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Abstract
Introduction  Glioblastoma (GBM) is the most fatal brain tumor in adults. Current survival rates of GBM remain below 
2 years due to GBM’s aggressive cellular migration and genetically driven treatment escape pathways. Despite our rapidly 
increasing understanding of GBM biology, earlier diagnoses, and refined surgical techniques, only moderate survival ben-
efits have been achieved. Nonetheless, the pressing need for better survival rates has brought forward a multitude of newer 
therapeutic approaches and opened the door for potential personalization of these modalities in the near future.
Methods  We reviewed the published literature discussing the current state of knowledge regarding GBM biology and therapy 
and summarized the information that may point toward future personalized therapeutic strategies.
Results  Several novel modalities such as oncolytic viruses, targeted immune, and molecular therapies, and tumor treating 
fields have been introduced. To date, there is no single treatment modality for GBM, but rather a wide spectrum of combined 
modalities that address intratumoral cellular and genetic variabilities. While the current state of GBM research and clinical 
trial landscape may hold promise, current literature lacks any fruitful progress towards personalized GBM therapy.
Conclusion  In this review, we are discussing our recent knowledge of the GBM genetic biologic landscape and the current 
advances in therapy, as well as providing a blueprint for an envisioned GBM management paradigm that should be personal-
ized and adaptable to accommodate each patient’s diverse genetic variations and therapy response/escape patterns.
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Introduction

Glioblastoma (GBM) is the most common and most fatal 
primary brain neoplasm in adults, representing almost half 
of all primary brain tumors [1]. Classified by the 2016 
“WHO Classification of Tumors of the Central Nervous 
System” as a grade IV glioma, GBM has a current inci-
dence of 3.1 per 100,000; a male predominance (1.6:1); and 
afflicts Caucasians more than African Americans (2:1) [1]. 
GBM is also a disease of the older population, with a peak 
incidence above 60 years [1]. Apart from a few genetically 

defined syndromes (e.g. familial glioma, Turcot Syndrome, 
Li-Fraumeni syndrome, and Neurofibromatosis type 1), risk 
factors for developing GBM remain poorly defined in the 
current literature [2].

Our knowledge of GBM has expanded dramatically, 
which leads in turn to moderately improve the median 
survival rates for GBM patients after receiving treatment 
[3]. Following surgical resection and chemoradiation, the 
median survival rate is 18 months, while survival for patients 
with only supportive treatment is 4 months [4]. Long term 
survivors represent 3–5% of patients surviving more than 
3 years [5]. Age plays a significant role in predicting sur-
vival. Longer survival is inversely correlated with age: 5% 
of patients who are less than 65 years are alive 3 years fol-
lowing diagnosis, while only 2% of patients above 65 years 
old are alive after the same time period [1].

While surgical resection remains the main predictor of 
favorable survival outcome in GBM patients, multimodal 
treatment regimens are the standard of care [6]. Other factors 
may hinder further survival benefits; namely, the infiltrative 
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nature of the GBM. Additionally, surgical resection is often 
limited by tumor proximity to eloquent regions, despite 
novel preoperative planning and surgical techniques. This 
may contribute to subtotal total resections [7]. Lastly, GBM 
employs numerous genetically-driven treatment escape 
pathways that suppress the immune response [8]. One of 
those pathways is the programmed cell death protein-1 
ligand pathway (PD-L1); a potent immunosuppressive agent 
expressed in microglia which is highly expressed in normal 
brain tissue proximal to GBM [9]. PD-L1 acts as a suppres-
sor of cytotoxic T-cells proliferation and induces apoptosis 
in this cell population [8]. Another immune evasion pathway 
is the activator of transcription 3 (STAT3) mediated pathway 
which is overexpressed in GBM leading to pro-inflammatory 
cytokine inhibition [10]. Moreover, this pathway plays an 
essential role in the inappropriate GBM vascularization and 
excessive O2 consumption by GBM cells [11]. Other fac-
tors: EGF, IL-6, and Metalloproteinases significantly medi-
ate GBM invasion and migration [12].

The pressing need for better survival rates for patients 
with GBM has brought forward a multitude of different 
therapeutic approaches. Substantial efforts have focused 
on creating effective biological therapeutic modalities for 
GBM, including vaccines and immuno-targeted therapies 
[13]. Although initial survival improvements are modest, 
these novel therapies carry significant potential, newer tech-
niques, and advances in personalized medicine that may hold 
promise and excitement for the future of GBM therapeutic 
management.

Genetics and cellular biology of GBM

The genetic profile of GBM and the impact 
on treatment

GBM is one of the most genetically studied tumors and the 
first cancer systematically analyzed by the Cancer Genome 
Atlas Research Network [14]. Of the highly diverse genetic 
landscape of GBM, some genes have a significant effect 
on the clinical course of GBM. The DNA repair protein 
O6-Methylguanine-DNA methyltransferase (MGMT) is a 
universally expressed protein in human tissues and is pre-
dominantly epigenetically regulated in high-grade gliomas 
[15]. MGMT encodes a DNA repair protein that naturally 
inhibits the effect of alkylating agents, by removing the alkyl 
group rendering chemotherapy ineffective [16]. In a study by 
Hegi et al. in 2005, they reported that epigenetic silencing 
of the MGMT DNA-repair gene by methylation is associ-
ated with longer survival in GBM patients who receive the 
alkylating agent Temozolomide [16]. Currently, MGMT 
methylation status is one of the most important biomarkers 
to predict tumor response to standard of care Temozolomide 

[16]. One of the hallmark gene mutations that led to a clini-
cally relevant classification in adult glioma is the IDH status 
[17]. The relevance of the NADP (+)-dependent isocitrate 
dehydrogenases protein encoded by IDH1 and IDH2 genes 
was first described by Yan et al. in 2009 [18]. In their study, 
the authors sequenced 445 central nervous system (CNS) 
tumors and 494 non-CNS tumors in which they compared 
the enzymatic activity of the proteins produced by normal 
and mutant IDH1 and IDH2 Genes. They concluded that 
IDH1 mutations are present in more than 70% of WHO 
grade II and III astrocytomas, oligodendrogliomas, and 
GBMs that developed from low-grade gliomas. The authors 
also described that tumors without IDH1 mutations often 
manifest a corresponding IDH2 gene. The data from this 
study, as well as subsequently published data, confirmed that 
adults diagnosed with IDH wild-type GBM uniformly have a 
poor prognosis. Currently, the (MGMT) methylation status 
and mutation in NADP (+)-dependent isocitrate dehydro-
genases encoded by IDH1 and IDH2 genes are the most 
impactful factors on the clinical course of GBM [19]. More-
over, another factor that could be implicated in the GBM 
overall survival is sex difference [20]. Yang et al. recently 
investigated sex differences in GBM patients using quanti-
tative imaging-based analysis, transcriptome, and survival 
data. They have concluded that standard GBM therapy is 
more effective in female patients [21].

From Glioma stem cells (GSCs) to the tumor 
microenvironment

GBM is characterized by heterogeneity on both a gross 
and microscopic level. At the gross level, an area of central 
hypoxia and necrosis is surrounded by a pseudo-palisading, 
proliferative edge with a highly vascular stroma [22]. The 
outer, contrast-enhancing rim, is a region of tumor growth 
with increased cellular atypia and pleomorphism. In con-
trast, the inner core of the tumor has a high hypoxic gradi-
ent and harbors a high concentration of GSCs residing in 
perivascular niches. GSCs, with a widely diverse cellular 
hierarchy structure, are believed to be the cellular origin 
of GBM [23]. These cells have a fast growth rate, the abil-
ity of self-renewal, and a very long lifespan; consequently, 
they accumulate chance genetic mutations leading to treat-
ment resistance [24]. GSC can produce histopathologically 
similar tumors in orthotopic mouse models and proliferate 
indefinitely in vitro. In the lab, these cell populations display 
more resistance to chemotherapy and radiation. Thus, GBM 
pathogenesis, recurrence, and heterogeneity are believed to 
be, in part, orchestrated by GSCs which are highly heteroge-
neous [25]. They are categorized into two groups based on 
the hypothesized cellular origin: proneural (PN) and mesen-
chymal (MES) GSCs. PN GSCs share similarities with fetal 
neuronal stem cells and can often be found in lower-grade 
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gliomas and secondary GBM [26]. In contrast, MES GSCs 
more closely resemble adult neuronal stem cells and display 
more aggressive behavior, invasiveness, and treatment resist-
ance. Within tumors, GSCs are often polygenic with differ-
ent groups of stem cells having different genetic drivers, 
effects on growth, and treatment resistance [27]. Along the 
same lines, Wang et al. recently identified lineage-specific 
subtypes in murine and human-derived GBM models with 
specific transcriptomic profiles that harbor potential thera-
peutic targets [28]. This intra- and inter-tumoral heterogene-
ity makes understanding GSCs challenging. GSCs express 
a set of defining biomarkers and stem cell-associated genes 
(e.g. Nestin, Sox2, P53, NF2, PTEN, Rb, (RTK)/Ras/PI3K, 
etc.) [29]. This suggests that despite the intense genetic het-
erogeneity, these cells all contain intrinsic stem cell features 
that are potentially targetable.

Shifting the paradigm in GBM classification

While a firm understanding of GSCs remains elusive, sig-
nificant progress has been made over the last decade in 
understanding the microenvironment of GBM. With the 
advent of large-scale genomic analyses, Phillips et al. in 
2006 initially separated high-grade gliomas, including 
GBM, into three distinct subtypes (proneural, proliferative, 
and mesenchymal); these subtypes differ in survival rates 
and gene expression [30]. Subsequently, in 2010, Verhaak 
et al. separated GBM into four subtypes based on molecular 
markers, chromosomal deletions, and tumor microenviron-
ment: Proneural, Mesenchymal, Neural, and Classical [26]. 
While GBM subtypes were thought of as more rigid enti-
ties and were thought to guide future clinical trials, it now 
appears that the tumor microenvironment quickly evolves in 
a niche-specific fashion and rapidly adapts to endogenous 
and exogenous stressors (e.g. hypoxia, immune system, radi-
ation, and chemotherapy), making it currently rather thought 
to be a dynamic process [31]. Along that line, Suva et al. 
[32] recently thought to redefine GBM subtypes based on 
single-cell expression profiling. Suva et al. demonstrated the 
putative cellular hierarchies of three classes of glioma (IDH-
mutant glioma, H3K27M glioma, and IDH-wildtype Gli-
oma). For IDH-mutant glioma, they demonstrated that ~ 50% 
of the cellular hierarchy is non-proliferating oligodendro-
cytes like [OC], ~ 30% are non-proliferating astrocytes-like 
[AC], and both originate from neural progenitor cells [NPC] 
which represent ~ 10%. For the IDH wild-type GBM, they 
proposed that the GBM cellular hierarchy is comprised of 4 
interchangeable subgroups of cells: proliferating oligoden-
drocyte-progenitor cells [OPC-like], proliferating neural pro-
genitor cells [NPC-like], proliferating astrocytes -like cells 
[AC-like], and proliferating mesenchymal-like cells [MES-
like]. This latter model system adds insight and significantly 
enhances the prior more rigid subclassification model [26]. 

It becomes apparent now that the formerly described GBM 
subclasses are perhaps more a snapshot of any given time 
when the whole-genome analysis was performed and that 
they may transform, even class-switch, over time as cancer 
evolves. Thus, every single GBM carries a mix of the above 
mentioned Suva subpopulations of cells [32]. This is a pos-
sible explanation of why none of the GBM subclasses have 
yielded a clear prognostic or therapeutic implication thus 
far [33].

GBM stem cells molecular pathways, potential 
therapeutic targets?

Venkatesh et al. recently discovered that the PI3K-mTOR 
pathway may regulate high-grade gliomas growth through 
neuronal precursors. In their study, the authors found that 
soluble synaptic protein neuroligin-3 (NLGN3) was respon-
sible for exerting a mitogenic effect on neuronal and oli-
godentritic precursor cells, leading to robust high-grade 
glioma proliferation. Feedforward expression of NLGN3 
expression was driven, in turn, by the PI3K-mTOR path-
way, which is targetable with FDA approved medications. 
NLGN3 expression levels in human HGG negatively cor-
related with patient overall survival [34]. Likewise, Tao 
et al. [35] proposed that secreted synaptic proteins, carbonic 
anhydrase-related proteins 11 and 10 (CA11 and CA10), 
negatively regulate neuronal activity-dependent growth of 
gliomas via the Akt signaling pathway. The authors found 
that the gene encoding CA11 is part of a gene signature 
associated with favorable radiotherapy response and over-
all better prognosis in gliomas. Future studies investigating 
neuronal pathways and their interactions with glioma stem 
cells as a potential target in GBM therapy are promising.

Glioblastoma clinical course 
and conventional management paradigm

Treatment of newly diagnosed GBM requires a multi-dis-
ciplinary approach. The first step is to obtain a histopatho-
logical diagnosis and surgical resection if deemed feasible. 
The role of surgery in the management of GBM has been 
a subject of debate about whether it is safer to perform 
tumor debulking vs. maximal resection with negative mar-
gins. Although the available data in the published litera-
ture depicting the causal relationship between the extent of 
resection and overall survival, along with progression-free 
survival, is of retrospective nature, the results of such stud-
ies show an overwhelming consistency of the positive lin-
ear relationship between gross total resection and longer 
overall survival (OS) and progression-free survival (PFS) 
when compared to subtotal resection and surgical biopsy. 
Brown et al. [36], in their meta-analysis, investigated the 
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relationship between the extent of resection and survival 
in GBM between January 1, 1966, and December 1, 2015; 
they concluded that gross total resection (GTR) increases the 
likelihood of one-year survival when compared with subto-
tal resection (STR) by 61% and increases the likelihood of 
2-year survival by about 19%. Twelve-month progression-
free survival is more likely after GTR [37, 38]. Furthermore, 
Lacroix et al. in their multivariate analysis of 416 GBM 
patients who underwent surgical resection, concluded that 
the median survival for GBM patients with resection of 98% 
or more was 13 months vs. 8.8 months for patients with less 
than 98% resection (P < 0.0001) [37]. Currently, maximal 
gross total resection, including removal of the non-contrast-
enhancing tumor, has the largest improvement on the sur-
vival of any treatment regardless of IDH status [39].

Due to the invasive nature of GBM, even with GTR, a 
course of concurrent chemoradiation with maintenance 
temozolomide improves survival. Temozolomide is an oral 
alkylating agent and second-generation Imidazotetrazine 
derivative that can cross the blood–brain barrier. It exerts 
its cytotoxic effect through alkylating DNA sites, which are 
less able to be repaired in GBMs with methylated silencing 
of the DNA repair protein, MGMT. Temozolomide also sen-
sitizes GBM to the effects of radiation. The National Can-
cer Institute of Canada Clinical Trials Group (NCIC) and 
The European Organization for Research and Treatment of 
Cancer (EORTC) published the results of their randomized, 
open-label, phase 3 trial in 2016, and they showed that 
administering temozolomide adjuvantly and concurrently 
with radiation therapy provided a significant survival ben-
efit in patients with GBM. The reported median survival was 
14.6 months with radiation therapy plus temozolomide and 
12.1 months with radiation therapy alone, with respective 
2-year survival rates of 27% and 10%. MGMT methylation 
improved survival by 8 months. The 2-year survival rate 
improved from 10.4% for RT alone to 26.5% in the RT plus 
temozolomide group. Second- and third-line therapies are 
less well-validated.

Advances in glioblastoma therapeutics

Tumor treating fields for GBM treatment

Tumor treating fields (TTF) are alternating low-intensity 
electric fields that are administered through a special wear-
able head device. These low-intensity electrical fields 
have been demonstrated to halt the mitotic activity within 
GBMs, and consequently, they arrest the cell cycle and 
tumor progression [40]. (TTF) technology was first intro-
duced by the company Novocure as a first-in-human study 
to treating GBM in 2003 and was followed by the EF-07 
GBM pilot trial [41].

The Food and Drug Administration (FDA) approved 
the NovoTTF-100 device in 2011 as a result of the EF-11 
trial that showed a superior survival benefit for TTF 
compared to chemotherapy for recurrent GBM [42]. The 
interim results from the subsequent trial EF-14, published 
by Stupp et al. in 2015, showed a significant increase in 
overall survival (OS) and progression-free survival (PFS) 
in newly diagnosed GBM patients who completed the 
standard chemoradiation treatment course with added 
TTF therapy (Table 1) [43]. The final results from the 
EF-14 trial were published by the same group in 2017, 
and they concluded that patients with newly diagnosed 
GBM who had received standard chemoradiation therapy 
plus TTF vs. maintenance temozolomide alone, in their 
results they demonstrated statistically significant improve-
ment in PFS (6.7 months vs. 4.0 months, P < 0.001) and 
OS. (20.9 months vs. 16.0 months, P < 0.001) [44]. The 
final EF-14 trial results were consistent with the previous 
interim results. [43, 44] Currently, the Optune® system 
(Novocure Ltd., Haifa, Israel) is the FDA-approved TTF 
portable device that is available commercially for patients 
[45]. The reported side effects of TTF are mainly scalp 
skin toxicities and dermatitis, without any major side 
effects [46].

Table 1   Summary of the tumor treating filed EF-11 and EF-14 Trails

mo months, yr year, TMZ temozolomide, TTFields tumor treating fields, EF electrical fields, GBM glioblastoma
a Primary trial endpoint
b Treating physician choice of chemotherapy (variable)

Trial Population # Patients Therapeutic intervention PFS OS

Median (mo) P-value Median (mo) P-value

EF-14
NCT00916409

Newly diagnosed GBM 466 TT Fields and TMZ 6.7a  < 0.01 20.9 0.0004
229 Maintenance TMZ 4.0a 16.0

EF-11
NCT00379470

Recurrent GBM 120 TT Fields 2.2 0.13 6.6a 0.27
117 Chemotherapyb 2.1 6.0a



107Journal of Neuro-Oncology (2021) 151:103–112	

1 3

Vaccine‑based immunotherapeutics

A vaccine is a biological agent administered to a human or 
an animal with the intent of generating a long-term immu-
nity against a specific pathological agent via inducing the 
subject adaptive immunity. Typically, vaccines work by pre-
venting disease; however, experimental GBM vaccines are 
designed to provide the subject immune system the ability 
to recognize and eradicate the tumor cells. Antigenic com-
ponents used in such vaccines could be peptide in origin 
(e.g. Epidermal Growth Factor Receptor Variant Type III—
EGFRvIII), heat shock proteins, or cell-based vaccine (den-
dritic cell vaccines) [47]. Despite the promising results of 
the EGFRvIII vaccine in phase I/II, the preliminary results 
from phase III demonstrate that the EGFRvIII vaccine does 
not seem to have any survival benefits in patients with newly 
diagnosed EGFRvIII-positive GBM [48]. More recently, 
promising phase I trials are underway for a personalized 
GBM vaccine. Hilf et al. introduced the first-in-human trial 
of a personalized peptide vaccine for newly diagnosed GBM 
(GAPVAC) (NCT02149225) [49]. Their proposed vaccine 
is composed of 2 components (APVAC1&2) and is based 
on whole-exome sequencing and human leukocyte antigen 
(HLA)-ligandome analyses. The GAPVAC phase-I results 
showed that APVAC1 elicited sustained central memory 
CD8+ T-cells while APVAC2 induced CD4+ T-cell response 
of T-1 helper against GBM specific-Neoepitopes. Further-
more, Keskin et al. introduced a tumour-specific protein 
(neoantigen) vaccine that is able to generate an intratumoral 
T cell response [50].

While increasing evidence shows that the current 
experimental vaccines are capable of inducing an immune 
response against GBM cells, no evidence currently supports 
that GBM vaccines can induce an adequate anti-tumoral 
response that leads to a survival benefit [51].

Oncolytic viral therapy

Oncolytic viruses are a promising therapeutic approach to 
treating GBM. These viruses are genetically engineered 
viral particles able to selectively infect and kill tumor cells 
without inflicting damage to the surrounding normal tissue. 
Viruses were first introduced as a means of treating cancer 
in 1912 when the rabies virus was used to treat cervical 
cancer. In 1991, the first genetically engineered virus was 
introduced and the field of viral oncolytic therapy was born 
[52]. In 1998, the first trial in the US for Oncolytic HSV-1, 
G207 as a treatment for glioma commenced [53].

Since 1998, a wide spectrum of clinical trials using 
numerous viruses has been developed to investigate new 
therapeutic approaches for treating GBM [54]. Multiple 
strains of viruses have been used including Adenoviridae 
(DNX-2440, DNX-2401, CRad-S-pk7); Herpesvirales 

(C134, M032, rQNestin 34.5, G207); Vaccinia virus; 
Measles Virus _MV-CEA; and Poliovirus_PVSRIPO), 
Toca 511)) (Table 2) [55]. These viruses induce targeted 
malignant cell death through different necrotic mechanisms 
including damage-associated molecular pattern (DAMPs) 
and tumor-associated antigen (TAAs), apoptosis, and 
autophagic cell death via DAMPs [56].

DNX-2401 (Delta-24-RGD) is a promising example of 
a modified adenovirus therapy for recurrent GBM [57]. 
Recently published data from the Delta-24-RGD phase 
I trial showed a slight increase in the overall survival of 
patients to 13 months. Seven patients reached long-term 
survival over 24 months  [57]. Currently, Delta-24-RGD is 
being investigated in phase I and II trials as a combination 
therapy with Interferon Gamma NCT02197169 and Pem-
brolizumab NCT02798406. Similarly, the recombinant non-
pathogenic polio-rhinovirus chimera (PVSRIPO) works by 
recognizing the poliovirus receptor CD155, which is widely 
expressed in the GBM tumor microenvironment. A phase 
one trial showed an increase in long term survivors at 24 and 
36 months compared to historical controls [58].

Although oncolytic viral therapy may represent a promis-
ing therapeutic approach to treating GBM, the current results 
from early trials favor oncolytic viruses to be an adjunct 
therapy rather than a sole therapeutic agent [59]. With the 
current advancement of genetic engineering technology, 
larger controlled trials are needed to provide more efficient 
viral GBM therapies that are based on optimized viral con-
struction to reduce clinical toxicity and maximize the effi-
ciency of administration.

Final remarks and future perspective

Our understanding of the pathogenesis and treatment of 
GBM has greatly expanded over the past 50 years. Despite 
the established survival benefits of Temozolomide plus 
concomitant radiation therapy for GBM patients, over 
the past decade, no profound additional therapy mediated 
survival advantage has been realized [44]. This is likely 
due to GBM developing resistance to treatment and to 
significant intra and inter-tumoral heterogeneity, as well 
as the rapidly evolving and heterogeneous cellular can-
cer landscape. Many molecular therapeutic targets have 
been described in recent literature. To our knowledge, 
we do not commonly use upfront, targeted GBM therapy 
[60]. Although GBM prognosis remains bleak, several 
new avenues of treatment modalities, ranging from onc-
olytic viruses to targeted immunotherapy, hold promise 
to change the disease course of GBM. There likely is no 
single agent cure for GBM but rather a series of treat-
ments based on intratumoral niche-based genetics. Fur-
thermore, GBM therapy should be highly personalized and 
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adaptable. This prospective therapy should be trainable 
and flexible to accommodate the diverse genetic variations 
and the different demographic factors of each patient. We 
envision a patient-derived 3D in-vitro cancer model sys-
tem recapitulating each patient’s GBM, as well as serving 
as a bio-factory used to test and train different therapeutic 
agents (e.g. oncolytic viruses) in a rapid and cost-efficient 
co-clinical trial fashion (Fig. 1). This model may serve as 
a bio-adaptable training avatar that continuously evolves to 

address the ever-changing cancer genetic landscape under 
therapy stress. Future research efforts should in part focus 
not only on the technical aspects of the current conven-
tional management paradigm but also on constructing and 
validating personalized in-vitro and ex-vivo based high 
throughput 3D tumor models for each patient. Although 
we are hopeful that a groundbreaking, personalized molec-
ular therapy for GBM will be available in the near future, 
we are also realistic in recognizing the challenges that 

Table 2   Summary of the recent major oncolytic viral therapy trials fro high-grade gliomas including glioblastomas

OS overall survival, PFS progression-free survival
a Study completion
b Only relevant outcomes mentioned

NCT# Status Condition(s) Enrolled Interventions Phase Outcomesb Completiona

NCT03294486 Recruiting Glioblastoma 78 Combination of 
TG6002 and 5-flu-
cytosine

Phase 1
Phase 2

6-month PFS September 2021

NCT03714334 Recruiting Glioblastoma, Adult 24 DNX-2440 Phase 1 Overall Survival at 
12 months (OS12)

Overall response rate 
(ORR)

October 16, 2022

NCT04479241 Not yet recruiting Recurrent Glioblas-
toma

Supratentorial Glio-
blastoma

10 PVSRIPO
pembrolizumab

Phase 1 Incidence of objec-
tive radiographic 
response

Disease control rate

March 2023

NCT01956734 Completed Glioblastoma
Recurrent Glioblas-

toma

31 DNX2401 and 
Temozolomide

Phase 1 Tumor response March 2017

NCT03072134 Completed Anaplastic Astrocy-
toma

Anaplastic Oligo-
dendroglioma

Anaplastic Oligoas-
trocytoma

Glioblastoma
Astrocytoma, Grade 

III
Astrocytoma, Grade 

IV

13 Neural stem cells 
loaded with an 
oncolytic adeno-
virus

Phase 1 Tumor response April 6, 2020

NCT03896568 Recruiting DH1 wt Allele
Recurrent Anaplastic 

Astrocytoma
Recurrent Glioblas-

toma

36 Oncolytic Adeno-
virus Ad5-
DNX-2401

Conventional Sur-
gery

Phase 1 Maximum-tolerated 
dose (MTD)

Incidence of adverse 
events (AEs)

Tumor response

February 28, 2020

NCT03152318 Recruiting Malignant Glioma
Astrocytoma

108 rQNestin
Cyclophosphamide
Stereotactic biopsy

Phase 1 Maximum Tolerated 
Dose

MRI Changes in 
Permeability

MRI Changes in 
Volume

July 2022

NCT03657576 Recruiting Glioblastoma
Anaplastic Astrocy-

toma
Gliosarcoma

24 C134 Phase 1 OS
PFS

September 2024

NCT01301430 Completed Glioblastoma 61 PVSRIPO Phase Safety and toler-
ability

May 2015
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ought to be overcome to disrupt current treatment para-
digms towards making GBM a chronic disease.
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