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KEY POINTS

� Immunovirotherapy has emerged as a promising targeted approach for treatment of GBM and other
malignant gliomas.

� There are multiple viral prototypes for targeted oncolytic virotherapy and targeted drug delivery in
various stages of clinical development with promising results.

� Herpes Simplex Virus type 1 offers numerous advantages as an oncolytic virus with several genetic
enhancements currently being tested in clinical trials in adults and children.
INTRODUCTION normal brain tissue at early stages.9–11 GBMs
Glioblastoma multiforme (GBM) represents nearly
half of all primary malignant brain tumors in adults,
and malignant gliomas are a leading cause of
cancer-related morbidity and mortality in chil-
dren.1–3 Outcomes for patients with GBM are
poor, and effective treatment options are limited
with individuals having a median survival of
approximately 15 months.2,4 The current treat-
ment protocol focuses on maximal safe resection,
radiotherapy, and concurrent tumor-treating
fields/chemotherapy with temozolomide (TMZ)
with only a modest effect on outcomes.4–8 There
are multiple factors that contribute to treatment
resistance and recurrence of GBM. It is highly
invasive, with glioma cells spreading widely within
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contain tumorigenic glioma stem cells that
contribute to tumor initiation, therapeutic resis-
tance, and recurrence.12 GBM also exhibits both
intertumoral and intratumoral heterogeneity, which
contributes to diagnostic complexity and limits the
application of personalized, targeted therapies.12

There is a substantial need for novel therapeutic
approaches that address several of these chal-
lenges. Immunovirotherapy has emerged as a tar-
geted approach for treatment of GBM and other
malignant gliomas with promising results.5,13,14

Multiple viral vectors have been genetically altered
and developed as oncolytic viruses and for tar-
geted drug delivery. There are currently several
ongoing clinical trials for the treatment of GBM
with immunovirotherapy.12,15,16 In this review, we
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discuss the recent advances and current state of
viral vectors developed for the targeted treatment
of GBM and malignant gliomas including their
mechanism of action and clinical applications.
HUMAN ONCOLYTIC VIRUS MODELS
Adenovirus

Adenovirus (Adv) is a double-stranded nonenvel-
oped DNA virus causing mild upper respiratory
symptoms in humans that typically self-resolve.
Within the realm of immunovirotherapy, recombi-
nants of Adv that show conditional replication are
some of the most studied oncolytic viruses.16,17

The key to the multiple immunovirotherapy appli-
cations of the oncolytic Adv comes from its E1A
gene, which is essential in its replication and is
the first gene expressed on viral infection.18 The
Ki67 promoter for E1A expression can be upregu-
lated in conjunction with arming the oncolytic Adv
with interleukin (IL)-15 gene expression against
GBM cells with resultant enhanced anti-GBM effi-
cacy via activation of microglial cells.18 Adenovirus
can also be used to deliver suicide gene therapy.19

These suicide genes have successfully induced
apoptosis via conversion of the prodrug 5-FC
into 5-fluorouracil in the presence of Escherichia
coli cytosine deaminase (CD) and have encoded
proteins that terminate protein synthesis within tu-
mor cells.19 Adenovirus, therefore, represents a
multifaceted vector in the immunovirotherapy
arsenal against GBM.
In 2018, Lang and colleagues20 published land-

mark results from a Phase I, dose-escalation, bio-
logic-end-point study investigating Delta-24-RGD
oncolytic virus. Participants were separated into 2
groups, with groupA receiving a single intratumoral
injection of the virus into biopsy-confirmed recur-
rent tumor and group B undergoing intratumoral in-
jection through an implanted catheter followed by
en bloc resection days postimplantation to eval-
uate posttreatment specimens. The study demon-
strated quite promising clinical results, with 20%of
group A patients surviving more than 3 years post-
treatment and 12% of patients demonstrating
greater than 95% enhancing tumor reduction with
associated more than 3 years of progression-free
survival. Analysis of groupB specimens postresec-
tion demonstrated direct virus-induced oncolysis
with tumor infiltration byCD8cells. Subsequent an-
alyses of cell lines derived from these patients
showed induction of immunogenic cell death after
virus insertion into tumor cells. Overall, this Phase
I study provided promising results demonstrating
increased long-term survival in patients with recur-
rent high-grade gliomas due to the direct oncolytic
effects of DNX-2401 adenovirus.20
A promising study recently published in Neuro-
Oncology Advances found potentiating effects of
the Adv Delta24-RGD on the response of a murine
GBM model to anti-PD1 therapy overcoming
tumor-induced immune suppression via significant
recruitment of dendritic cells resulting in a robust
antitumor response and survival benefit, suggest-
ing the potential benefit of combination ther-
apy.21,22 Other mechanisms of action affect the
function of T cells, specifically decreasing tumor-
infiltrating T regulatory (Treg) cells and increasing
interferon-gamma producing CD8 T cells. In addi-
tion, the oncolytic AdCMVdelta24 virus can
augment systemic tumor antigen specific T cells
and reprogram Treg cells to a stimulatory rather
than immunosuppressive state.23

Reduced expression in immortalized cells/
Dickkopf-3 (REIC/Dkk-3) is a tumor suppressor
and therapeutic gene in many human cancers,
including malignant glioma with promising results
with adenovirus oncolytic therapy.24 An adeno-
virus REIC vector was developed to increase
REIC/Dkk-3 expression (Ad-SGE-REIC), which is
currently undergoing a Phase I/IIa clinical trial for
treatment of recurrent malignant glioma.25

Not only can the Adv vector be used to stimulate
the antitumor immune response, but it also has
possible applications to enhance intraoperative
discernment of tumor tissue from normal brain. In
2015, Yano and colleagues26 reported the suc-
cessful use of a green fluorescent protein express-
ing adenovirus OBP-401 to label GBM cells to
allow fluorescence guided surgery techniques to
resect the murine GBM with nearly undetectable
residual macroscopic tumor in the surgical bed.
Herpes Simplex Virus Type-1

Genetically engineered oncolytic Herpes Simplex
Virus type1 (oHSV), in particular, has been the focus
of extensive preclinical and clinical research, offer-
ing several advantages as a therapeutic vector.14 It
is an enveloped icosahedral virus with double-
stranded linear DNA that belongs to the Herpesviri-
dae family. It is intrinsically neurotropic and does
not integrate into the host cell DNA, making it an
ideal vector for targeting primary brain tumors.27,28

The deletion of essential genes required for replica-
tion in normal cells in combination with replacement
of nonessential genes with foreign DNA can provide
therapeuticadvantages.14,28 Inaddition, engineered
oHSVs remain sensitive to antivirals, which contrib-
utes to its safety profile in the event of unanticipated
adverse reactions.
The introduction of inactivating mutations in the

g134.5 neurovirulence gene, an essential gene for
viral replication in normal cells in the central
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nervous system, has been extensively used in
oncolytic viral models.29,30 In response to herpes
simplex virus (HSV)-1 infection, normal cells acti-
vate the double-stranded RNA–dependent protein
kinase R (PKR) system. This leads to phosphoryla-
tion of eukaryotic initiation factor (eIF) 2a inducing
translational arrest and resulting in severe impair-
ment of viral protein synthesis.29 Infected cell pro-
tein 34.5 (ICP34.5), the product of g134.5, reverses
this process and is thus essential for successful
viral replication in the central nervous system.
Deletion of g134.5 results in conditional viral repli-
cation within tumor cells that have low intrinsic
PKR activity, such as human glioma.5,29,30 This
prevents productive infection in normal cells in
the brain through PKR-mediated translational ar-
rest while still maintaining oncolytic activity against
glioma cells, which have defective signaling path-
ways and/or activating RAS mutations that sup-
press antiviral responses.5,29,30 Clinical trials of
g134.5-deleted oHSV G207 (Table 1) have demon-
strated safety with evidence of efficacy in both
adults and children (Table 2).14,31–37 Markert and
colleagues32 conducted a phase I trial on 21 adult
patients and demonstrated safety at doses up to
3 � 109 pfu with 9 patients showing evidence of
neuropathologic or radiographic response. A
follow-up phase 1b trial on 6 patients with recur-
rent GBM receiving 2 doses of G207 totaling
1.15� 109 pfu, with 13% of this total dose injected
before tumor resection via a catheter placed ster-
eotactically into enhancing portion of the tumor,
also demonstrated safety and confirmed viral
replication.34 A third study demonstrated safety
of vG207 in combination a single 5 Gy radiation
dose in 9 adults with recurrent high-grade gliomas
to provide in vivo synergistic viral replication based
on preclinical data.33 A clinical trial in pediatric
supratentorial HGG trial is now complete and
demonstrated safety of a controlled-rate infusion
of intratumoral G207 up to 1 � 108 pfu (maximum
planned dose) alone and combined with 5 Gy of
radiation. Radiographic, neuropathologic, and/or
clinical responses were seen in 11 of 12 patients.
Matched pretreatment and posttreatment tissue
in several patients demonstrated marked increase
in tumor-infiltrating lymphocyte months after treat-
ment with G207 (data not yet published).31 A first-
in-human trial assessing the safety of G207 alone
and combined with 5 Gy of radiation in malignant
cerebellar tumors, including malignant gliomas, is
currently ongoing.37

Placing ICP34.5 or its human ortholog GADD34
under nestin promoter control (rQNestin34.5 and
NG34) resulted in enhanced selectivity and efficacy
compared with control virus in preclinical
models.38,39 Nestin encodes for the intermediate
filament, which is a protein expressed during
neuronal embryogenesis but not in the adult brain
and it has been shown to be upregulated in malig-
nant glioma, resulting in selective production of
ICP34.5.38,40 An ongoing Phase I clinical trial is
currently ongoing to test the safety of these viral
constructs (see Table 1). Another approach uses
oHSV G47D constructed by deleting the a47
gene, responsible for inhibiting the transporter
associated with antigen presentation, from g34.5-
deficient HSV-1 vectors; leading to increased
MHC class I expression in infected human cells
and enhanced viral replication. Ongoing phase
I-IIa clinical trials in Japan are assessing the safety
and efficacy of G47D for the treatment of GBM.41,42

Interim analysis of these showed that the 1-year
survival rate of 13 patients was 92.3%.42

Pathophysiological hypoxia is a hallmark of high-
grade gliomas. It fosters the glioma stemlike cell
(GSC) phenotype and has been linked to tumor
development, invasiveness, and resistance to
chemotherapy and radiation. Although GSCs
demonstratedno inherent resistance tooHSV, hyp-
oxia may limit the oncolytic effect of some
oHSVs.43–46 To improve replication in such hostile
environments without increasing neurovirulence,
chimeric HSV C134 was developed to express
the human cytomegalovirus (HCMV) PKR-evasion
gene.43,47 C134 is able to evade PKR-mediated
protein shutoff and maintain late viral protein syn-
thesis to significantly enhance virus replication,
including in hypoxic conditions.43 There is an
ongoing clinical trial assessing the safety and ther-
apeutic benefit of C134.48

In addition to direct oncolytic effects, oHSV can
elicit a robust antitumor immune response.1 Viruses
with insertion of proinflammatory cytokine genes
have been described, such as IL-12, which results
in intratumoral production of IL-12 during viral repli-
cation to enhance targeted immune destruction.13

IL-12 has potent antitumor properties that enhance
the cytolytic activity of natural killer cells and cyto-
toxic T cells.49 It also promotes the development of
TH-1 immune response, potentially eliciting a more
durable antitumor effect.49 Treatment with oHSV
modelsproducing IL-12 incombinationwith immune
checkpoints (CTLA-4 and PD-1) have also shown
promising results.50 There are several completed
and ongoing trials assessing the safety and thera-
peutic benefit of second-generation oHSVs (eg, IL-
12 producing oHSV M032) in adults.13,14
Measles Virus

Measles virus (MV) is a single-stranded, negative-
sense, enveloped RNA virus within the Morbillivi-
rus genera of the Paramyxoviridae family. MV



Table 1
Ongoing and completed clinical trialsa

Virus GBM Type Study Title Phase Biological n Duration

NCT Number
and
Reference Status

Adenovirus Recurrent DNX-2401 (Formerly Known as
Delta-24-RGD-4C) for Recurrent
Malignant Gliomas

Phase I DNX-2401 37 February 20 –
February 2 15

NCT00805376 20 Completed

Recurrent Safety Study of Replication-
competent Adenovirus (Delta-
24-RGD) in Patients With
Recurrent Glioblastoma

Phase I-II DNX-2401 20 June 2010–
December 014

NCT01582516 Completed

Recurrent Virus DNX2401 and
Temozolomide in Recurrent
Glioblastoma

Phase I DNX2401 31 September 2 13–
March 201

NCT01956734 Completed

Recurrent DNX-2401 With Interferon
Gamma (IFN-g) for Recurrent
Glioblastoma or Gliosarcoma
Brain Tumors

Phase I DNX-2401 37 September 1 ,
2014–Mar 15, 2018

NCT02197169 Completed

Recurrent Combination
Adenovirus 1 Pembrolizumab
to Trigger Immune Virus Effects

Phase II DNX-2401 49 June 2016–J e 2021 NCT02798406 Active, not
recruiting

Recurrent DNX-2440 Oncolytic Adenovirus
for Recurrent Glioblastoma

Phase I DNX-2440 24 October 16, 018–
October 1 2022

NCT03714334 Recruiting

Recurrent Oncolytic Adenovirus DNX-2401
in Treating Patients With
Recurrent High-Grade Glioma

Phase I DNX-2401 36 February 12
2019–May 1, 2022

NCT03896568 Recruiting

Herpes Recurrent Conditionally replicating herpes
simplex virus mutant, G207 for
the treatment of malignant
glioma

Phase I G207 21 February 19 –
May 1999

NCT00036699 32 Completed

Recurrent Phase Ib trial of mutant herpes
simplex virus G207 inoculated
pre-and post-tumor resection
for recurrent GBM

Phase Ib G207 6 January 200
August 20 3

NCT00028158 34 Completed

Recurrent G207 Followed by Radiation
Therapy in Malignant Glioma

Phase I G207 9 May 2005–
December 008

NCT00157703 33 Completed
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Recurrent Oncolytic HSV-1716 in Treating
Younger Patients With
Refractory or Recurrent High-
Grade Glioma That Can Be
Removed By Surgery

Phase I HSV-1716 2 December 2013–
May 2016

NCT02031965 Terminated

Recurrent Genetically Engineered HSV-1
Phase 1 Study for the
Treatment of Recurrent
Malignant Glioma

Phase I M032
(NSC 733972)

15 of
26

September 2014–
September 2023

NCT02062827 Recruiting

Recurrent HSV G207 Alone or With a Single
Radiation Dose in Children
With Progressive or Recurrent
Supratentorial Brain Tumors

Phase I G207 12 May 2016–April 2021 NCT02457845 Active, not
recruiting

Recurrent A Study of the Treatment of
Recurrent Malignant Glioma
With rQNestin34.5v.2

Phase I rQNestin34.5v.2 108 July 18, 2017–July 2022 NCT03152318 Recruiting

Recurrent HSV G207 in Children With
Recurrent or Refractory
Cerebellar Brain Tumors

Phase I G207 15 September 12, 2019–
September 1, 2024

NCT03911388 Recruiting

Recurrent Trial of C134 in Patients With
Recurrent GBM

Phase I C134 24 September 23, 2019–
September 2024

NCT03657576 Active, not
recruiting

Recurrent HSV G207With a Single Radiation
Dose in Children With
Recurrent High-Grade Glioma

Phase II G207 30 October 1, 2020–
October 1, 2024

NCT04482933 Not yet recruiting

Measles Recurrent Viral Therapy in Treating Patients
With Recurrent Glioblastoma
Multiforme

Phase I MV-CEA 23 October 23, 2006–
November 30, 2019

NCT00390299 Completed,
results not
published yet

NDV Recurrent New Castle Disease Virus (NDV) in
Glioblastoma Multiforme
(GBM), Sarcoma and
Neuroblastoma

Phase I-II HUJ 0 July 2011–July 2011 NCT01174537 Withdrawn

Polio Recurrent PVSRIPO for Recurrent
Glioblastoma (GBM)

Phase I PVSRIPO 61 April 25, 2012–
June 2021

NCT01491893 75 Active, not
recruiting

Recurrent PVSRIPO in Recurrent Malignant
Glioma

Phase II PVSRIPO 122 June 1, 2017–
December 2023

NCT02986178 Active, not
recruiting

Recurrent Phase 1b Study PVSRIPO for
Recurrent Malignant Glioma in
Children

Phase I PVSRIPO 12 December 5,
2017–July 1, 2021

NCT03043391 Recruiting

(continued on next page)
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Table 1
(continued )

Virus GBM Type Study Title Phase Biological n Duration

NCT Number
and
Reference Status

Parvovirus Recurrent Parvovirus H-1 (ParvOryx) in
Patients With Progressive
Primary or Recurrent
Glioblastoma Multiforme

Phase I-IIa H-1PV 18 September 2011–
May 2015

NCT01301430 Completed

Reovirus Recurrent A Phase I Trial of Intratumoral
Administration of Reovirus in
Patients With Histologically
Confirmed Recurrent
Malignant Gliomas

Phase I Reolysin 12 June 2002–July 2005 N/A89 Completed

Recurrent Safety and Efficacy Study of
REOLYSIN� in the Treatment of
Recurrent Malignant Gliomas

Phase I Reolysin 18 July 2006–June 2010 NCT00528684 90 Completed

Recurrent Wild-Type Reovirus in
Combination With
Sargramostim in Treating
Younger Patients With High-
Grade Relapsed or Refractory
Brain Tumors

Phase I Reolysin 6 June 21, 2015–
January 1, 2025

NCT02444546 Active, not
recruiting

Vaccinia Recurrent Safety and Efficacy of the
Oncolytic Virus Armed for Local
Chemotherapy, TG6002/5-FC, in
Recurrent Glioblastoma
Patients

Phase I-II TG6002 78 October 12, 2017–
September 2021

NCT03294486 Recruiting

Abbreviations: HSV, herpes simplex virus; MV-CEA, measles virus carcinoembryonic antigen.
a Citations are included only for clinical trials with published results.
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Table 2
Summary viral constructs for the treatment of glioblastoma and other malignant gliomas

Viral Vector Mechanism/Pathway Involved Effect(s) on Tumor Cell

Adenovirus

REIC/Dkk-3 1 cRGD Activation caspase-9; reduced
expression B-catenin

Decreased proliferation rate

Antisense MMP-9 Downregulation of MMP-9
activity

Impaired tumor invasiveness

DNX-
2401 1 pembrolizumab

Increased epitope
presentation to CD81 T cells

Induced antiglioma immune
response

AAV8 and AAV9 1IFN-B Increase in tumor-associated
microglia

Improved tumor sensitivity to
chemoradiation; improved
median survival

dsAAV2 Downregulation of TGF-B Suppressed tumor growth;
reduced tumor
immunosuppressive effects

Herpes Virus

G47D Deletion of the g134.5 and a47
genes and a disabling lacZ
insertion within ICP6;
Murine angiostatin
insertion

Gain of function mutation
leading to increased MHC
class I expression in infected
cells this resulting in
enhanced viral replication

HSVtk 1 Flt3L Release of HMGB1 Phagocytosis of tumor;
activation of immune
response

HSV-M032 Deletion in both copies of
g134.5 gene; Insertion of
Human IL-12

Selective glioma cell
replication and expression
of IL-12 in infected glioma
cells resulting in enhanced
immune response and
tumor cell lysis

HSV-G207 Deletion in both copies of
g134.5 gene and disabling
lacZ insertion in UL39

Selective glioma cell
replication

HSV-C134 Deletion in both copies of
g134.5 gene, expression of
the HCMV TRS1 gene
product

Selective and enhanced
glioma cell replication

rQNestin34.5v.2 Deletion in g134.5 gene and
UL39; ICP-34.5 under control
of synthetic nestin promoter

Selective and enhanced
glioma cell replication

Lentivirus

Sh-SirT1 Downregulation SirT1 Increased tumor sensitivity to
radiotherapy

Sh-TLX Downregulation TLX;
expression of TET3

Impaired tumor growth and
tumorigenicity of stem cells

GAS1 1 PTEN Decreased AKT and ERK 1/2
expression

Impaired tumor growth

Paramoxyvirus

Measles (MV-CEA) Attenuated strain modified to
express the
carcinoembryonic antigen
gene

Designed to track viral gene
expression in vivo via serum
analysis to optimize dosing
and administration schedule
without resorting to
histologic tissue analysis

(continued on next page)
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Table 2
(continued )

Viral Vector Mechanism/Pathway Involved Effect(s) on Tumor Cell

Measles (MV-NIS) Attenuated strain modified to
express human thyroidal
sodium iodide symporter
(NIS) gene

NIS can act as a reporter gene
that enables the non-
invasive tracking of viral
localization, spread, gene
expression and replication
over time. NIS may also be
used as a therapeutic
transgene by allowing
intracellular uptake of
isotopes, such as131[I]
(radiovirotherapy)

Picornavirus

Poliovirus (PVSRIPO) Enhanced immune cell
infiltration; reduction of
TIM-3 expression

Promote immune response
and tumor inflammation

Retrovirus

Toca 511 Increased delivery of 5-FC to
tumor

Increased tumor sensitivity to
radiotherapy

Estevez-Ordonez et al272
expresses a glycoprotein hemagglutinin protein H
that has a high affinity for CD46 receptors shown
to be overexpressed in GBM cells.51,52 The MV
Edmonston strain (MV-Edm), a well-known attenu-
ated strain used to vaccinate humans against MV,
has been further modified to express the carci-
noembryonic antigen gene (MV-CEA).53

Phuong and colleagues54 were the first to show
that intravenous MV-CEA resulted in significantly
prolonged survival and regression of in vivo glio-
blastoma tumor in mice bearing subcutaneous
and orthotopic U87 tumors MV-CEA treated mice
had no neurologic or clinical toxicity, which
sparked further investigation. In subsequent
studies, MV specificity for GBM was increased by
developing retargeted oncolytic measles strains
that invade via different receptors: epidermal
growth factor receptor (MV-EGFR), EGF receptor
variant III (MV-EGFRvIII), and IL-13Ra2 recep-
tor.55–58 Additional studies demonstrated that MV
immunovirotherapy against GBMs can be
enhanced with either adjuvant radiation therapy
or anti-PD-1 antibody therapy.59,60 Recombinant
oncolytic MV (MV-NIS) is another example that
was designed to express human thyroidal sodium
iodide symporter (NIS) gene. NIS can act as a re-
porter gene via radiotracers and can also be used
as a therapeutic transgene via radiovirotherapy,
by allowing intracellular uptake 131[I] potentially
enhancing the therapeutic efficacy.61

A phase 1 clinical trial treated 23 measles im-
mune patients who were candidates for gross total
or subtotal tumor resection of recurrent GBM with
intracranial injection of MV-CEA.62 One group
received a total dose of MV-CEA ranging from
105 to 2 � 107 TCID50 via injection into the resec-
tion cavity. The second group of patients received
one intratumoral MV-CEA injection and subse-
quently underwent tumor resection 5 days
following this first intratumoral injection–time for
projected maximum viral replication to be
achieved– with a second MV-CEA injection into
the resection cavity before closure. Resected tu-
mor specimens were analyzed with in situ hybrid-
ization and immunohistochemistry.63
Poliovirus

Poliovirus is a positive-sense, single-strandedRNA
encapsulated virus belonging to the Picornaviridae
family known for its neurotoxic effects.64 Theproto-
type oncolytic poliovirus developed by Gromeier
and colleagues,65 PVS-RIPO, is the live attenuated
poliovirus type 1 (Sabin) with its internal ribosome
entry site (IRES) replaced by that of human rhino-
virus type 2 (HRV2). Although this polio-rhinovirus
chimera was found to possess neuronal incompe-
tence, in vitro studies demonstrated its ability to
infect and reduce glioma cell viability and trigger
cytolysis of GBM primary cultures.66–71 In subse-
quent animal studies, PVSRIPO was able to arrest
tumor growth in both murine GBM flank tumor
models and improve survival after intracranial virus
administration in mice.66,72 In addition, its efficacy
was found to be correlatedwithCD155 expression,
known to be overexpressed in human GBM.73,74
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Indeed, its moderate success in preclinical
models paved the way for a phase II clinical trial
involving inoculation of 61 patients with recurrent
GBM with PVS-RIPO. The results were published
in a landmark article in 2018, which not only
corroborated safety of intratumoral viral adminis-
tration in humans but demonstrated an increase
in patient survival rate from 4% to 21% at
36 months when compared with historical control
groups.75,76 Three other clinical trials on PVS-
RIPO are currently ongoing assessing safety in
children and combination therapy with lomustine
(CCNU) and pembrolizumab.76–78 Because clinical
and radiographic responses were observed after
the first cycle of chemotherapy administered for
tumor progression in patients receiving PVSRIPO
infusion, a second follow-up randomized trial of
PVSRIPO alone or in combination with single-
cycle CCNU in patients with recurrent World
Health Organization grade IV malignant glioma is
ongoing to further assess the potential of combi-
nation therapy CCNU.76
Reovirus

Another human virus that has shown oncolytic
ability is the Respiratory Enteric Orphan virus or
Reovirus, a segmented nonenveloped double-
stranded RNA virus composed of 3 size groups.
This naturally occurring virus, which is commonly
isolated in the respiratory and gastrointestinal
tracts of humans but causes mild to no symptoms,
preferentially targets the activated RAS
pathway.79 The numerous downstream effectors
induced by the RAS/RalGEF/p38 pathway in
particular, have been implicated in promoting the
reovirus life cycle and leading to cell death.80–84

Animal studies in severe combined immunodefi-
cient (SCID) mice containing subcutaneous
MG cell lines U251 N and intracerebral cell lines
U251 N and U87lacZ showed a reduction in tumor
burden after infection with serotype 3 (strain Dear-
ing) live virus.85,86 Lethality was also demonstrated
in vitro in 83% of 24 established malignant glioma
cell lines. The susceptibility of cells to reovirus may
in part be attributed to the various ways reovirus
circumvents cell defense mechanisms. For
example, when 3-dimensional cultures of stem
cell-like cells (GSC) from grade IV gliomas (glio-
blastoma) expressing junction adhesion
molecule-A (JAM-A) were infected by the wild-
type (wt) variant and the JAM-A independent jin-
1 reovirus variant, viral entry and protein synthesis
were similar.87 JAM-A is typically used by wt
reovirus for cell entry and level of expression is
correlated with infectivity. These results suggest
that reovirus may use alternative entry pathways
for infectivity that avoid the JAM-A adhesion route.
Interestingly, reovirus has been found to also upre-
gulate PD-L1 expression lending credence to its
use as part of a multifaceted tumor killing strategy
with the use of PD-1/PD-L1 inhibitors.88

The first clinical trial using reovirus in recurrent
malignant glioma demonstrated that intratumoral
injection was safe.89 Although the trial’s purpose
was not to show efficacy, 6 patients lived more
than 6 months, 3 patients lived more than 1 year,
and 1 continued to survive at 54 months. A subse-
quent study using convection-enhanced delivery
also confirmed safety and noticed improved
survival >2 years in select patients.90 Intravenous
administration of reovirus has also been evaluated
in preclinical studies with promising results.91
ZOONOTIC ONCOLYTIC VIRUS MODELS
Newcastle Disease Virus

Newcastle disease virus (NDV) is a chicken path-
ogen with selective oncolytic properties applicable
to various types of human cancer.92 Molecularly,
NDV is an avian paramyxovirus with a negative-
stranded RNA genome.17 Although the tumor-
suppressive abilities of NDV have been extensively
demonstrated through in vivo models and clinical
trials, the exact mechanism is not fully understood.
It is theorized that NDV achieves oncolysis via acti-
vation of a Ras pathway in addition to inducing
secretion of tumor necrosis factor alpha (TNF-
alpha) by mononuclear cells resulting in an
enhanced antitumor immune response.17 More
recent studies suggest that the Ras-related C3
botulism toxin substrate 1 (Rac1) pathway may
be the target of NDV.92 Rac1 is involved in prolifer-
ation signaling by regulating gene transcription
and G1 cell cycle progression. In GBM, Rac1 is
therefore a crucial contributor to cell survival.
NDV interactions with Rac1 are believed to induce
cell cycle arrest along with degradation of the actin
cytoskeleton and ultimately cell death.92 Murine
models have shown increased long-term survival
after NDV injection due to cytotoxic T-cell infiltra-
tion.16 However, this long-term survival benefit
was not seen in immunodeficient murine models
with depleted CD8 cells, stressing the importance
of an intact host immune system for maximal
benefit.16 Type I interferon (IFN) expression in
GBM cells also greatly impacts the effectiveness
of NDV given the role of IFN in promoting an anti-
viral state and decreasing viral replication.93 None-
theless, recombinant NDV expression of an IFN
antagonistic protein can overcome this protective
role of IFN in GBM cells.93

NDV delivery to GBM cells can be targeted via
mesenchymal stem cells (MSCs). This technique
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takes advantage of the natural ability of MSCs to
target sites of injury and inflammation, including
tumors.94 Higher rates of apoptosis were demon-
strated in glioma cells when MSCs were used as
the vector for NDV delivery as compared with
direct NDV infection with similar virus titers. More-
over, TNF-related apoptosis-inducing ligand
(TRAIL) has been identified as a key mediator in
the antitumor effects of these hybrid MSCs due
to synergy between TRAIL and NDV in the induc-
tion of apoptosis.94 NDV can also potentiate the
effects of TMZ. Bai and colleagues95 found that
when combined with TMZ, NDV inhibits AKT and
activates AMPK, ultimately resulting in enhanced
antitumor effects of TMZ and extended survival
in a murine model. Clinical trials have demon-
strated therapeutic efficacy and safety of autolo-
gous NDV-modified cellular vaccines or oncolytic
effects in clinical trials but larger clinical trials are
necessary to confirm efficacy.96 In a phase I/II clin-
ical trial, Freeman and colleagues97 showed that
the toxicity of NDV strain (HUJ, lentogenic) was
minimal and a maximal tolerated dose was not
achieved when administered intravenously to 14
patients with GBM using intrapatient dose escala-
tion (1–11 billion infectious units) followed by 3 cy-
cles of 55 billion infectious units with 1 patient
achieving a complete response, and the others
developed progressive disease.
Rodent Parvovirus

Certain members of the Parvoviridae family, a
group of nonenveloped icosahedral single-
strandedDNAviruses, can selectively killmalignant
glioma cells while sparing normal cells in preclinical
studies. These include rodent oncolytic viruses
such as the Minute Virus of Mice and the more
extensively studied rat parvovirusH-1PV.98 Intratu-
moral and intravenous injection of H-1PV into 12
immunodeficient rats containing the U87 human
glioma cell line resulted in prolonged survival and
decreased tumor burden compared with con-
trols.99 The efficacy was in part due to a secondary
viremia that resulted from progeny particles after
initial tumor infection and boosted infection of
remaining tumor cells. The lethality of H-1PV also
extends to malignant gliomas resistant to death li-
gands such as TRAIL and DNA-damaging agents
such as cisplatin.100 The virus triggers accumula-
tion of lysosomal cathepsins and downregulating
cathepsin inhibitors. The orientation of certain var-
iable regions of the capsid protein of H-1PV has
also been tied to its infectivity.101

Studies in short-term and low-passage cultures
of human grade IV and gliosarcoma cell lines also
showed increased susceptibility to H-1PV at low
multiplicities of infection (MOI; 1–5 infectious units
per cell).102 These cell cultures more closely paral-
lel clinically diseased cells than do cells from long-
term in vitro cell cultures. Intranasal application of
H-1PV has also been shown to prolong survival in
immunodeficient rats containing U87 human gli-
oma cells versus controls. A Phase I/IIa trial of
H-1PV in 18 patients demonstrated no dose-
limited toxicity and widespread distribution after
intratumoral and intravenous injection.103,104

Other Viral Vectors

Several other potential viral vectors have been
described, but have not been assessed in clinical
trials for GBM. Pseudorabies virus (PRV) and the
Seneca Valley Virus (SVV), 2 viruses in which
pigs are the natural host, have shown potential
as oncolytic targets. However, intravenous infu-
sion of PRV did not result in uptake within intracra-
nial glioma cells.105,106 SVV improved survival in
mice bearing GBM as well as medulloblastoma
and retinoblastoma models, which led to phase 1
clinical trials in adults and children with neuroen-
docrine tumors, which demonstrated safety, but
no clear antitumor responses, and all patients
rapidly developed anti-SVV antibodies and
cleared the virus.107,108 Vesicular Stomatitis Virus
(VSV) and Sindbis Virus (SIN) are mosquito-borne
viruses that have also shown oncolytic potential.
Chimeric VSV-lymphocytic choriomeningitis virus,
and VSV-Chikungunya virus mutants with replace-
ment of the VSV glycoprotein have demonstrated
tumor lysis with decreased toxicity to normal cells
in glioma and intracranial melanoma mouse
models.109,110 SIN has tropism for neural cells
and can cause encephalitis in mice.17 Tropism
for tumor cells is believed to be related to the
high affinity laminin receptor, which is overex-
pressed in many tumors.111 SIN can be a vector
for introduction of hyperfusogenic membrane gly-
coproteins that lead to formation of syncytia and
apoptosis.112 Myxoma virus and Vaccinia virus
(VV), within the Poxviridae family are the most
promising candidates for malignant glioma viro-
therapy because they are highly immunogenic
and capable of creating antitumor immunity.113–116

NONONCOLYTIC VIRAL VECTORS FOR GENE
THERAPY OR TARGETED DRUG DELIVERY

Gene therapy has emerged as a potential treat-
ment for malignant gliomas, whereby a vector in-
troduces tumor suppressing or growth regulating
genes into malignant cells. Multiple approaches
are used for gene therapy including suicide gene,
oncolytic gene, and tumor suppressor gene
therapies.117
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Viruses are a prime candidate for the introduc-
tion of gene therapies. They create a potent cyto-
toxic effect and are easily modified to facilitate
genetic engineering.19 Current approaches are
attempting to target proteins commonly mutated
or upregulated in GBM, including EGFR, PTEN,
IDH-1, and p53.118 Themost common viral vectors
include neurotropic retrovirus and adenoviruses.
Retroviral vectors were among the first studied,
and the first trial began in 1992 with a retroviral
HSV-thymidine kinase (HSV-tk) with ganciclovir.
HSV-tk acts as a suicide gene and converts the
prodrug ganciclovir into its active form to inhibit
cell division and DNA replication. The efficacy of
this treatment was limited to small tumor sizes
given its poor transfection efficiency.119

Adenoviral vectors have been used in clinical tri-
als. An early study of an adenoviral vector with wt
p53 gene (Ad-p53) showed efficacious transfec-
tion of tumor cells with minimal toxicity; however,
similar to retroviral vectors, Ad-p53 demonstrated
poor ability to penetrate tumor tissue widely.120

Sandmair and colleagues121 demonstrated
increased survival time in patients receiving ganci-
clovir with adenovirus-delivered HSV-tk as
compared with retrovirus delivery, again demon-
strating poor retroviral transfection and tumor
penetrance. In addition, adenovirus and HSV vec-
tors have been used to introduce CD, which
convert the prodrug 5-fluorocytosine into 5-flur-
ouracil, inducing apoptosis.122 A phase I study in
patients with recurrent glioma with aglatimagene
besadenovec (AdV-tk), which adenoviral vector
engineered to express the HSV thymidine kinase
(HSV-tk) gene in conjunction with a synthetic
anti-herpetic prodrug acyclic guanosine analogue
administration demonstrated a safe dose range
with 3 of 13 patients surviving more than
24 months.123 A subsequent phase I trial in chil-
dren treated with AdV-tk as adjuvant to surgery
and radiation for pediatric malignant glioma and
recurrent ependymoma also showed safety and
potential efficacy.124

Lentiviral vectors have been used to introduce
small-hairpin RNA (shRNA) to silence sirtuin 1
expression in GBM, which results in increased
radiosensitivity with resultant increased tumor
death.125 Similarly, lentiviral delivery of human
orphan nuclear receptor tailless (TLX) shRNA
resulted in tumor growth inhibition and decreased
tumorigenicity.126,127
CHALLENGES, LIMITATIONS, AND FUTURE
DIRECTIONS

Although clinical trials have been completed or are
ongoing for several oncolytic viruses, only a few
have moved beyond a Phase I clinical trial.16

Finding the ideal balance to achieve safety but
also virulence to maximize efficacy remains a sig-
nificant challenge.

Moreover, viral delivery remains a significant
challenge, as most clinical trials have focused on
intratumoral delivery. Recent trials have used ste-
reotactic techniques to place a localized catheter
into the tumor to use for administration of
virus.31,33,35,37,128 This requires a neurosurgical
procedure and may limit additional doses. Thus,
innovative routes of administration need to be
devised, such as systemic, intrathecal, intracavi-
tary, and intraventricular delivery. However, the
challenges of systemic delivery are considerable
due to the blood-brain-barrier and virus neutral-
izing antibodies, and the safety of these routes
needs to be confirmed.16

Although the clinical results of several oncolytic
viruses have been promising including HSV, polio-
virus, and adenovirus, these studies have all been
in recurrent, often heavily pretreated patients.
Thus, it will be important to test immunovirotherapy
in upfront regimens. Furthermore, future studies
are needed to combine oncolytic viruses with other
potentially synergistic approaches to maximize
oncolysis an antitumor immune response such as
immune checkpoint inhibitors, CAR-T therapy
enhanced with bispecific T-cell engagers (BiTE),
vaccines, and other immunotherapies.14,50,129–131

For example, Saha and colleagues129 demon-
strated durable responses in an orthotopic GBM
model by combining anti-PD-1 and anti-CTLA-4
antibodies with oHSV expressing IL-12. An alter-
nate approach to systemic delivery of checkpoint
inhibitors is by using oncolytic viruses carrying ge-
netic material to express the immune checkpoint
inhibitors locally.103,132,133 In addition, CAR-T-cell
therapy with bicistronic constructs can convert gli-
omas who have difficult-to-target surface topology
to more familiar, targetable topology or help trigger
enhanced immune responses with targeted, local-
ized CD3 expression to facilitate local
immunomodulation.130
SUMMARY

Immunovirotherapy has shown significant promise
as a targeted therapy for malignant gliomas, and
attempts to address several of the challenges
often encountered in treatment, such as ability to
treat unresectable lesions or addressing chal-
lenges encountered hypoxia, anti-inflammatory ef-
fects, and consequences of intratumoral and
intertumoral heterogeneity in treatment. However,
barriers related to therapeutic delivery, viral entry
and replication, and immunosuppressed patients
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must be overcome. Strategies such as arming viral
vectors with enhancements (therapeutic trans-
genes, checkpoint inhibition, host antiviral immune
response, improved and selective replication) and
combining viruses with synergistic agents must
continue to be developed and tested in the clinics
so that the great therapeutic potential of oncolytic
immunovirotherapy can be realized.

CLINICS CARE POINTS
� To date, no oncolytic virus has been approved
by the FDA for the treatment of malignant gli-
oma and all remain investigational treatments.

� Multiple ongoing clinical trials are currently
enrolling participants, most of them available
for patients with recurrent malignant gliomas.

� Oncolytic viral models engineered to alter/
modulate various cellular and inflammatory
pathways leading to selective replication in
tumor cells, enhanced immune response,
impaired tumor angiogenesis, amongst others.

� Multiple non-oncolytic viral vectors have
been studied as gene therapy vectors in gli-
oma; these varied approaches include
increasing radiosensitivity via gene silencing
and induction of tumor cell apoptosis in
conjunction with various prodrug
administrations.

� Talimogene laherparepvec (T-VEC) is the first
US Food and Drug Administration (FDA)-
approved oncolytic virus; and is currently
indicated for advanced melanoma. T-VEC is
an oHSV that and expresses human granulo-
cyte macrophage colony-stimulating factor
(GM-CSF) to active the immune system and
has specific genetic deletions that result in
improved capacity for MHC presentation.
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