
R E S E A R CH A R T I C L E

Deep learning magnetic resonance spectroscopy fingerprints
of brain tumours using quantum mechanically synthesised data

Nikolaos Dikaios1,2

1Mathematics Research Center, Academy of

Athens, Athens, Greece

2Centre for Vision, Speech and Signal

Processing, University of Surrey, Guildford, UK

Correspondence

Nikolaos Dikaios, Mathematics Research

Center, Academy of Athens, 11527 Athens,

Greece.

Email: n.dikaios@gmail.com

Metabolic fingerprints are valuable biomarkers for diseases that are associated with

metabolic disorders. 1H magnetic resonance spectroscopy (MRS) is a unique nonin-

vasive diagnostic tool that can depict the metabolic fingerprint based solely on the

proton signal of different molecules present in the tissue. However, its performance

is severely hindered by low SNR, field inhomogeneities and overlapping spectra of

metabolites, which affect the quantification of metabolites. Consequently, MRS is

rarely included in routine clinical protocols and has not been proven in multi-

institutional trials. This work proposes an alternative approach, where instead of

quantifying metabolites’ concentration, deep learning (DL) is used to model the com-

plex nonlinear relationship between diseases and their spectroscopic metabolic fin-

gerprint (pattern). DL requires large training datasets, acquired (ideally) with the same

protocol/scanner, which are very rarely available. To overcome this limitation, a novel

method is proposed that can quantum mechanically synthesise MRS data for any

scanner/acquisition protocol. The proposed methodology is applied to the challeng-

ing clinical problem of differentiating metastasis from glioblastoma brain tumours on

data acquired across multiple institutions. DL algorithms were trained on the aug-

mented synthetic spectra and tested on two independent datasets acquired by differ-

ent scanners, achieving a receiver operating characteristic area under the curve of up

to 0.96 and 0.97, respectively.
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1 | INTRODUCTION

Human metabolism plays an important role in health conditions and can depict underlying disease mechanisms.1 Identifying abnormal levels of

certain metabolites can be useful for both diagnosis and treatment of diseases.2 Magnetic resonance spectroscopy (MRS) can noninvasively evalu-

ate metabolic activity and is used to diagnose metabolic disorders. MRS studies rely on the quantification of metabolic activity linked to a certain

disease to detect, characterise and manage treatment. However, the quantification of the metabolites’ concentration is significantly affected by

limitations in the acquisition such as low signal-to-noise ratio (SNR), field inhomogeneities, as well as overlapping spectra of the metabolites. Con-

sequently, it is not easy to depict the contribution in the MR signal of individual metabolites and accurately quantify their presence, particularly

Abbreviations used:: ANN, artificial neural network; AUC, area under the curve; CNN, convolutional neural network; LTE, long echo time; MRS, magnetic resonance spectroscopy; ROC, receiver

operating characteristic curve; SNR, signal-to-noise ratio; STE, short echo time; SVM, support vector machine; TE, echo time; TR, repetition time.
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when their concentration is low relative to the sensitivity of MRS. High field MR scanners improve SNR,3 but suffer more from field inhomogenei-

ties, which need to be properly accounted for.

This work aims to quantum mechanically model synthetic MRS spectra that will be used to train machine learning algorithms to classify dis-

eases based on the pattern of acquired in vivo spectra. The first underlying hypothesis is that diseases have a unique spectroscopy (metabolic) fin-

gerprint4 and their classification can be achieved based on the pattern of the spectra rather than the quantification of metabolic activity.5 Being

able to generate an abundance of synthetic data would enable the use of deep learning algorithms such as convolutional neural networks

(CNNs).6 Deep learning, according to the circuit complexity theory, can efficiently fit complex multivariate functions, and with the addition of a

convolutional layer (as in a CNN) is suitable for pattern recognition within spectra. To date, the training of such complex models is not feasible as

they require large training datasets that are very rarely available. Further, MR centres use different MR scanners and different acquisition proto-

cols; hence, it is not feasible to combine data from multiple centres to train a predictive model. The second hypothesis behind this work is that

deep learning models, trained on augmented synthetic MRS spectra, could be applied across different centres that use any scanner/acquisition

protocol, significantly improving the diagnostic value of MRS. This is a major potential benefit of using synthetic MR spectra as they can be mod-

elled for any scanner and for any acquisition protocol. Augmented techniques are also important to increase the amount of data and enable the

use of machine learning algorithms.

The proposed methodology will be used to address the clinical problem of discriminating metastasis from glioblastoma brain cancers, based

on their metabolic fingerprint as depicted by in vivo 1H MRS, which cannot be addressed with conventional imaging. Metastatic cancers are the

most common brain tumours and are mostly caused by haematogenous spread originating from lung, breast, skin or colon cancers.7 Primary glio-

blastoma multiforme (also called glioblastoma) is a fast-growing glioma that develops glial cells that often spread into nearby brain tissue. Glioblas-

toma is usually found in the cerebral hemispheres, and according to the American Association of Neurological Surgeons, it typically results in

death 15 months after its diagnosis. Pretreatment discrimination of metastatic from glioblastoma brain tumours is a very important clinical prob-

lem as they have substantially different clinical management.8 Metastatic brain cancers are commonly treated with radiation and stereotactic

radiosurgery.9 Glioblastoma's standard treatment includes intracranial surgery followed by radiotherapy with concomitant and adjuvant chemo-

therapy with temozolomide.10 Metastasis and glioblastomas have a very similar MR imaging phenotype, appearing as solitary brain tumours sur-

rounded by oedema, which makes them hard to differentiate based on conventional imaging. A range of advanced imaging methods such as

F IGURE 1 Metastasis and glioblastoma cases from the INTERPRET project. A T1-weighted postgadolinium image and MR spectra based on
STE and LTE single-voxel sequences are shown per case
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diffusion imaging,11–13 dynamic contrast-enhanced imaging,14 MRS15,16 and radiomics17–19 have been reported as showing promising results.

However, with the exception of the study conducted by Velido et al.16, these are single-centre studies, commonly performed on a single scanner,

and have not been tested on independent patient populations. The proposed methodology used data acquired across multiple institutions.20–24

CNN models were trained on the augmented synthetic spectra and tested on two independent datasets acquired by different scanners.

2 | MATERIALS AND METHODS

This work is based on the INTERPRET single-voxel multicentre dataset,20–24 where each patient went through two different sequences using a short

(STE) and a long echo time (LTE). STE spectra include more metabolites than LTE, but LTE key metabolites like creatine and choline have higher

SNRs.25 The two single-voxel sequences used in the INTERPRET dataset were Point RESolved Spectroscopy (PRESS)26 and the stimulated echo

acquisition mode (STEAM)27 sequence. Figure 1 shows an example of a metastasis and a glioblastoma brain tumour acquired in the INTERPRET

dataset with LTE and STE. Augmented synthetic spectra were modelled for every sequence based on a quantum mechanical model then were used

to train 1D CNNmodels. The trainedmodels were then tested on independently acquired spectra. Figure 2 outlines the methodology followed.

2.1 | Patient population and acquisition protocol

The INTERPRET study20–24 consists of data from eight different clinical centres using three different 1.5 T MR scanners, namely, GE Signa

Advantage and LX CV/i 1.5 T, Philips NT and ACS NT 1.5 T, and Siemens Vision 1.5 T. This work included 112 patients from the INTERPRET

database with histopathologically confirmed glioblastoma (81 cases) and metastasis (31 cases). Each patient had single-voxel spectra acquired with

both a long (using PRESS) and a short (using either PRESS or STEAM) echo time from a nodular region of the tumour where the biopsy was taken.

Table 1 summarises the details of the acquisition and patient population.

2.2 | Quantum mechanically modelled MR spectra

In classical MR an ensemble of noninteracting spins (like protons in the hydrogen atoms in water molecules) are represented as a magnetisation

vector M(t). The magnetisation vector is perturbed by a magnetic field B1(t) pulse, and once the B1(t) pulse stops, the magnetisation M

(t) undergoes several processes such as T1 and T2 relaxation as it returns to equilibrium. The magnetic field B(t) may include the following:

(i) offsets with respect to the main static magnetic field B0; (ii) radiofrequency (RF) pulses creating an additional magnetic field B1, which by the

RF coil design can be complex, spatially dependent, and a superposition of multiple B1 fields; and (iii) magnetic field gradients G(t) for spatial

F IGURE 2 Flowchart summarising the methodology
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encoding. The Bloch formulation can be summarised as dM
dt = −γB tð Þ×M , where B(t) = B0 + B1(t) + r � G(t). The classical model is sufficient to

describe two state systems such as water molecules,28 but metabolites with interacting spins require a quantum mechanical description.29

A quantum mechanical model based on the density matrix formalism was implemented in Python, similar to the implementation of Simpson

et al.30 Specifically, the time evolution of the density matrix, ρ(t), is described by the Liouville-von Neumann equation dρ
dt = − i H tð Þ,ρ½ �, which for a

time-dependent Hamiltonian can be solved as ρ(t) = e-itHρ(0)eiH. The total spin Hamiltonian H reflects internal nuclear spin energy interactions

(chemical shifts HCS, dipole–dipole couplings HDD, J-couplings HJ, and quadrupolar coupling HQ interactions) and RF pulses HRF, HTOT(t) = HCS(t) +

HJ(t) + HDD(t) + HZ(t) + HQ(t) + HRF(t). This work assumes that the motion of molecules is fast, isotropic and hence that ω0τC<<1, where ω0 is the

resonant frequency and τC is the correlation time, and as a result the dipole–dipole couplings HDD and the quadrupolar couplings HQ average to

zero. 1H MRS is a two spin-½ nuclei AB system (with angular momentum operators I and S, respectively) and without RF pulses is represented by

H = ωAIz + ωBSz + JAB(I � S), where JAB is the coupling constant and ωA,ωB are the chemical shifts of spin A and B, respectively. The density matrix

formalism is described in more detail by Mulkern and Bowers.29

Both STEAM and PRESS have been quantum mechanically modelled using the density matrix formalism. Excitation, refocusing pulses

and signal readout were implemented as described by Simpson et al.30 and Mulkern et al.31,32 Aside from H2O, 24 different metabolites

were modelled, namely, alanine, aspartate, phospho-choline, creatine, phospho-creatine, citrate, gamma-aminobutyric acid, glutamine, gluta-

mate, glutathione, glycine, myo-inositol, lactate, N-acetyl aspartate, scyllo-inositol, taurine, ascorbate, beta-hydroxybutyrate,

2-hydroxyglutarate, glucose, N-acetyl aspartyl glutamate, glycero-phosphocholine, phosphoryl ethanolamine and serine. The resulting free

induction decay (FID) signals per metabolite were added and the sum was Fourier-transformed to frequency space to give the modelled

spectrum. The model depended on a series of acquisition parameters, namely, field strength, the number of spectral points, spectral width,

echo times, repetition time, type of sequence and parameters related to the presence of metabolites (ie, the number of atoms [Nat], T2*

per metabolite).

2.3 | Mathematical optimisation

The modelled MR spectra were fitted to the acquired spectra as a function of the number of atoms and the spin–spin relaxation time T2* of each

metabolite. The Nat dictate the presence of the metabolite in the region of interest. The T2* affects the full width half maximum of the resonance

lineshape ΔvFWHM = 1/(πT2*) and consequently both the frequency resolution and the SNR of the spectra. T2* is an intrinsic molecular property

but is also affected by magnetic field irregularities. Consequently, its value cannot be accurately known in advance and was included as a parame-

ter in the fitting process.

Given the large number of unknowns (Nat, T2* × 25 molecules = 50 unknowns), a novel optimisation algorithm was implemented that hierar-

chically fitted the signal from each molecule to the acquired spectra (always starting from H2O, which dominates the signal) until all molecules

were included. Fitting was performed by minimising the L1-norm, using the simplex algorithm, which is an iterative procedure that does not need

information regarding the derivative of the function under consideration. The algorithm creates a ‘random’ simplex of n + 1 points, where n is the

number of the model parameters that need to be estimated. The simplex changes iteratively by reflection, expansion and contraction steps, until

it finds the model parameters that minimise the given likelihood function. The constrained variation of the simplex algorithm33 was used for all

tested models; an L1-norm was employed in the likelihood function to improve robustness. The simplex algorithm is particularly effective for

cases like this one where the gradient of the likelihood functions is not easy to calculate. The simplex algorithm was chosen because it performed

better than other curve fitting algorithms, namely, the Levenberg-Marquardt,34 the trust-region-reflective35 and the adaptive learning rate sto-

chastic optimisation (ADAM).36

TABLE 1 Description of the different acquisition protocols and patient population. The Siemens dataset was highly imbalanced and had a low
number of samples, hence it was not included in this work

Philips (48 patients) GE Siemens

Volume (cm3) 4–8 4–8 4–8

N spectrum points 512 2048 1024

Bandwidth (Hz) 1,000 2500 1000

TR (ms) 2000 2000 2000

Sequence PRESS PRESS STEAM STEAM PRESS PRESS STEAM PRESS

TE (ms) 30 136 20 30 30 135 20 136

Glioblastoma cases 32 32 30 8 5 43 6 6

Metastasis cases 16 16 4 3 7 14 1 1
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An update on metabolites Nat and T2* was accepted only if it improved the goodness of fit (gof ) measured by two-sample Kolmogorov-

Smirnov test (ks-test). This process was repeated until the signal from all metabolites was updated 100 times. The proposed hierarchical simplex

algorithm is summarised inTable 2.

2.4 | Augmented (synthetic) MR spectra

The Nat and T2* of the different metabolites were quantified for the different spectra of glioblastoma and metastasis brain tumours acquired using

the Philips and the GE scanner. The noise levels of the acquired spectra were also estimated by the median absolute deviation technique proposed

by Dikaios et al.37 Based on the quantified {Nat, T2*} parameters of each metabolite from the Philips spectra, augmented synthetic GE spectra

were generated by varying the Nat for the H2O molecules and by adding different levels of noise. Specifically, for each augmented GE spectra:

(1) 10 different values of NH20
at were used between the range of minimum and maximum quantified NH20

at from the Philips spectra.

(2) 10 different noise levels were added (as Gaussian noise) to the modelled FID between the range of minimum and maximum quantified

noise levels from the Philips spectra.Knowing the {Nat, T2*} parameters for all metabolites from the Philips spectra and the GE acquisition parame-

ters for the different sequences, synthetic GE spectra were modelled. This process resulted in 48 × 10 × 10 augmented LTE (TE = 135 ms) PRESS

GE spectra, and 48 × 10 × 10 = 4800 augmented STE (TE = 30 ms) PRESS GE spectra.

A similar process was followed to generate augmented Philips data based on the quantified {Nat, T2*} parameters of all metabolites from the

GE spectra. Similarly, 57 × 10 × 10 = 5700 LTE (TE = 136 ms) PRESS Philips spectra and 57 × 10 × 10 = 5700 STE (TE = 30 ms) PRESS Philips

spectra were modelled.

Synthetic data were not generated based on the Siemens scanner as the number of samples was too low and imbalanced to draw any conclu-

sions (six glioblastomas and one metastasis).

2.5 | Predictive modelling based on training with augmented acquired spectra

Support vector machine (SVM), artificial neural network (ANN) and 1D CNN machine learning models were trained on the GE or the Philips spec-

tra and independently tested on the Philips or the GE spectra, respectively. To maximise the performance of the models, for every spectrum used

in the training, in addition to the measured data, two different noise levels were added (plus 10% and 20% of the estimated noise), which signifi-

cantly increased the number of spectra used in the training. Adding noise is a fundamental tool for data augmentation.38 This resulted in 3 × 57

GE spectra and 3 × 48 Philips spectra and was found to be beneficial in the performance of the trained models. Hyperparameters and/or model

parameters were optimised using a grid search approach for each classifier as part of the training. The optimal parameters were selected based on

the best mean cross-validation accuracy. Ten-fold cross validation was performed for all algorithms.

SVMs were run with regularisation parameter C = 0.1 and kernel coefficient gamma = 100. ANNs were run with two hidden layers of

200 neurons each, a total training epoch of 200, learning rate (0.001, 0.01, 0.1, 0.2), weight decay 0.0005 and a training batch of 32. 1D CNNs

were configured with three convolutional layers with the number of filters equal to 24, 12 and 8, respectively, followed by a ReLU layer and 1 × 3

Max pooling layer. There were two fully connected layers with 200 fully connected neurons each with a ReLU layer in between, followed by a

softmax and classification layer. The ADAM method was used for optimisation.

TABLE 2 Hierarchical simplex algorithm to fit the quantum mechanical MRS model Φ as a function of Nat, T2* to the acquired spectra (y)

Initialise Nat, T2* parameters for each metabolite, m

Normalise the acquired spectra, y

gof0 = ks-test(Φ(Nat, T2*), y)

While i < 100:

Randomly permute the order metabolites Nat(m), T2*(m) are updated, but always starting with H2O

For each metabolite m:

Minimise kΦ(Nat, T2*) − yk1 with respect to Nat(m), T2*(m) using the simplex

gof = ks - test(Φ(Nat, T2*), y)

If gof < gof0

Update Nat(m), T2*(m), gof0

end

end
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2.6 | Predictive modelling based on training with augmented synthetic spectra

SVM, ANN and 1D CNN models were trained on the augmented synthetic GE/Philips spectra and were tested on the independently acquired

GE/Philips spectra. All algorithms were optimised using grid search on the training augmented synthetic data, as already described.

SVMs were run with regularisation parameter C = 0.1 and kernel coefficient gamma = 100. ANNs were run with four hidden layers of 400 neu-

rons each, total training epoch 200, learning rate (0.001, 0.01, 0.1, 0.2), weight decay 0.0005 and a training batch of 256. 1D CNNs were config-

ured with four convolutional layers with numbers of filter 56, 24, 12 and 8, respectively, followed by a ReLU layer and 1 × 3 Max pooling layer.

There were two fully connected layers with 300 fully connected neurons each with a ReLU layer in between, followed by a softmax and classifica-

tion layer. The ADAM method was used for optimisation. Specifically, the machine learning algorithms were trained on six different datasets:

1. 4800 synthetic GE STE spectra.

2. 4800 synthetic GE LTE spectra.

3. 4800 synthetic GE concatenated STE and LTE spectra in a 1D sequence.

4. 5700 synthetic PHILIPS STE spectra.

5. 5700 synthetic PHILIPS LTE spectra.

6. 5700 synthetic PHILIPS concatenated STE and LTE spectra in a 1D sequence.

3 | RESULTS

3.1 | Quantum mechanically modelling the MRS signal of different acquisition protocols

Typically, the MR signal is modelled by the Bloch equations that represent an ensemble of noninteracting spins (like protons in the hydrogen

atoms in water molecules). Water molecules in nuclear magnetic resonance can be perceived as two state systems (qubit) and, according to

Feynman et al.,28 can be fully described by classical MR. In MRS, however, certain metabolites have interacting spins, hence the signal needs to

be quantum mechanically modelled using density matrix formalism (eg, signal from metabolites with a strongly coupled AB system such as citrate).

To showcase why the Bloch equations cannot accurately model the MRS signal and why a quantum mechanical model needs to be used, a phantom

was built where aqueous solutions of citrate, creatine and choline were mixed in a plastic container and single-voxel PRESS spectra were obtained with

flip angle 90o, echo times TE1 = 14.4 ms and TE2 = 15.6 ms, and a repetition time (TR) of 1410 ms on a Siemens 3 T scanner. The sequence was mod-

elled with the Bloch and the Liouville-von Neumann equations, and the models were fitted to the pulse-acquired spectra. The two models displayed a

similar performance on the creatine and the choline peaks, but the Bloch equation clearly failed to model the citrate peak (Figure 3).

3.2 | Mathematical optimisation

The quantum mechanical model was fitted to the acquired PRESS and STEAM spectra in the Philips and GE scanners to estimate the Nat and the

linewidth (T2*) of each metabolite, as described in the Materials and Methods section. A new hierarchical simplex algorithm was implemented to

F IGURE 3 MR spectra in a pulse-acquired experiment of a
phantom containing 30 mM of citrate, 4 mM of creatine and 15 mM of
choline. Citrate (−OOC-CH2-C (OH)(COO−)-CH2-COO−) consists of
two pairs of strongly coupled methylene protons. Consequently,
J-coupling gives rise to line splitting, where a tall central doublet is split
into two smaller peaks on either side. J denotes the strength of the
J-coupling in Hz, Λ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δν2 + J2

p
, where Δν is the Larmor frequency

difference between the two inequivalent protons
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fit the spectra and was evaluated against publicly available software (ie, LCModel39 and the AMARES package40 in jMRUI).41 LCModel also uses

the density matrix formalism by Mulkern and Bowers.29 The optimisations were compared in terms of gof using the ks-test. The proposed fitting

method yielded a median ks-test across all samples of 0.278 (interquartile range 0.041) compared with 0.287 (interquartile range 0.041) for the

LCModel and 0.317 (interquartile range 0.043) for Amares. Figure 4 demonstrates examples of the model fitted using the hierarchical simplex

algorithm to LTE and STE spectra for both the Philips and GE scanners.

3.3 | Predictive modelling based on training with augmented acquired spectra

Three different machine learning algorithms were trained on the GE or Philips spectra then were independently tested on the Philips or GE spec-

tra, respectively, as described in the Materials and Methods section. Namely, the investigated algorithms were SVMs, ANNs and 1D CNNs. The

F IGURE 4 Examples of STE and LTE spectra fitted with the quantum mechanical model for metastasis brain tumours

TABLE 3 Performance of different
machine learning algorithms trained on
the noise-augmented spectra to
discriminate metastasis from
glioblastoma and independently tested
on nonaugmented spectra. The

assessment is based on accuracy and
ROC-AUC (95% confidence interval)

Trained on 3 × 57 GE spectra and tested on 48 Philips spectra

SVM ANN CNN

ACCURACY STE 0.67 0.73 0.77

LTE 0.69 0.75 0.77

STE + LTE 0.75 0.75 0.83

AUC STE NA 0.79 (0.70–0.86) 0.84 (0.80–0.91)

LTE NA 0.82 (0.75–0.87) 0.85 (0.77–0.91)

STE + LTE NA 0.86 (0.78–0.91) 0.88 (0.77–0.93)

Trained on 3 × 48 Philips spectra and tested on 57 GE spectra

SVM ANN CNN

ACCURACY STE 0.60 0.67 0.72

LTE 0.60 0.70 0.72

STE + LTE 0.61 0.70 0.74

AUC STE NA 0.76 (0.63–0.88) 0.80 (0.74–0.89)

LTE NA 0.76 (0.65–0.88) 0.80 (0.75–0.90)

STE + LTE NA 0.80 (0.73–0.90) 0.83 (0.77–0.91)
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spectra used for training were augmented by adding two different (Gaussian) noise levels to the FID MR signal before Fourier-transforming it to

spectra. Adding noise is a fundamental tool for data augmentation as it provides more training data and improves the generalisation power of the

trained model.38 Table 3 summarises the performance of the machine learning algorithms trained on the noise-augmented data in terms of the

receiver operating characteristic (ROC) area under the curve (AUC) and accuracy using a 50% threshold. Note that each machine learning algo-

rithm was trained on STE, LTE and STE + LTE spectra. Noise augmentation improved the performance (in terms of ROC-AUC) of the machine

learning algorithms on the spectra used for testing (nonaugmented) by up to 3% for SVMs, 8% for ANNs, and 7% for 1D CNNs. Further

augmenting the training dataset by adding more noise levels was attempted but this was not beneficial.

3.4 | Predictive modelling based on training with augmented synthetic spectra

The Nat and the respective linewidths (T2*) of each metabolite were estimated for all acquired spectra. Synthetic GE spectra were quantum

mechanically modelled based on the estimated Nat, T2* from the Philips spectra and using the GE acquisition parameters. The synthetic GE spec-

tra were augmented by varying Nat for H2O molecules and the level of noise, as described in the Materials and Methods section. The MRS spec-

trum is heavily dominated by H2O molecules that have approximately 10,000 times higher concentrations than those of the metabolites of

interest. The H2O peak in MRS spectra can in general vary as a function of the water presence in the tumour as well as partial volume with adi-

pose within the voxel. This may not be the case for GBM spectra when signals come from necrotic tissues. The suggested augmentation by vary-

ing the H2O Nat can lead to synthesising more spectra without affecting the metabolic fingerprint of the tissue.

An equivalent process was followed to generate augmented synthetic Philips spectra, again by varying Nat for H2O molecules and the level

of noise. The augmented synthetic GE/Philips spectra were used to train SVM, ANN and 1D CNN models and were tested on the acquired

Philips/GE spectra, respectively. Table 4 shows the diagnostic performance of each machine learning algorithm trained on augmented synthetic

spectra and tested on independently acquired (nonaugmented) spectra in terms of ROC-AUC and accuracy. Figure 5 shows the performance of

1D CNN models trained on STE, LTE and STE + LTE spectra.

4 | DISCUSSION

MRS is a valuable noninvasive diagnostic imaging tool that can depict metabolic disorders. Despite its potential, its performance is severely hin-

dered by low SNR, field inhomogeneities and overlapping spectra of the different metabolites that limit its ability to quantify metabolic activity.

Consequently, MRS is very rarely included in clinical trials42,43 and has not yet been proven in multi-institutional trials. The main objective of this

study was to improve the diagnostic value of MRS by understanding the complex nonlinear relationship between the metabolic spectroscopy fin-

gerprint and diseases. There were four main contributions.

Firstly, a quantum mechanical model implemented in Python that can model the MRS free induction decay signal based on the acquisition

parameters and the Nat/T2* of each metabolite.

TABLE 4 Performance of different
machine learning algorithms trained on
augmented synthetic spectra to
discriminate metastasis from
glioblastoma and independently tested
on nonaugmented spectra. The

assessment is based on accuracy and
ROC-AUC (95% confidence interval)

Trained on augmented synthetic 4800 Philips spectra and tested on 48 Philips-acquired spectra

SVM ANN CNN

ACCURACY STE 0.71 0.85 0.88

LTE 0.71 0.85 0.88

STE + LTE 0.75 0.88 0.92

AUC STE NA 0.89 (0.81–0.93) 0.94 (0.87–0.98)

LTE NA 0.92 (0.82–0.95) 0.95 (0.89–1.00)

STE + LTE NA 0.93 (0.82–0.95) 0.96 (0.90–1.00)

Trained on augmented synthetic 5700 GE spectra and tested on 57 GE-acquired spectra

SVM ANN CNN

ACCURACY STE 0.74 0.88 0.88

LTE 0.77 0.88 0.93

STE + LTE 0.77 0.90 0.93

AUC STE NA 0.93 (0.89–0.98) 0.91 (0.88–0.99)

LTE NA 0.94 (0.87–0.99) 0.95 (0.90–1.00)

STE + LTE NA 0.94 (0.90–0.99) 0.97 (0.89–1.00)
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Secondly, a novel optimisation method to fit the quantum mechanical model to the measured spectra and estimate Nat/T2* for each metabo-

lite. The proposed hierarchical simplex method, as well as accurately matching the acquired spectra, is automatic and requires no user input.

Thirdly, the generation of synthetic spectra for any MR scanner by varying the acquisition parameters and using the estimated Nat/T2* of

each metabolite. The synthetic data were then augmented by using a novel method suitable to MRS. Specifically, the variation in the Nat of water

molecules is suggested, which accounts for variations in the water content of tumours while not affecting the metabolic fingerprint. This, in com-

bination with varying the noise levels, increased the number of spectra 100 times, enabling the use of deep learning algorithms.

Fourthly, the training of machine learning algorithms based on augmented synthetic data, including the 1D CNN, which is particularly suitable

for pattern recognition problems. Even more importantly, the synthetic spectra used for training were modelled based on parameters estimated

from a different scanner than the one that was used to test the performance of the 1D CNN models. This is particularly important because differ-

ent centres have different scanners and often use different acquisition protocols. A methodology that can generate augmented synthetic data for

any scanner/acquisition protocol then use them to train an accurate diagnostic model would be extremely beneficial, especially when large

datasets are not available.

The proposed methodology could in theory be followed for any classification problem involving MRS, but in this work, it was used to differen-

tiate metastasis from glioblastoma brain tumours based on the INTERPRET single-voxel MRS multicentre dataset. This is a critical and very chal-

lenging clinical problem, as both tumour types share the same clinical symptoms and cannot be discriminated with MR imaging. MRS analysis has

shown promise in differentiating brain tumours; however, the INTERPRET multicentre study recognised the difficulty in differentiating glioblasto-

mas from metastasis.21 A more recent study16 of the same INTERPRET dataset reported an accuracy of up to 85% and an ROC-AUC of up to

0.86 on a testing dataset of 30 glioblastomas and 10 metastases acquired across three different centres (and three different MR scanners:

Siemens, GE and Philips). The proposed 1D-CNN models trained on augmented synthetic data had an accuracy (Table 2) of up to 93% and an

ROC-AUC of up to 0.97 when evaluated on two larger (48 and 57 patients, respectively), independent (tested on spectra from a different scanner

than the one used to synthesise the training data) datasets from the same INTERPRET study. To investigate the benefits of using synthetic data

for training, machine learning algorithms were also trained on the acquired Philips/GE augmented with noise addition and were independently

tested on the nonaugmented GE/Philips spectra, respectively (Table 1). The reported accuracies/ROC-AUC were consistently lower than for the

machine learning algorithms trained on the synthetic data.

In agreement with other studies, LTE spectra could better discriminate glioblastomas from metastasis compared with STE. Although LTE

single-voxel spectroscopy depicts fewer metabolites, it shows more distinct peaks, which seems to benefit the pattern recognition. Further, the

combination of STE and LTE spectra was found to be consistently better compared with using only LTE or STE.

The current study has some potential limitations. Firstly, the MRS spectra available from the INTERPRET study used to generate the synthetic

data and test the performance of the 1D CNN models were acquired solely on 1.5 T scanners. Secondly, the proposed methodology needs to be

applied to other clinical problems, such as early detection of brain tumours and differentiating more brain tumour types. Future work will involve

testing the 1D CNN models on MRS data from 3 T scanners3 and applying the proposed methodology to other clinical problems.

To conclude, the findings support the two main hypotheses that diseases can have a distinct metabolic (and spectroscopy) fingerprint, and

that augmented synthetic spectra can be modelled for any MR acquisition protocol/scanner to train diagnostic models. Generating large aug-

mented synthetic data is particularly important, especially when deep learning is used for training the diagnostic models. In turn, enabling the use

of deep learning methods by using augmented synthetic data can significantly improve our ability to classify diseases and resolve challenging clini-

cal problems such as the differentiation of metastasis from glioblastoma. Finally, the proposed methodology could be applied across different

F IGURE 5 Receiver operating characteristic (ROC) curve shown for the 1D CNN models (STE, LTE, and STE + LTE) tested on the single-voxel
spectra from the INTERPRET project. Left: 1D CNN model trained on augmented synthetic Philips spectra and tested on acquired Philips spectra.
Right: 1D CNN model trained on augmented synthetic GE spectra and tested on acquired GE spectra
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institutions synthesising MRS data, even when acquisition protocols change, and can also train deep learning algorithms, even when large datasets

are not available.
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