO Grade Mutation status Non-
enhancing

Enhancing Non-
enhancing

Enhancing  <.0001

2 IDH-wildtype 0 1 2 0  

IDH-mutation + 1p19q intact 69 4 11 8

IDH-mutation + 1p19q-
codeletion

63 8 3 3

3 IDH-wildtype 6 1 2 7

IDH-mutation + 1p19q intact 54 5 7 14

IDH-mutation + 1p19q-
codeletion

6 7 1 6

4 IDH-wildtype 0 143 0 76

IDH-mutation + 1p19q intact 1 13 0 6

IDH-mutation + 1p19q-
codeletion

0 2 0 0

  

[0.60, 0.90] for the IDHwt, IDHmut-intact, and IDHmut-
codel subgroups, respectively. The final model param-
eters are shown in Supplementary eTable 4. Although the 
best performing 2-tiered structure resulted in a higher 
overall patient accuracy in training (94% [0.902, 1.0]) and 
relatively similar accuracy as the 3-class model in val-
idation (84.0% [0.780, 1.0]), this model did not generalize 
as well to the UCSF test set (69.4% [0.633, 1.0] accuracy). 
Detailed class accuracies for each training, validation, and 
testing cohort along with confusion matrices are shown 
in Supplementary eTables 5 and 7, while the final predic-
tions of the 2-tiered vs 3-class models are shown in Table 
2 and Figure 3A. However, when evaluating the ability of 
each approach to generalize to the multi-institutional TCGA 
data, the 2-tiered structure outperformed the 3-class model 
(81.6% [0.769, 1.0] compared to 68.7% [0.678, 1.0] overall 
accuracy). Although both of these approaches were able to 
predict the IDHwt group with high accuracy (91.2% [0.868, 
0.912] for 2-tiered and 95.6% [0.956, 0.967] for 3-class), the 
2-tiered model was also able to predict the IDHmut-intact 
subgroup with 86.0% [0.744, 0.857] accuracy while the 
3-class model accuracy was only 32.6% [0.279, 0.372] for 
this subtype. Both approaches failed at correctly predicting 
any of the tumors in the IDHmut-codel subgroup.

Benefit of adding ADC to the  model.—We next inves-
tigated whether the addition of ADC was advantageous 
compared with using anatomical images only as inputs 
to the model for both the 3-class (Supplementary eTable 
6) and 2-tiered (Supplementary eTable 8) approaches. In 
both the 3-class and IDH models (first tier), the best per-
formance was achieved when ADC maps were used along 
with T1c and T2-FLAIR images as inputs, while replacing 
the T1c image with ADC decreased performance from 
using anatomical imaging alone (Figure 2D and E). For the 
1p19q mutation classification (second tier) of the 2-tiered 
approach, however, the best performance was achieved 
when ADC replaced the T1c image (Figure 2F), resulting 
in a 10% increase in test accuracy for this tier, and a 20% 
increase in accuracy for the IDHmut-codel subgroup (Table 
2). Although, in general, including ADC in both models out-
performed their anatomical imaging-only counterparts, the 
best generalization power to the test set was achieved with 
a 3-class model that replaced T2-weighted images with 
ADC maps. The final overall patient accuracies achieved 
were 86.0% [0.839, 1.0], 80.0% [0.720, 1.0], and 85.7% 
[0.771, 1.0] on training, validation, and UCSF test sets, with 
final test set class accuracies of 95.2% [0.857, 0.952] for 
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Fig. 2  Main insights from the hyperparameter search and effects of including ADC as an input image. (A–C) Hyperparameter search: (A) A slice-
by-slice prediction approach improved the ability to achieve high accuracy on the validation data compared to average pooling of slices. (B) 
Cropping to the T2-lesion reduced the validation accuracy of the 3-class model. (C) Pre-training increased validation accuracy of the model. (D–F) 
Benefit of including ADC as an input image: (D) For the 3-class models, lower generalization accuracy was observed when ADC replaced T1c, 
while replacing the T2 image with ADC achieved the best performance. (E) For the IDH-mutation tier, test accuracy was slightly improved using 
T1c, T2-FLAIR, and ADC as input images. (F) For the 1p19q mutation tier, replacing T1c with ADC significantly improved test accuracy.
  

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
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IDHwt, 88.9% [0.778, 0.944] for IDHmut-intact, and 60.0% 
[0.4, 0.6] for IDHmut-codel subgroups (Figure 3B; Table 2).

Visualization and interpretation.—Figure 4 illustrates 
representative GradCAM images for the best (>90% con-
fidence that the genetic alteration was ground truth) and 
worse (>50% confidence that the genetic alteration was 
other than its ground truth) predictions for the best 3-class 
model with ADC, T1c, and T2-FLAIR images as inputs. The 
most prominent features of IDH-wildtype gliomas were a 
ring-enhancing lesion surrounding a necrotic core, with 
elevated T2-hyperintensity on the T2 FLAIR image and re-
duced, more heterogeneous ADC values. Correctly pre-
dicted IDHmut-1p19qcodel tumors exhibited uniformly 
elevated T2-hyperintensity on T2-FLAIR images with more 
diffuse regions of heightened ADC and T1-hypointensity, 
while IDHmut-intact tumors tended to be larger with 
mostly elevated but textured ADC, moderate T2-FLAIR-
hyperintensity, and the most hypointense on T1-weighted 
images. Incorrectly predicted IDHwt tumors were often 
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IDHwt, 88.9% [0.778, 0.944] for IDHmut-intact, and 60.0% 
[0.4, 0.6] for IDHmut-codel subgroups (Figure 3B; Table 2).

Visualization and interpretation.—Figure 4 illustrates 
representative GradCAM images for the best (>90% con-
fidence that the genetic alteration was ground truth) and 
worse (>50% confidence that the genetic alteration was 
other than its ground truth) predictions for the best 3-class 
model with ADC, T1c, and T2-FLAIR images as inputs. The 
most prominent features of IDH-wildtype gliomas were a 
ring-enhancing lesion surrounding a necrotic core, with 
elevated T2-hyperintensity on the T2 FLAIR image and re-
duced, more heterogeneous ADC values. Correctly pre-
dicted IDHmut-1p19qcodel tumors exhibited uniformly 
elevated T2-hyperintensity on T2-FLAIR images with more 
diffuse regions of heightened ADC and T1-hypointensity, 
while IDHmut-intact tumors tended to be larger with 
mostly elevated but textured ADC, moderate T2-FLAIR-
hyperintensity, and the most hypointense on T1-weighted 
images. Incorrectly predicted IDHwt tumors were often 

non-enhancing, while IDHmut-codel tumors were fre-
quently predicted as IDHmut-intact because the network 
was not looking at the right part of the image.

Discussion

In this study, we systematically investigated different sets 
of hyperparameters to achieve the optimal deep learning 
framework and MRI sequences for jointly identifying the 
IDH-mutation and 1p19q-codeletion status of a glioma 
patient prior to surgery. To our knowledge, this is the first 
study to: (a) classify molecular subgroup using imaging 
and deep learning; (b) investigate the impact of including 
ADC; (c) incorporate a pre-training strategy that includes 
the generation of an RGB color image from 3 grayscale 
MR images; and (d) thoroughly evaluate differences be-
tween various deep learning strategies through extensive 
hyperparameter searching complemented by training/
validation loss curves and a feature attribution technique. 
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Fig. 3  Final patient accuracy and class accuracies of the final four models: (A) A 2-tiered structure with all anatomical images (left) and ADC 
replacing the T1c image in the second tier (right). (B) A 3-class structure with anatomical images only (left) and ADC replacing T2 as the third 
channel (right). An increase in the IDHmut-codel accuracy and overall accuracy was observed when ADC maps were included as input images. 
The best model was the 3-class model that included ADC.
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Our best performing model was a 3-class, VGG-16 model 
pre-trained on ImageNet that included T1c, T2-FLAIR, and 
ADC images as inputs and predicted patients in our UCSF 
test set with promising overall (85.7%) and individual class 
accuracy (IDHwt: 95.2% [95% CI = (0.857, 0.952)]; IDHmut-
intact: 88.9% [95% CI = (0.778, 0.944)]; IDHmut-codel: 60.0% 
[95% CI = (0.40, 0.60)]). A 3-class model approach was ad-
vantageous compared to a tiered strategy that first pre-
dicted IDH, and then 1p19q-codeletion mutations. Adding 
ADC as one of the input images increased generalization 
to test sets for both the 3-class models and second-tier 
1p19q models. All deep learning models outperformed the 
corresponding logistic regression baseline models using 
age and the presence of contrast enhancement alone, 
indicating that imaging features can provide additional in-
sight into genetic alterations. Our GradCAM analyses con-
firmed that the final algorithm was in fact learning features 
derived from tumor regions and not surrounding areas.

As age and the presence of contrast-enhancing tumors 
are known predictors of IDH-mutation status, we con-
structed logistic regression models using these variables 
to serve as a benchmark for our models to outperform. This 
approach also ensured that the deep learner was more 
than a complex detector of age or the presence of con-
trast enhancement.46 Using contrast enhancement as an 
input to our baseline logistic regression models improved 
their generalization to the UCSF validation, UCSF test, and 
TCGA test sets for the 3-class and IDH model to 70%-72% 
overall accuracy. These final patient and class accuracies 
served as a benchmark for which to compare our deep 
learning models.

Before implementing our hypothesis-driven compari-
sons on the influence of ADC and modeling approach, we 
performed an extensive hyperparameter search to deter-
mine the optimal set of network training parameters for 
each set of experiments. First, 2 different slice-combining 
paradigms were compared: (1) pooling slices for a single 
prediction per patient42; and (2) treating each slice individ-
ually in training and then afterwards combining slice pre-
dictions.21 In (1), all slices from a single patient are used 
in the same batch such that the number of slices becomes 
the effective batch size. Average or max pooling is then 
employed in the final layer to condense all slices into a 
single feature vector which generates a single prediction 
per patient. As a result, a single value is back propagated 
through the network for each patient after the loss is calcu-
lated. In contrast, (2) treats each slice independently such 
that a batch often contains slices from many patients; in 
turn, backpropagating gradients on a slice-by-slice basis 
and calculating a final patient-level prediction only after 
training is complete. Updating network weights based on 
individual slices resulted in better training/validation loss 
curves, as well as an increase in the overall patient-level 
accuracy as shown in Figure 2A. A marked decrease in pre-
diction capability for both the 3-class and 2-tiered settings 
was observed when cropping to the T2 lesion compared 
with no cropping or cropping to a standard-sized rectangle. 
This is in line with the notion that the location of the lesion 
within the brain is associated with IDH-mutation status.47 
Although the ResNet-18 architecture most frequently re-
sulted in models with higher average accuracy, the VGG-
16 architecture had achieved the highest accuracy when 
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Fig. 4  Visualization of imaging features and GradCAM analysis of the best (A) and worst (B) predicted patients with the final 3-class model that 
included ADC. GradCAM maps of the worst predicted patients often indicated that these models were looking outside of the tumor region when 
making their decision (white ellipses), compared to looking at the lesion for all of the correctly predicted patients. Top column lists true groupings. 
IDHwt and IDHmut-intact were misclassified as IDHmut-codel gliomas, while the IDHmut-codel examples were predicted as IDHmut-intact.
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other hyperparameters were optimized. This is not all that 
surprising given VGG-16’s 3 terminal fully connected layers 
that could be helpful in capturing the heterogenous char-
acteristics present in these lesions by allowing for different 
interactions among features, and the fact that the benefits 
of the residual connections in ResNet architectures typi-
cally are not realized until an order of magnitude of more 
data is used in training.

We hypothesized that a single 3-class model that was 
trained to predict molecular subgroup by classifying 
both IDH-mutation status and 1p19q-codeletion simulta-
neously would outperform a 2-tiered cascaded approach 
because: (1) the second tier predicting 1p19q-codeletion 
had a limited number of patients from which to learn im-
aging features; and (2) learned imaging features could be 
shared between tasks. Our results supported this hypoth-
esis, regardless of whether or not ADC was included in 
our models. The reduced overall training accuracy of the 
3-class model also suggests that the model was less likely 
to overfit when capturing features of 3-classes, boosting its 
performance on the test set compared to the 2-tiered ap-
proach. Supplementary eFigure 5 shows class accuracies 
plotted from the 3-class experiments that were performed 
during the hyperparameter search phase, depicting the 
tradeoff between a model’s ability to predict IDHmut-
codel patients and IDHmut-intact patients correctly. As the 
ability to predict IDHmut-codel patients increased, the pre-
diction accuracy for IDHmut-intact patients diminished, 
while the ability to predict IDHwt patients remained stable. 
This result implies that even in the multiclass setting, the 
power of deep learning models to discriminate the 1p19q-
codeletion was still limited. Although the 2-tiered approach 
more accurately classified the TCGA cohort compared to 
the 3-class model, the second tier incorrectly predicted 
all of the TCGA IDH-mutated patients as 1p19q-intact, fur-
ther supporting improved generalizability with the 3-class 
model. This poor generalization of the IDHmut-codel class 
is most likely due to the fact that 80% of the UCSF IDHmut-
codel lesions were non-enhancing, whereas only 31% of 
the IDHmut-codel patients from the TCGA dataset had non-
enhancing lesions. Heterogeneous scan parameters field 
strengths, and vendor system platforms resulting in im-
ages of varying quality and contrasts in the TCGA data that 
were not seen in training, may also play a role.

Using ADC in place of an anatomical imaging se-
quence conferred an advantage in test accuracy for both 
the tiered and 3-class settings (Table 3). This advantage 
was particularly evident when comparing experiments 
predicting 1p19q-codeletion (Figure 3), where we ob-
serve the greatest generalization power in models using 
ADC together with T2 and T2-FLAIR. This finding was ex-
pected given that the mismatch in the T2 and T2-FLAIR 
signals contains imaging features specific to IDHmut-
intact patients. When comparing the 3-class models with 
and without ADC, a more balanced result between IDH-
mutated classes was achieved with ADC: 70% IDHmut-
codel and 74% IDHmut-intact accuracy compared with 
the 60% IDHmut-codel and 84% IDHmut-intact accuracy. 
In contrast, including ADC as a modality in place of either 
T1c, T2, or T2-FLAIR images did not confer an advantage 
in predicting IDH-mutation status alone, despite prior 

evidence that features derived from diffusion-weighted 
imaging can help differentiated IDH-mutation status.15,24,25 
This result, however, does not mean that ADC is not val-
uable, but rather that the loss of another more informa-
tive sequence outweighed the benefit of ADC. For both the 
3-class and IDH model tier, replacing the T1c images with 
ADC substantially decreases generalization power to the 
UCSF test set as expected given the known association 
between the presence of contrast enhancement and IDH-
wildtype tumors. Although a limitation of our study is that 
we were not able to validate these findings on the multi-
institutional external cohort, the promise of incorporating 
ADC into deep learning models that predict molecular 
subgroup, especially for the 1p19q-mutation, is still clear 
from the results presented and a valuable contribution to 
the scientific community.

Despite the implications of patient management asso-
ciated with 1p19q-codeletion status, the vast majority of 
prior studies have focused exclusively on IDH-mutation 
prediction. In 2018, a radiomics-based machine learning 
algorithm utilized the BraTS portion of TCGA data to pre-
dict 1p19q-codeletion vs intact patients and achieved 
80% accuracy.20 The validation set used to assess this 
accuracy, however, consisted of only 5 subjects. Two 
other studies since reported a deep learning-based 3- or 
5-fold cross-validation with remarkable 93.4% accur-
acies for the prediction of 1p19q-codeletion in 2019 and 
2020.17,19 However, one of these studies also lacked a 
separate test set for generating this metric and for both 
overall accuracy measures included IDH-wildtype tumors 
in the 1p19q-intact class, artificially boosting baseline 
accuracy to either 88% or 65% even if all of the 1p19q-
codeleted tumors were predicted incorrectly. There was 
also no specification about whether early stopping was 
employed, which in our experience, when used in con-
junction with cross-validation approaches, results in a 
>30% drop in accuracy between the validation and test 
sets. Without reporting an independent test set or at least 
the loss curves observed during training and validation 
as shown in Supplementary eFigure 7, it is not possible 
to assess whether a model would work on unseen data. 
Although van der Voort et al48 used the BraTS images of 
the TCGA dataset as an external test cohort to validate 
their radiomics-based machine learning model of 1p19q-
codeletion classification in low-grade glioma, and dem-
onstrated clinical relevance by comparing model results 
to the predictions of expert clinicians, they also did not 
first stratify by IDH before predicting 1p19q mutation 
status, elevating their accuracy in 1p19q-intact patients 
by 25% which translated to a 0.73 AUC ROC on the ex-
ternal test set. In contrast, our study is the first analysis 
that aims to predict 1p19q-codeletion for patients already 
determined to be IDH-mutant, without first segregating 
based on tumor grade obtained through pathology. 
Although the sample size of our IDH-mutated subgroups 
is still limited and our external test set does not reflect the 
same distribution of 1p19q-codeleted to intact patients as 
our internal dataset, it is still the first deep learning study 
that attempts to validate models incorporating 1p19q-
codeletion status within IDH-mutant gliomas on an ex-
ternal, multi-institutional cohort.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab238#supplementary-data
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Our results from the UCSF test cohort and down-
stream GradCAM analysis indicated that a deep 
learning model is in fact learning from signals in tumor 
regions and it is possible to learn generalizable im-
aging features when the patient samples are of similar 
outcome distribution. GradCAMs provide some amount 
of interpretability of an otherwise “black-box” CNN by 
displaying a combination of semantically meaningful 
features in the form of a heatmap, which can be thought 
of as a map of where the network is looking in the 
image to draw its predictions. Our analysis included the 
generation of GradCAM heatmaps for both well- and 
poorly predicted patients for the best 3-class model, in-
cluding ADC maps in place of T2-weighted images. The 
GradCAM heatmaps in Figure 4 provide confidence in 
our results because the network focuses on the lesion 
in all correctly predicted tumors, while in the patients 
who were misclassified, the GradCAM heatmaps show 
that the network often became confused by other parts 
of the image outside the lesion boundaries that con-
found the overall prediction. Although GradCAMs pro-
vide insight into where the model is looking, they do 
not attribute feature importance and have limited spa-
tial resolution based on the size of the final output layer 
of the chosen model.

In conclusion, we created a model that was able to 
generalize to unseen data with a promising overall accu-
racy of 86%, and individual class accuracies of 95% for 
IDHwt, 90% for IDHmut-intact, and 60% for IDHmut-codel 
subgroups. From our extensive hyperparameter search 
during model development, we derived insights that 
support the use of a network that has been pre-trained 
on ImageNet for classification tasks combined with a 
slice-by-slice approach for updating weights in training 
and a cropping strategy that extends beyond the bound-
aries of the T2-lesion. Using this framework, we con-
cluded that classifying both IDH and 1p19q mutations 
together in a single step was advantageous compared 
to implementing a tiered structure that first predicted 
IDH-mutation status before 1p19q-codeletion using 2 
separate binary models. The addition of ADC increased 
the generalization capacity of our models regardless of 
the modeling structure chosen, highlighting the utility 
of incorporating diffusion-weighted imaging, that more 
closely reflects underlying tumor biology, in future multi-
site analyses of molecular subtypes. Although the goal 
of this study was to utilize routine clinical sequences for 
this analysis, additional image contrasts, such as rCBV 
and SWI that have been shown to highlight unique fea-
tures specific to 1p19q-codeleted tumors, should be in-
corporated in the future to improve class accuracy of 
this subgroup. This, along with more data with different 
acquisition parameters, an evaluation of feature attribu-
tion for different images, and integrating newer network 
architectures and training approaches will be essential 
for further improving classification accuracy. Although 
larger studies that focus on accumulating enough IDH-
mutant patients are still desperately needed to improve 
the accuracy of 1p19q-codeleted gliomas for implemen-
tation in clinical practice, the insights gleaned from this 
study will be highly valuable once such datasets become 
publicly available.
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