REVIEW

Lisa Feldman, MD, PhD*
Christine Brown, PhD*$
Behnam Badie, MD*

*Division of Neurosurgery, City of
Hope National Medical Center, Duarte,
California; *Department of Cancer
Immunotherapy & Tumor Immunology,
City of Hope National Medical Center,
Duarte, California; SDepartment of
Hematology & Hematopoietic Call
Transplantation, City of Hope National
Medical Center, Duarte, California

Correspondence:

Lisa Feldman, MD, PhD,

Division of Neurosurgery,

City of Hope National Medical Center,
MOB 2001,

1500 East Duarte Rd,

Duarte, CA 91010, USA.

Email: Ifeldman@coh.org

Received, October 2, 2019.
Accepted, November 18, 2020.

© Congress of Neurological Surgeons
2021. All rights reserved. For permissions,
please e-mail: journals.permissions@oup.
com

NEURO

Chimeric Antigen Receptor T-Cell Therapy: Updates
in Glioblastoma Treatment

Glioblastoma multiforme (GBM) are the most common and among the deadliest brain
tumors in adults. Current mainstay treatments are insufficient to treat this tumor, and
therefore, more effective therapies are desperately needed. Immunotherapy, which takes
advantage of the body’s natural defense mechanism, is an exciting emerging field in neuro-
oncology. Adoptive cell therapy with chimeric antigen receptor (CAR) T cells provides
a treatment strategy based on using patients’ own selected and genetically engineered
cells that target tumor-associated antigens. These cells are harvested from patients,
modified to target specific proteins expressed by the tumor, and re-introduced into the
patient with the goal of destroying tumor cells. Here, we review the history of CAR T-cell
therapy, and describe the characteristics of various generations of CAR T therapies, and
the challenges inherent to treatment of GBM. Finally, we describe recent and current CAR

T clinical trials designed to combat GBM.
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igh-grade gliomas, including gliob-

lastoma multiforme (GBM), are the

most common brain tumors in adults
with an average incidence of 4.67 to 5.73
per 100000 people.!? These tumors pose
a phenomenal challenge in neuro-oncology
as they are extraordinarily difficult to treat
and confer a grim 5-yr survival of approxi-
mately 5% of patients.” Immunotherapy, which
takes advantage of the body’s natural defense
mechanism, is an exciting emerging field in
neuro-oncology. In adoptive cell therapy, cells
are harvested from patients, modified to target
the tumor, and re-introduced into the patient
with the goal of destroying tumor cells (Figure).

HISTORY OF CAR T-CELL THERAPY

Chimeric antigen receptor (CAR) T cells
were designed over 3 decades ago by genet-

ABBREVIATIONS: BBB, blood-brain barrier; BiTE,
bispecific T-cell engager; CAR, chimeric antigen
receptor; CNS, central nervous system; CRS,
cytokine release syndrome; GBM, glioblastoma
multiforme; scFV, single-chain fragment variable;
TCR, T-cell receptor; Tregs, regulatory T cells

ically modifying T lymphocytes to recognize
and eliminate cancer cells.* First-generation
CARs consist of a targeting moiety (which
most commonly involves a single-chain fragment
variable [scFv] from a monoclonal antibody)
connected to a spacer domain, a transmembrane
region, and an intracellular CD3¢ chain (the
signaling domain of a T-cell receptor [TCR]).>-¢
This construction not only allows recognition
of a wide range of antigens, such as proteins
and carbohydrates, but also works independent
of major histocompatibility complex presen-
tation, which often is downregulated by tumor
cells.” Once the CAR construct binds its
target antigen, T cells are activated leading
to cytokine release, cytolytic degranulation,
and proliferation.’ Although first-generation
CAR T cells were functional in preclinical in
Vitro and animal studies, this treatment had
limited effect in reducing tumor burden in
human patients,”"!® primarily because of poor
persistence of T cells after administration.'!
Thus, second- and third-generation constructs
were designed to include CD3¢ with 1 or
2 costimulatory domains (eg, CD28, OX40,
and 41BB) to enhance their persistence and
antitumor efficacy. Fourth-generation CARs
include additional proteins such as cytokines,
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FIGURE. Schematic of CAR T-cell generation and delivery to patient. Representative CAR T-cell manufacturing processes are depicted at
the left, and a timeline of treatment during a clinical trial is depicted at the right. Insets include diagram of a CAR, depicting the tumor
targeting, spacer, transmembrane, costimulatory, and signaling domains; schematic of local infusion sites, depicting where CAR T cells may
be injected into the brain; schematic of a T-cell interacting with a tumor cell, where CAR recognition of tumor-associated antigen signals
the T cells to release cytolytic effector molecules; and general considerations for the clinical application of CAR T-cell therapy. PBMC,
peripheral blood mononuclear cell; QC, quality control; ICT, intracranial at the tumor site; ICV, intracranial into the ventricles; IV,
intravascular; DLT, dose-limiting toxicity.

homing receptors, or other biologics to enhance T-cell antitumor
potency.'” Recent clinical trials utilizing CAR T cells to
target CD19 led to extraordinary remission in relapsed or
refractory B-cell lymphomas,'®'* including cases that involve
extensive central nervous system (CNS) disease.!> Indeed,
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the FDA has approved this treatment for pediatric!® and
refractory adult!® acute lymphoblastic leukemia. Although CAR
T is a validated treatment for hematological malignancies, the
potential of this therapy has not yet been fully realized for the
treatment of GBM.
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CHALLENGES IN IMPLEMENTING CAR
THERAPY FOR GBM

Historically, the CNS was considered an immunologically
privileged site with restricted access of immune cells to the
brain and lack of resident dendritic cells,'” suggesting that
immunotherapy may be ineffective for brain tumors. More
recent studies have revealed that activated T cells do cross the
blood-brain barrier (BBB) and diffusely penetrate the brain
parenchyma.!>*!%:1% Once CAR T cells reach target tumor cells,
however, the immunosuppressive tumor microenvironment may
suppress their activity and proliferation by expressing inhibitory
cell-surface molecules (ie, programmed death ligand 1 [PD-
L1] and CD95)* or by releasing immunosuppressive tumor-
derived soluble factors and cytokines (ie, prostaglandin E2, IL6,
IL10, and TGFB).?! The tumor microenvironment also prefer-
entially promotes trafficking of suppressive cell populations,
such as regulatory T cells (T,cg), tumor-associated macrophages,
microglia, and myeloid-derived suppressor cells’-*2:?3 and creates
other physical and metabolic blockades.?*?* Current standard
GBM treatments with corticosteroids and chemotherapy further
promote an immunological “cold” tumor microenvironment and
lymphopenia.

CAR T cells are particularly successful at targeting and
destroying B-cell malignancies because these T cells are
engineered to bind to a single molecule that is uniformly expressed
on the surface of all B-cell-derived tumors, CD19. GBM tumors,
conversely, are notorious for having both intertumor and intra-
tumor heterogeneity of cellular, genetic, and molecular signa-
tures.?®~2% This tumor diversity makes their targeting with a single
antigen more challenging. Nevertheless, early clinical trials using
CARs for GBM directed to interleukin-13 receptor alpha 2 (IL-
13Ra2),””-3% EGFRVIIL*" and human epidermal growth factor
receptor 2 (HER2)3? have reported promising results that support
further development of this technology.

RECENT CAR T CLINICAL TRIALS
IL-13Rx2 CART Cells

IL-13Ra2 is a cancer-germline antigen expressed in the
testes” as well as expressed in over 75% of GBMs,* 34 making
this an attractive target. IL-13Ra2 leads to activation of
the phosphatidylinositol-3 kinase/AKT/mammalian target of
rapamycin pathway,3 5,36 resulting in increased tumor invasiveness
and therefore worse prognosis.37 In 2015, our group reported
a first-in-human safety and feasibility trial using repeat doses of
autologous CD8™ T cells engineered to express a first-generation
IL-13Ra2 CAR T. The IL-13 zetakine CAR T cells were injected
directly into the tumor cavities of 3 postsurgical patients with
recurrent GBM.?® This study revealed that CAR T cells could be
propetly manufactured and administered directly into the tumor
cavities of recurrent GBM patients through implanted reservoirs,
with only mild side effects (headaches and neurological changes)
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that were managed with low-dose steroids. Moreover, evidence
for CAR T-cell-mediated antitumor activity is supported by one
patient showing a significant increase in necrotic tumor volume
by imaging, and another patient showing reduction in IL-13Ra2
tumor cell expression.

In 2016, our group published a remarkable case study on a
patient with recurrent, multifocal GBM, who had failed standard
treatment, including multiple surgical resections.”” Targeted
genomic analysis on both primary and recurrent tumor samples
revealed similar genetic backgrounds and heterogeneous IL-
13Rae2 expression. The patient underwent surgical resection
of 3 of his intracranial tumors and subsequently received 6
weekly intracavitary infusions of second-generation CAR T
cells (ie, containing a 4-1BB costimulatory domain) via an
implanted reservoir/catheter device. Although the treated site
remained tumor free, the nontreated lesions progressed, and
new leptomeningeal tumors involving the spine were detected
by imaging. The patient was then treated with 10 additional
intraventricular infusions (10 x 10° cells each) via a second
reservoir/catheter placed in the lateral ventricle. Analysis of
cerebrospinal fluid (CSF) revealed an influx in endogenous
immune cells and an increase in 11 inflammatory cytokines by
a factor of 10 or more, as compared to preinjection baseline levels
including IFNy, tumor necrosis factor o, IL 2, 10, 5, 6, and
8, and a variety of additional chemokines. The patient tolerated
both intracavitary and intraventricular infusions well, with mild
side effects of headaches, generalized fatigue, and myalgia. Aston-
ishingly, repeat imaging revealed all intracranial and spinal
tumors completely regressed following treatment as assessed
by radiographic imaging and quality-of-life measures. Interest-
ingly, the patient’s GBM tumor did not uniformly express the
target antigen, suggesting that the treatment may have triggered
immunity to other target antigens through epitope spreading.”
Although the patient unfortunately subsequently developed new
tumors, this study provides important data regarding safety of
locoregional delivery of CAR T cells into the CSF and activation
of host immune responses following locoregionally delivered CAR
T-cell therapy.

HER2 CART Cells

HER2 is a cell membrane receptor with tyrosine kinase activity
and is critically important for cell proliferation, differentiation,
motility, and adhesion.’® Overexpression of this receptor in
cancer is associated with a poor prognosis.” Because HER2
is expressed in up to 80% of GBM tumors, %041 including
GBM cancer stem cells,*? but it is only expressed at low levels
by healthy CNS tissue,*® this receptor is an attractive tumor-
targeting antigen for CAR treatment.

In 2017, Ahmed et al?? published a phase 1 trial using second-
generation CAR T cells with an FRP5-based (anti-HER2) scFv
and a CD28 costimulatory domain in 17 patients with HER2-
expressing GBM. The polyclonal virus-specific HER2-CAR T
cells were systemically administered to patients at every 6 to
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12 wk. Other than manageable seizures and headaches, there were
no cases of dose-limiting toxicity. Interestingly, blood quantitative
polymerase chain reaction showed that HER2-CAR cells persisted
more than 6 wkafter the final infusion in 7 of 15 enrolled patients.
Two patients had detectable HER2-CAR cells 12 mo following
infusion, but none were detectable after 18 mo. Tumor response,
assessed with magnetic resonance imaging (MRI) 6 wk following
infusion, showed a partial response in 1 patient and stable disease
in 7 patients while the median overall survival for the entire
study was 11.1 mo, and the median progression-free survival was
3.5 mo for the group. In summary, this phase 1 study confirmed
the safety and feasibility of peripherally infused, virus-based CAR

T for GBM patients with encouraging antitumor efficacy.

EGFRvIII CART Cells

EGFRVIII is a constitutively activated, mutated form of the
wild-type EGFR receptor by deletion of exons 2 through 7, which
results in the insertion of a glycine residue at the junction between
normally disparate portions of the receptor.’! This epitope serves
as a strong tumor-restricted antigen, as it is expressed in 30%%
to 40%">%¢ of human GBM tumors and is not expressed in
healthy tissue.” O’Rourke et al’! published a phase 1 study
in 2017 involving 10 patients with EGFRvIII-positive GBM,
9 of which had multifocal disease, who each received a single
dose of intravenously delivered second-generation CAR T cells
with a humanized anti-EGFRVIII scFv and 4-1BB costimu-
latory domain. Of the 10 patients, 7 subsequently underwent
surgery, which allowed for histopathological and molecular study
of treated tumor tissue. No clear therapeutic response was seen
on MRIs 4 wk following infusion, but 1 patient had stable
disease for at least 18 mo postinfusion. This group demon-
strated the safety of single-dose infusion of EGFRvIII CAR T
cells, without any dose-limiting toxicity, no targeting of wild-
type EGFR, or cytokine release syndrome (CRS). In Situ RNA
hybridization assay confirmed the presence of CAR T cells in
tumor from 4 of the 7 patients who underwent postinfusion
surgery. Significant levels of non-CAR T cells also infiltrated the
tissue, including unmodified T cells, and immune suppressive
Tegs- Immunohistochemical staining revealed significant upreg-
ulation of a variety of immunosuppressive molecules such as
indoleamine 2,3-dioxygenase (IDO) 1, PD-L1, transforming
growth factor (TGF)-B, and IL-10. These results suggest that
EGFRvIII-targeting CAR T cells trigger an immunosuppressive
reaction in the tumor microenvironment. The 2 patients with the
highest levels of both CAR T-cell and CD8* T-cell infiltration
outlived the remaining patients. Except for one patient, most
patients had reduced expression of EGFRVIII in tumor tissue
following a single CAR T-cell infusion.

In another dose escalation trial, EGFRvIII CAR T cells were
administered intravenously after lymphodepleting chemotherapy
and were supported postinfusion with low-dose I1L-2.47 All
patients experienced some expected transient leukopenia, throm-
bocytopenia, and anemia from chemotherapy; however, 2 patients
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developed severe hypoxia. The authors presume the respiratory
symptoms developed because of congestion of pulmonary vascu-
lature from activated T cells in a dose-responsive fashion. This
treatment failed to induce objective tumor regression, nor did it
delay progression or prolong survival in patients with recurrent
GBM.? Clearly, the use of EGFRvIII-targeting CAR T cells to
treat human GBM is still in its infancy, and methods to improve
efficacy and safety are needed.

Currently Active CAR T Clinical Trials

In addition to these published studies, there are currently at
least 7 active clinical trials worldwide that are utilizing a variety of
CAR constructs to treat GBM. Besides those currently enrolling
in the USA as depicted in Table, Beijing Sanbo Brain Hospital is
recruiting adult patients with recurrent glioblastoma to undergo
lymphodepletion chemotherapy with fludarabine and cyclophos-
phamide, followed by intravenous administration of autologous

anti-EGFRVIII CAR T cells.*®

FUTURE OF CART THERAPIES

As mentioned above, despite early promising results, several
limitations have been identified that may hinder the efficacy
of CAR T cells for GBM therapy. First, tumor hetero-
geneity and antigen escape are major contributors to failure of
immunotherapy.49‘50 A creative strategy to combat this is to
combine therapies to allow CAR T cells to simultaneously target
multiple surface antigens.”! >® For example, dual-targeting CAR
T cells have been designed to co-target IL-13Ra2 and HER2
for GBM.> Indeed, a group in Boston genetically modified
CAR T cells targeting EGFR to deliver bispecific antibodies
(also known as bispecific T-cell engager [BiTE]) to tackle the
heterogeneity in GBM tumors. EGFRvIII-targeting CAR T cells
were unable to fully treat GBMs with heterogeneous EGFRVIII
expression, resulting in expansion of EGFRvIII-negative, EGFR-
positive GBM. This group has shown that EGFR-targeted BiTEs
redirected CAR T cells, recruited bystander T cells to attack
EGFR, and were successful in eliminating mouse models of GBM
tumors.>

A variety of strategies are now also being exploited to
overcome the immunosuppressive microenvironment of solid
tumors including GBM. For example, most CARs have now
been modified to include costimulatory signaling domains to
increase T-cell survival (ie, the aforementioned second- and third-
generation CARs). Other CAR T cells have been further modified
to secrete stimulatory cytokines, such as IL-12,>> or to consti-
tutively express CD40°® to support T-cell-mediated immune
function. Additionally, a number of investigators are combining
immunotherapeutic treatments to augment adoptive CAR T-cell
therapy, such as co-delivering PD-1 checkpoint inhibitors with
CAR therapy.””-*8

Inflammation in response to CAR therapy poses another
significant risk to patients. CRS, or the systemic elevation in
several cytokines including IL-6 and IFN-y, is a common
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toxicity associated with CD19-CAR T cells that is indicative
of immunotherapeutic potency.”” Neurotoxicity, including
symptoms of encephalopathy, aphasia, delirium, and seizures,
is also a common treatment-related toxicity of CD19-CAR
therapy, resulting from increased inflammatory cytokine
levels and endothelial dysfunction of the BBB.%*®> Somewhat
unexpectedly, CAR T-cell trials in GBM have thus far reported
less severe CRS and neurotoxicity-like adverse events as compared
to CAR T cells targeting hematological cancers. Our under-
standing of the full toxicity profile of GBM CAR T-cell therapy
will continue to evolve as this therapy is further optimized
for potency. For CNS brain tumors, however, avoiding any
severe brain inflammation is of utmost importance, as increased
intracranial pressure in patients already with increased mass
effect from tumor can lead to deadly outcomes. Many groups
are investigating alternative methods to reduce local endogenous
inflammation seen after CAR T administration besides corti-
costeroids, which can impede CAR T function. One strategy to
desensitize CAR T cells to steroids is to genetically disrupt the
glucocorticoid receptor,”> whereas others use anti-IL6 antibody
tocilizumab?! or anti-VEGF antibody bevacizumab®’ to reduce
local inflammation. A balance is needed in treating CAR T
patients with symptomatic brain edema while prioritizing for
CAR T-cell therapeutic activity, and at City of Hope, we do
this by limiting dexamethasone to 6 mg in a 24-h period in our
patients. Other safety considerations include minimizing the risk
of off-tumor targeting within the CNS as well as the peripheral
tissues, which can have lethal consequences (ie, HER2%* and
MAGE®). Optimization of the CAR design, through affinity
tuning, spacer selection, and signaling modifications (for review,
see Abate-Daga et Davila®®) can specify the CAR to differentially
recognize overexpressed tumor antigens vs endogenous antigen
expression. Suicide switches and regulatable CAR systems are also
being explored to improve the safety of CAR T-cell therapy.®”
For brain tumors, regional administration of CAR T cells is also
a strategy to limit peripheral tissue toxicities. Overall, ensuring
safety of this therapy remains a critical concern, particularly
as the repertoire of targets for brain tumor immunotherapy is
expanded, and given the sensitivity of the CNS to inflammation
and immune-based targeting.

Because second-generation CAR T cells persist and proliferate
in the host’s body following administration, dosing concentra-
tions and schedules do not respect standard pharmacokinetic
guidelines,68 and to date, dosing schedules related to route of
delivery have not been ironed out. Additionally, because T-cell
migration and accumulation in solid tumors is challenged by
interstitial pressure and the immunosuppressive tumor microen-
vironment, increased CAR T-cell concentrations and frequent
dosing may be needed for more effective CAR T-cell response.
Thus, further clinical studies evaluating optimal route of delivery,
dose, and dosing schedule are necessary to optimize the admin-
istration of CAR T cells. These studies will require incorpo-
rating robust patient monitoring, and liquid biopsy of the CSF
during CAR T-cell treatment will be particularly important to
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better understand the pharmacokinetics and pharmacodynamics
in the CNS. In fact, our clinical experiences suggest that local
changes in inflammatory cytokines and immune cell frequencies
are more reflective of CAR bioactivity than those seen in systemic
monitoring.”’ Questions also remain on the use of traditional
chemotherapies and stereotactic radiosurgery (SRS) to augment
CAR T efficacy; however, the timing of when to initiate these
therapies can only be speculated at this time.

Lastly, the current costs associated with CAR T-cell therapy
need also be recognized as a significant challenge to this
strategy becoming a main-stream therapy for cancers in general.
Specialized training and personnel at high expertise centers
are required to deliver this therapy, and the resources needed
to support such centers are substantial. Inventive methods of
funding and budgeting for such costs, including partnerships
between academic centers and biotech, are critical to continue to
advance this therapy for GBM.

CONCLUSION

As CAR T-cell therapy has shown exciting results in treating
blood-born malignancies, there is much hope that this therapy
may provide new opportunities in the treatment of CNS solid
tumors. So far, early clinical trials have demonstrated safety and
suggestive efficacy profiles of CAR T cells targeting 3 specific
antigens. This therapy, however, continues to have significant
challenges in treating GBM including a hostile immunosup-
pressive tumor microenvironment and tumor antigen hetero-
geneity. Sophisticated strategies including the identification of
novel tumor-specific targets, the use of bi- and tritargeted CARs,
and combination of therapies with biologics like checkpoint
inhibitors should continue to improve the effectiveness of this
therapy for CNS malignancies. Although CAR T therapy has
been most extensively evaluated in the recurrent setting, should
these additional measures render a stronger therapeutic response,
perhaps this treatment may become an upfront therapy for newly
diagnosed brain tumors.
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