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KEY PO INT S

�Nonspecific radiographic
andCSFfindings result in
delayed diagnosis and
treatment when PCNSL
is suspected.

� Integrating a rapid
genotyping assay into
workup of PCNSL can
potentially resolve
treatment delays and
obviate neurosurgical
sampling.

Diagnosing primary central nervous system lymphoma (PCNSL) frequently requires neuro-
surgical biopsy due to nonspecific radiologic features and the low yield of cerebrospinal fluid
(CSF) studies. We characterized the clinical evaluation of suspected PCNSL (N 5 1007
patients) and designed a rapid multiplexed genotyping assay for MYD88, TERT promoter,
IDH1/2, H3F3A, and BRAF mutations to facilitate the diagnosis of PCNSL from CSF and
detect other neoplasms in the differential diagnosis. Among 159 patients with confirmed
PCNSL, the median time to secure a diagnosis of PCNSL was 10 days, with a range of 0 to
617 days. Permanent histopathology confirmed PCNSL in 142 of 152 biopsies (93.4%),
whereas CSF analyseswere diagnostic in only 15/113 samplings (13.3%). Among 86 archived
clinical specimens, our targeted genotyping assay accurately detected hematologic malig-
nancies with 57.6% sensitivity and 100% specificity (95% confidence interval [CI]: 44.1%
to 70.4%and 87.2% to 100%, respectively).MYD88 and TERTpromotermutationswere pro-
spectively identified inDNAextracts of CSFobtained frompatientswith PCNSL andglioblas-

toma, respectively, within 80 minutes. Across 132 specimens, hallmark mutations indicating the presence of malignancy
were detected with 65.8% sensitivity and 100% specificity (95% CI: 56.2%-74.5% and 83.9%-100%, respectively). This tar-
geted genotyping approach offers a rapid, scalable adjunct to reduce diagnostic and treatment delays in PCNSL.

Introduction
Primary central nervous system lymphoma (PCNSL) is an aggres-
sive extranodal non-Hodgkin lymphoma. Shorter time to diagno-
sis correlates with improved prognosis,1 whereas untreated
PCNSL is associated with overall survival of ,2 months.2 Distin-
guishing PCNSL from entities with similar radiographic appear-
ance, including glioma, metastatic disease, or leptomeningeal
carcinomatosis, remains challenging in clinical practice. The diag-
nostic workup of suspected PCNSL frequently involves analysis of
cerebrospinal fluid (CSF) by cytopathology and flow cytometry,
the former of which may be positive in leptomeningeal spread
from other neoplasms.3 This diagnostic dilemma also complicates
neurosurgical decision making; whereas the role of surgery in
hematologic malignancies is limited to diagnostic biopsy,2 the

initial diagnostic procedure for gliomas typically aims for maximal
safe resection.4

Up to 70% of PCNSL, 24% to 73% of systemic diffuse large
B-cell lymphomas, and 87% of Waldenstr€om macroglobuline-
mia harbor the canonical MYD88 L265P mutation.5,6 Detection
of this mutation in DNA from CSF in patients with PCNSL by
digital droplet polymerase chain reaction7 raises the possibil-
ity that its detection may yield diagnostic information, but this
approach cannot be performed for .1 to 2 genes simulta-
neously. Furthermore, the possibility of false negative results
needs to be counterbalanced by positive detection of muta-
tions commonly observed in other central nervous system
(CNS) malignancies.8-12
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In this study, we first detail the challenges in diagnosing PCNSL. To
improve this workflow, we engineered a multiplexed quantitative
polymerasechain reaction (qPCR)-basedapproach to identify canon-
ical variants in PCNSL and glioma from tissue and liquid biopsies.
Timely return of molecular diagnostic results foreshortens the times
to PCNSL diagnosis and may obviate some neurosurgical biopsies.

Study design
Case records and specimens
CSF and peripheral blood specimens from patients with CNS
pathologies were collected prospectively with informed consent
under institutional review board approval at Massachusetts Gen-
eral Hospital (MGH) (supplemental Methods, available on the
Blood Web site; supplemental Figure 1). Retrospective case
records review and archived tumor specimen collection were per-
formed under institutional review board approval at MGH, Dana-
Farber Cancer Institute, and Brigham and Women’s Hospital.

Genotyping assay
Weengineered qPCR-based assays for detectingmutations found
in PCNSL and glioma, including MYD88 L265P, TERT promoter,
IDH1/2,H3F3A, and BRAFmutations,11 further adapted for speed
and sensitivity from CSF and plasma (supplemental Methods).

Statistics
Diagnosis, treatment, follow-up, and survival were calculated with
respect to the date of admission to our facility. Sensitivity and spe-
cificity thresholdswere calculated by theClopper-Pearsonmethod.

Results and discussion
We analyzed the clinical courses of 159 consecutive patients diag-
nosedwith PCNSL between 2010 and 2019, in order to characterize
the existing diagnostic workflow for this entity. PCNSL was not
includedasapotentialdiagnosis in the initialevaluationof27patients
(17%) (supplemental Table 1).Median time to diagnosis was 10 days
(range, 0-617; interquartile range, 7-17days) (Figure 1A). Patients ini-
tiallyundergoingCSFsamplingrequired1to5additionalprocedures
prior to establishing a diagnosis (supplemental Figure 2A).

Although permanent histopathologic interpretation was eventu-
ally diagnostic of PCNSL in 93.4% of initial biopsies, CSF analyses
(including cytopathology, flow cytometry, and/or immunoglobulin
H [IgH] gene rearrangement) were diagnostic in only 13.3% of
studies (supplemental Tables 1 and 2). Final diagnoses were
secured by biopsy (148/159 patients, 93.1%), CSF (6/159, 3.8%),
or radiographic grounds alone (5/159, 3.1%) (supplemental Table
3). All diagnoses secured by CSF analysis had diagnostic flow
cytometry and/or IgH rearrangement; none were secured by cyto-
pathology alone. Delays in IgH rearrangement results led to 5
patients undergoing biopsy (supplemental Table 4).

Indicativeof the low sensitivity anddelays associatedwithCSF sam-
pling (performed in 69.8% of patients), ultimately establishing
PCNSL diagnosis required neurosurgical biopsy in 95.64% of cases
bycraniotomy (41.7%)or stereotactic needle (58.3%) (supplemental
Table 2). Postoperative complications were noted with biopsies
(supplemental Table 5). Furthermore, intraoperative histopatho-
logicanalysisconfirmedPCNSL in45.5%ofcases,whereas thediag-
nosis of lymphomawas inconclusive (12.2%) or not raised (42.3%) in

the remainder (supplementalTable4). The inability to secureadiag-
nosisofPCNSL intraoperatively likelycontributedtoperformingsur-
gical resection in 35 cases (22.2%) (supplemental Table 2).

To place this evaluation of patients ultimately diagnosed with
PCNSL in the context of nonspecific imaging findings, we exam-
ined 1007 patients with a new brain lesion that included PCNSL
in the radiologic differential diagnosis. The most common final
diagnoses were high-grade glioma (28.2%) and PCNSL (14.6%),
with the remainder yielding diverse neoplastic, inflammatory,
and infectious etiologies (Figure 1B). An illustrative case of diag-
nostic delay in PCNSL is highlighted by a patient with inconclusive
results from 2 CSF samplings, and intraoperative histology sug-
gestive of either lymphoma or glioma. Pathologic diagnosis of
PCNSL was secured on postadmission day 20, with subsequent
detection of the MYD88 L265P mutation (Figure 1C).

Noting diagnostic delays and risks associated with invasive pro-
cedures in such cases with difficult to access lesions, we engi-
neered our previously described qPCR method for rapid
genotyping11 to detect canonical mutations, including MYD88
L265P with a lower limit of 0.15% mutant allele fraction (supple-
mental Figures 2-6). We were able to distinguish PCNSL from gli-
oma by combining MYD88 mutation detection with parallel
analysis of TERT promoter, IDH1/2, H3F3A, and BRAF point
mutations. Results of our platform, termed targeted rapid
sequencing (TetRS), were concordant with histologic diagnoses
and orthogonal DNA sequencing in clinical tumor specimens
and patient-derived cell line extracts representing diverse CNS
malignances (Figure 1D). Across 86 archived specimens, includ-
ing 34 MYD88 L265P mutant tumors, we detected this variant
with 100% sensitivity and specificity (95% confidence interval
[CI]: 89.7-100 and 93.2-100, respectively; supplemental Figure
8). Detection of MYD88 L265P enabled identification of hemato-
logic malignancies (including PCNSL, Waldenstr€ommacroglobu-
linemia, myelodysplastic syndrome, chronic myelogenous
leukemia, acute myeloid leukemia, and secondary CNS lym-
phoma) with 57.6% sensitivity and 100% specificity (95% CI:
44.1-70.4 and 87.2-100, respectively; supplemental Figure 8).

TetRS was then optimized to report results from CSF and plasma
specimens within 80minutes (supplemental Figures 9-10) and pro-
spectively validated on liquid biopsies from32patients (Figure 2A;
supplemental Figures 11-12).We represent 2patientswithpositive
TetRSfindings inCSF.TheMYD88L265Pmutationwasdetected in
CSF from a patient who underwent suboccipital craniectomy for
gross total resection of PCNSL. In another case, the TERT C228T
mutation was detected in CSF from a patient with suspected
PCNSL,butultimatelydiagnosedwithglioblastoma followingbrain
biopsy (Figure 2B-C). Of note, analysis of CSF from a patient pre-
sentingwith leptomeningeal disease secondary to systemic diffuse
large B-cell lymphoma revealed TERT C228T and MYD88 L265P
comutation (Figure 2A), an alteration that has been previously
reported in CNS lymphoma.13 Detection of MYD88 L265P in CSF
by TetRS was 100% concordant with available clinical molecular
testing (supplemental Table 8). In 132 specimens representing
117 patients, TetRS detected hallmark mutations of malignancies
with 65.8% sensitivity and 100% specificity (95% CI: 56.2-74.5
and 83.9-100, respectively) (supplemental Figure 11).

Minimizing false positive results is critical in the workup of low-
prevalence diseases, such as PCNSL and CNS malignancies.
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TetRS is a technically straightforward approach to rapidly
detect clinically relevant mutations in CNS malignancies
when PCNSL is suspected. Variant alleles can be detected
from solid or liquid biopsies within 37 or 63 to 80 minutes,
respectively, with high specificity, threshold sensitivity as low

as 0.15% to 1% mutant allele fraction,11 and reagent cost
,$9.00 per specimen.

Integrating TetRS into the diagnostic workflow of suspected CNS
malignancy has the potential to resolve delays in the clinical
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Figure 1. The TetRS qPCR-based rapid genotyping panel detects recurrent molecular alterations relevant to the diverse radiologic differential diagnosis of PCNSL
and subsequent diagnostic workup. (A) Clinical characteristics of 159 patients who established a new diagnosis of PCNSL at our facility. Diagnostic assays include all procedures
performed at our facility and outside facilities. Time to diagnosis is displayed on a logarithmic scale, calculated from date of admission to our facility. One patient is not displayed,
who had 4 lumbar punctures as an outpatient, with the final assay returning positive on the first day of inpatient admission. This cohort included 2 HIV-positive (1.3%), 17 EBV-
positive (10.7%), and 13 immunosuppressed patients (8.2%) (supplemental Table 1). (B) Final diagnosis among patients with a new brain lesion with PCNSL in the differential diag-
nosis. (C) A representative patient with a new brain lesion underwent 2 nondiagnostic lumbar punctures prior to a brain biopsy. Intraoperative histopathology was inconclusive.
Chemotherapy was initiated empirically prior to final pathologic diagnosis due to symptomatic decline. Analysis of archived biopsy tissue revealed the MYD88 L265P mutation. (D)
Results of TetRS assay on DNA extracts from 71 archived, clinically annotated biopsy specimens by sensitive detection of hotspot mutations in MYD88, TERT promoter, IDH1/2,
H3F3A, and BRAF. Expanded results are shown in supplemental Figure 7. EBV, Epstein-Barr virus; Hem., hematologic; HIV, human immunodeficiency virus.
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management of these patients (supplemental Figure 13). Optimal
patient selection for invasive procedures could speed delivery of
adjuvant therapies, such as radiation or chemotherapy, that could

otherwise be delayed due to surgical recovery or diagnostic ambi-
guity. Targeted genotyping can guide cost-effective selection of
next-generation sequencing panels, molecular assays,14 or
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Figure 2. Detection of PCNSL- and glioma-specific somatic variants with the TetRS rapid genotyping assay in prospectively collected liquid biopsies. (A) The top
row of segmented color bars displays the CNS disease status. The next 4 rows represent the results of routine clinical CSF studies and intraoperative frozen histopathology.
The bottom row shows the mutant alleles detected in CSF by the TetRS rapid genotyping assay. Expanded results are shown in supplemental Figure 8. (B) Case P22 shows
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patient with a right temporal mass. Surgical needle biopsy was concluded after intraoperative frozen analysis showed high-grade glioma but converted to open craniotomy
and subtotal resection due to intraoperative bleeding. GBM, glioblastoma multiforme; HGG, high-grade glioma.
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assignment to clinical trials. Serial CSF sampling may also enable
quantitative treatment response assessment.9 Because CNS lym-
phoma tumor DNA can be detected in CSF prior to radiographic
recurrence,15 in future studies we will evaluate this method for
tracking minimal residual or leptomeningeal disease, with the
potential to guide decisions regarding salvage therapies prior to
symptomatic progression.
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