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BACKGROUND: Molecular characterization of glioma has implications for prognosis,
treatment planning, and prediction of treatment response. Current histopathology is
limited by intratumoral heterogeneity and variability in detection methods. Advances in
computational techniques have led to interest in mining quantitative imaging features to
noninvasively detect genetic mutations.
OBJECTIVE: To evaluate the diagnostic accuracy of machine learning (ML) models in
molecular subtyping gliomas on preoperative magnetic resonance imaging (MRI).
METHODS: A systematic search was performed following PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analysis) guidelines to identify studies up to April
1, 2020. Methodological quality of studies was assessed using the Quality Assessment
for Diagnostic Accuracy Studies (QUADAS)-2. Diagnostic performance estimates were
obtained using a bivariate model and heterogeneity was explored using metaregression.
RESULTS: Forty-four original articles were included. The pooled sensitivity and specificity
for predicting isocitrate dehydrogenase (IDH) mutation in training datasets were 0.88
(95%CI 0.83-0.91) and0.86 (95%CI 0.79-0.91), respectively, and0.83 to 0.85 in validation sets.
Use of data augmentation and MRI sequence type were weakly associated with hetero-
geneity. Both O6-methylguanine-DNA methyltransferase (MGMT) gene promoter methy-
lation and 1p/19q codeletion could be predicted with a pooled sensitivity and specificity
between 0.76 and 0.83 in training datasets.
CONCLUSION: ML application to preoperative MRI demonstrated promising results for
predicting IDHmutation, MGMTmethylation, and 1p/19q codeletion in glioma. Optimized
MLmodels could lead to a noninvasive, objective tool that capturesmolecular information
important for clinical decisionmaking. Future studies shouldusemulticenter data, external
validation and investigate clinical feasibility of ML models.
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G liomas account for 75% of malignant
primary brain tumors.1 In addition
to clinical factors and tumor grading,

molecular characterization has demonstrated
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wide-ranging implications for patient prognosis,
treatment planning, and prediction of treatment
response, leading to its integration in the
2016 World Health Organization (WHO)
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Classification system.2 An accurate means of determining
hallmark mutations in glioma is thus desirable to aid patients’ and
surgeons’ decision making in the era of personalized medicine.
While histopathology is the current diagnostic gold standard,
intratumoral spatial heterogeneity and changes in the tumor
environment over time cannot be captured by limited samples at
a single timepoint.3 Moreover, different detection methods4 and
the unavailability of sequencing facilities in some centers cause
variability and delays in glioma classification.
Magnetic resonance imaging (MRI) contains abundant infor-

mation reflecting tumor physiology and microenvironment at
a voxel (volume pixel) level, which can be quantified using
computational tools such as texture analysis, a process known as
radiomics.5-7 Importantly, we can harness the powerful ability of
machine learning (ML) to recognize patterns among thousands
of imaging features to make predictions. ML has led progress in
artificial intelligence (AI) by allowing machines to automatically
learn how to act in different conditions and improve on their own
performance without being explicitly programed.8 Deep learning
(DL) models, a subset of ML, further mimic the human visual
cortex neural networks to learn abstract representation of data.
Such models could augment decision making in neurosurgery,
with applications in diagnosis, tumor grading, and prediction of
surgical outcomes.8-10 Their use in radiogenomics,11 the process of
detecting genetic alterations corresponding with imaging features,
is of particular interest here.
A previous systematic review12 summarized studies exploring

radiogenomic markers; however, the use of ML models was
not examined. Another review assessed the accuracy of ML
in predicting isocitrate dehydrogenase (IDH) mutations,13 but
additional molecular markers have diagnostic and prognostic
significance, including 1p/19q codeletion, O6-methylguanine-
DNA methyltransferase (MGMT) gene promoter methylation,
p53 mutation, epidermal growth factor receptor (EGFR) ampli-
fication, phosphatase and tensin homolog (PTEN) loss, alpha
thalassemia/mental retardation syndrome X-linked (ATRX),
and telomerase reverse transcriptase (TERT) mutations. We
sought to systematically review the literature and, firstly,
evaluate the diagnostic accuracy of ML models to predict
these molecular markers in glioma on MRI and, secondly,
determine methodological and clinical factors that affect their
performance.

METHODS

This study was conducted in concordance with our protocol (available
upon request) and the Preferred Reporting Items for Systematic Reviews
and Meta-Analysis of Diagnostic Test Accuracy Studies (PRISMA-DTA)
guidelines.14

Eligibility Criteria
Studies were included if the following criteria were met: (1) aimed

to predict at least 1 of 8 aforementioned molecular markers using

any MRI sequence; (2) utilized an ML algorithm for classification;
(3) included patients with histopathologically confirmed glioma of any
WHO grade; (4) contained sufficient information to reconstruct 2 × 2
tables (we contacted authors if this was insufficient); and (5) English
language. Studies were excluded if they were (1) commentaries, editorials,
letters, review articles, case reports, conference abstracts, or (2) animal
studies.

Study Selection
We performed a systematic search of Medline Ovid, EMBASE,

Scopus, and Web of Science to identify studies published up to April 1,
2020 using key terms forML, brain tumors, genetic mutations, andMRI
(see Methods, Supplemental Digital Content 1 for search strategy).
The titles and abstracts of deduplicated articles were independently
screened (A.J. and K.J.) and disagreements were resolved by discussion.
Full text review identified studies satisfying the eligibility criteria. A
secondary search involved handsearching the reference lists of included
studies.

Data Extraction
We collected data about the study design, patient characteristics, MRI

sequence, segmentation, feature selection, ML classifier, histopathology,
and validation using piloted form. Sensitivity, specificity, true positives
(TPs), true negatives (TNs), false positives (FPs), and false negatives
(FNs) were extracted from training and validation datasets for each
molecular marker. We defined performance from cross-validation as a
training dataset since it involved data “seen” by the machine, while
“unseen” data from a held-out test set or external cohort were treated
as validation. If multiple models were compared within a study, the top-
performing model was selected.

Risk of Bias Assessment
Risk of Bias (RoB) was assessed using the Quality Assessment of

Diagnostic Accuracy Studies-2 (QUADAS-2) tool15 and tailored through
adding 2 questions: whether the study avoided a severe imbalance of
genotype classes, and reduced variability in segmentation or studied
feature robustness, an item adopted from the radiomics quality score
(RQS).16 Since a data-driven approach is generally used in ML to derive
an optimal cutoff, a study was deemed unclear with regard to prespecified
threshold, unless its reliability was improved through other strategies.17
Histopathology is interpreted beforeML results, thus all studies answered
“yes” to the question pertaining to review bias. A conservative approach
was used for overall judgement—high RoB if there was a “no” to at
least one question, and uncertain if any item was “unclear.” Authors
were contacted if RoB was unclear, with 18 of 42 providing further
information.

Applicability was evaluated considering the patient population, index
test, reference standard, and RQS items, such as the risk of overfitting,
an issue of MLmodel performance degradation when applied to a cohort
different to its training samples.

Meta-Analysis
We constructed a bivariate random effects model to obtain

pooled sensitivity, specificity, and 95% CI where there were ≥5
studies, and derived a summary receiver operating curve (SROC)
using the hierarchical model. To assess heterogeneity, we examined
(1) overlap in 95% CIs on forest plots; (2) deviation of 95%
prediction region from confidence region on SROC curve; (3)
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FIGURE 1. Flow diagram of the study selection process. ∗Studies investigating more than one genetic subtype were counted
separately for each gene.

between-study variance τ 2 in logit sensitivity and false positive rate
(FPR = 1 – specificity).18 In addition, a Spearman correlation
coefficient (SCC) between sensitivity and FPR of >0.6 indicates
threshold effect,19 as well as a V-shaped forest plot ordered by
sensitivity.

We investigated heterogeneity by subgroup analysis and metare-
gression using prespecified covariates where there were at least 10
studies20: study setting (single/multicenter), glioma grade, conven-
tional (T1-weighted pre- and post-gadolinium contrast, T2-weighted,
and fluid-attenuated inversion recovery [FLAIR]) or advanced MRI
(eg, diffusion weighted imaging, MR spectroscopy), clinical infor-
mation, ML algorithm, and data augmentation (ie, any technique
used to increase the amount of input data for the training of the
model aimed to reduce overfitting). Publication bias was assessed
by Deeks funnel plot asymmetry test.21 Statistical analyses were
conducted using “mada” (v0.5.10) and “metafor” (v2.4-0) packages in R
(R Stats v4.0.0).

RESULTS

We identified 512 articles from primary and secondary search.
After preliminary screening and full text review excluding studies
for reasons outlined (Figure 1), 44 studies met all eligibility
criteria.22-65

Study Characteristics
Key study characteristics are summarized in Table 1. The

majority employed a retrospective design except 2 prospective
studies.24,55 Sample size ranged from 13 to 463 patients. Twenty
studies drew patients frommultiple institutions, commonly using
the Cancer Genome Atlas LowerGradeGlioma andGlioblastoma
databases.
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ML FOR MOLECULAR MARKER PREDICTION IN GLIOMA

FIGURE 2. Summary of tumor segmentation methods A, types of imaging features B, means of internal validation C, and external validation D used by studies
(n = 44) investigating machine learning models for predicting genetic subtypes of glioma. VASARI, Visually Accessible Rembrandt Imaging.

In total, 16 of 44 studies used advanced MR sequences.
Image segmentation was undertaken manually or semiautomat-
ically, while 6 studies adopted DL (Figure 2A).37,38,45,48,52,56
In total, 32 studies extracted radiomics features such as tumor
shape, intensity and texture, 7 used DL, and 5 used quanti-
tative parameters alone, such as MR spectroscopy metabolite
concentration, or combined with Visually Accessible Rembrandt
Imaging (VASARI) features (Figure 2B). Several ML classifiers
were investigated, the most common being random forest and
support vector machines (SVM). Means of internal validation
are summarized in Figure 2C, while only 10 studies externally
validating their models (Figure 2D). Imbalanced genotype classes
were addressed in several studies by selecting a balanced number
of image slices,23 setting class weights,63 or using oversampling
techniques to increase the minority class.28,42,45,61 Data augmen-

tation techniques used commonly included flipping, shifting,
rotation,32,51,59 and synthetic generation of images during model
training.63

Risk of Bias
Quality assessment results are summarized in Figure 3. In the

patient selection domain, most studies did not report exclusion
criteria and/or sequence of patient enrolment, while 2 studies
had inappropriate patient exclusions.46,50 Two studies scored high
risk in index test due to concerns with selection of regions of
interest,40,42 and it was unclear in many instances if investigators
were blinded to the genotype. Reference standard was overall low
risk. Finally, 14 of the 44 studies had a high RoB with respect to
patient flow as not all patients were genotyped or underwent the
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FIGURE 3. Assessment of risk of bias and applicability based on QUADAS-2.

FIGURE 4. Coupled forest plots of included studies using machine learning to predict isocitrate dehydrogenase (IDH) status in training dataset. Numbers are pooled
estimates with 95% CI in brackets and indicated by horizontal lines.

same histopathology detection. The unreported interval between
MRI and surgery/biopsy left most with an unclear RoB.
There were no concerns with applicability except 7 studies

that selected patients based on information unavailable preop-
eratively,37,43,44,46,50,52,62 3 of which included only grade II
glioma,37,43,52 thus less applicable to the heterogeneous lower
grade (II and III) glioma.

IDHMutation
The training diagnostic performance of IDH prediction

is displayed in Figure 4, which revealed no threshold effect
between sensitivity and specificity, confirmed by SCC of 0.03
(95%CI–0.45 to 0.49). Substantial between-study heterogeneity
was indicated by poorly overlapping CIs and the deviation

of prediction from confidence region (Figure 5A). This was
more prominent in specificity, confirmed by the between-study
variance, τ 2 in logit FPR of 0.76 and logit sensitivity 0.27. The
pooled sensitivity and specificity were 0.88 (95% CI 0.83-0.91)
and 0.86 (95% CI 0.79-0.91), respectively, with an area under
curve (AUC) of 0.92.
In validation datasets, the pooled sensitivity, specificity, and

AUC were 0.85 (95% CI 0.77-0.90), 0.83 (95% CI 0.72-0.90)
and 0.90. A threshold effect was suggested by the studies lying
close to the SROC curve (Figure 5B) and a SCC of 0.74 (95%CI
0.28-0.92). Heterogeneity was likewise greater in specificity (τ 2 in
logit FPR 0.69, sensitivity 0.27). Examination of outliers revealed
imbalanced genotype classes.34,40,52 For validation performance,
the study with the lowest sensitivity contained 33% of IDH
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ML FOR MOLECULAR MARKER PREDICTION IN GLIOMA

FIGURE 5. Summary Receiver Operating Characteristic curve of the diagnostic performance of machine learning models for predicting isocitrate dehydrogenase (IDH)
status. Each study is represented by an open circle with the shaded circle representing the pooled sensitivity 0.876 (95% CI 0.832-0.909) and specificity 0.860 (95%
CI 0.792-0.908) in training dataset A and 0.846 (95% CI 0.765-0.902) and 0.826 (95% CI 0.715-0.899), respectively, in validation dataset B. In total, 95%
confidence ellipse is indicated in solid line and prediction ellipse in dashed line.

mutants.34 Other studies with lower proportion of mutants
addressed imbalanced learning.45,61,63

1p/19q Codeletion
In total, 6 of the 9 studies investigating 1p/19q codeletion

reported training results, yielding a pooled sensitivity and speci-
ficity of 0.83 (95% CI 0.72-0.90) and 0.76 (95% CI 0.71-0.81),
respectively, and AUC of 0.83 (see Figure, Supplemental Digital
Contents 2 and 3). Validation performance across 5 studies gave
a sensitivity of 0.70 (95%CI 0.45-0.86), specificity 0.72 (95%CI
0.63-0.80), and AUC 0.75. In both instances, heterogeneity was
observed primarily in sensitivity.

MGMTMethylation and Other Markers
In total, 10 studies evaluatedML prediction ofMGMTmethy-

lation, demonstrating a pooled sensitivity of 0.81 (95% CI 0.72-
0.87), specificity 0.80 (95% CI 0.73-0.86), and AUC 0.87 in
training dataset (see Figure, Supplemental Digital Contents
4 and 5). There was poor overlap in 95% CIs across studies.
A negative correlation of sensitivity with FPR was detected,
as with 1p/19q codeletion training dataset, suggesting possibly
different implicit thresholds across studies that contributed to
the variability.66 Only 3 studies reported validation performance,
with sensitivity and specificity ranging 0.70-0.88. Ranges for
other molecular markers were reported in Table 2. Of these,

the reported sensitivity and specificity for ATRX mutation were
≥0.75, followed by TERT promoter with sensitivity of 0.75-0.86.
The prediction performance of EGFR, p53 mutation, and PTEN
loss were largely variable (sensitivity and specificity 0.55-1).

Metaregression and Subgroup Analysis
For IDH prediction in the training dataset, data augmen-

tation was weakly associated with heterogeneity in specificity, and
MRI modality with sensitivity (P = .05). Studies using augmen-
tation achieved a higher specificity (0.95, 95%CI 0.81-0.99) than
those without (0.82, 95%CI 0.75-0.87), while those investigating
advanced MRI (0.92, 95%CI 0.86-0.95) showed higher sensi-
tivity compared to conventional sequences (0.85, 95%CI 0.81-
0.88) (Table 3). For the validation set, high grade glioma (HGG)
contributed to heterogeneity in specificity (P = .002), reducing
τ 2 in logit FPR from 0.69 to 0.12, although only one study45
included solely HGG patients.
With respect toMGMTmethylation (training),MRI sequence

contributed significantly to heterogeneity in sensitivity (P< .001)
and specificity (P < .05), both of which were respectively higher
in the conventional MRI group (0.86, 95%CI 0.81-0.89 and
0.84, 95%CI 0.76-0.90)25,27,30,31,49 than advanced MRI (0.65,
95%CI 0.40-0.84 and 0.66, 95%CI 0.56-0.74).28,57,65
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TABLE 2. Sensitivity and Specificity for Machine Learning Prediction of Major Molecular Markers in Glioma

Gene Dataset No. of studies No. of patients Sensitivity 95% CI Specificity 95% CI

IDH Training 18 1496 0.88 0.83-0.91 0.86 0.79-0.91
Validation 12 500 0.85 0.77-0.90 0.83 0.72-0.90

1p/19q Training 6 719 0.83 0.72-0.90 0.76 0.71-0.81
Validation 5 367 0.70 0.45-0.86 0.72 0.63-0.80

MGMT Training 10 1024 0.81 0.72-0.87 0.80 0.73-0.86
Validationa 3 115 0.70-0.88 – 0.75-0.86 –

ATRXa 3 129 0.84-0.95 – 0.75-0.90 –
TERTa 4 382 0.75-0.86 – 0.55-0.93 –
EGFRa 3 259 0.69-1 – 0.55-0.86 –
P53a 4 293 0.67-1 – 0.64-1 –
PTENa 3 253 0.56-1 – 0.84-1 –

aRanges for sensitivity and specificity across training and validation datasets were given where there were insufficient studies (n< 5) to undertake ameta-analysis to obtain pooled
values.
ATRX, alpha thalassemia/mental retardation syndrome X-linked; CI, confidence intervals; EGFR, epidermal growth factor receptor; IDH, isocitrate dehydrogenase; MGMT, O6-
methylguanine-DNAmethyltransferase; PTEN, phosphatase and tensin homolog; TERT, telomerase reverse transcriptase.

TABLE 3. Investigation of Heterogeneity ThroughMetaregression for Prediction of Isocitrate DehydrogenaseMutation in Training Set

Covariates Subgroup No. of studies Sensitivity (95% CI) P value Specificity (95% CI) P value

Glioma grade LGG 8 0.86 (0.80-0.91) .54 0.78 (0.68-0.86) .12
HGG 3 0.86 (0.57-0.97) .47 0.95 (0.72-0.99) .51
LGG & HGG 7 0.91 (0.83-0.95) 0.90 (0.81-0.95)

MRI sequence Conventional 9 0.85 (0.81-0.88) .05 0.90 (0.78-0.96) .49
Advanced 9 0.92 (0.86-0.95) 0.84 (0.74-90)

ML algorithm Random forest 4 0.87 (0.73-0.94) .49 0.92 (0.75-0.98) .90
Support vector machine 7 0.86 (0.82-0.90) .69 0.78 (0.66-0.86) .06
Other 3 0.89 (0.54-0.98) .57 0.87 (0.66-0.96) .32
Deep learning 4 0.92 (0.81-0.97) 0.92 (0.82-0.97)

Data augmentation With 5 0.90 (0.84-0.94) .46 0.95 (0.81-0.99) .05
Without 13 0.87 (0.80-0.91) 0.82 (0.75-0.87)

Setting Single center 11 0.91 (0.86-0.94) .07 0.82 (0.75-0.88) .17
Multiple centers 7 0.84 (0.79-0.88) 0.93 (0.79-0.98)

Clinical information Included 2 0.80 (0.71-0.87) .12 0.68 (0.51-0.81) .07
Not included 16 0.89 (0.84-0.92) 0.88 (0.81-0.92)

CI, confidence interval; HGG, higher grade glioma (defined as including glioblastoma patients); LGG, lower grade glioma (defined as inclusion of grade II and/or III); ML, machine
learning.

Publication Bias
Deeks funnel plot asymmetry test revealed publication bias

only in 1p/19q codeletion training dataset analysis (P = .02) (see
Figure, Supplemental Digital Content 6).

DISCUSSION

This study found a robust performance of ML models in
predicting IDH mutation in glioma with a sensitivity and speci-
ficity of 0.85-0.88 in training and 0.83-0.86 in validation set,
comparable to previous findings.13 Heterogeneity was partially

explained by data augmentation and MRI sequence. MGMT
methylation and 1p/19q codeletion could be predicted with
moderate accuracy (sensitivity and specificity 0.76-0.83) in
training datasets and should be further validated. Among the
other genetic subtypes with limited data, detection of ATRX and
TERT promoter mutation reported, more consistently, moderate-
high performance compared to EGFR, p53, and PTEN.
Although many studies had unclear RoB, the only important

limitation arises from lack of blinding to genotype where manual
segmentation or radiologist scoring (eg, VASARI features) was
involved, which could introduce subjectivity to the otherwise
objective computational process. Patient selection based on
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specific genotype class or glioma grade can also introduce imbal-
anced learning problems and reduce the applicability of findings.
This affects the quality of evidence for 1p/19q codeletion,44,62
TERT promoter,50,59 and ATRXmutation.43 Overall, the quality
of evidence for use of ML models is strongest for IDH mutation
and MGMT methylation.

Implications for Application of MLModels
Several imaging features assessed by radiologists could predict

genetic subtypes with moderate accuracy.67-70 However, the use
of ML techniques offers additional value. Firstly, ML approaches
are well-suited to recognizing patterns and integrating imaging
features from multiple modalities, thereby enabling multimodal
multiparametric assessment. Processes such as dimensionality
reduction that eliminate irrelevant and redundant variables27
allow automated selection of the optimal predictive features.
Secondly, applying high-throughput computational analyses

to extract radiomics features captures heterogeneous tumor
characteristics and overcomes interobserver variability of visual
assessment. This is particularly useful for markers like TERT
mutation where few imaging phenotypes could be found.71 Jiang
et al26 demonstrated that a ML model using radiomic features
predicted TERT promoter mutation with AUC 0.827. Lastly, DL
is increasing favored as it allows learning directly from raw data
without predefined features, and automated segmentation.72 In
our subgroup analysis, IDH prediction (training) showed a trend
for superior performance (sensitivity and specificity 0.92) in DL
group compared to other algorithms.
The clinical applications of optimized ML models are

multifold. The prognostic significance of IDH mutation,73 its
implication for surgical resection in astrocytoma,74 and the role
of 1p/19q codeletion and MGMT methylation in predicting
chemoradiotherapy response75,76 highlight the benefits of
molecular subtyping for treatment planning. The potential for
distinguishing pseudoprogression from tumor progression in
glioblastoma77 is also advantageous. Moreover, a noninvasive
model could provide a valuable tool for selecting patients and
monitoring response to future targeted therapeutics.78

Challenges for Application of MLModels
Only one study explored using ML methods as an adjunct

to radiologists in routine practice.61 Several factors need to be
considered for clinical application. We found that advanced
MR sequences achieved greater sensitivity for IDH mutation
prediction in training dataset, contrary to previous findings.13
The discrepancy is likely due to the larger number of studies
(18 vs 9) and wider range of MR modalities investigated here.
However, conventional MRI was superior in predicting MGMT
methylation, possibly explained by the greater requirements of
advanced sequences for careful postprocessing, such as avoiding
areas of necrosis in perfusion-weighted imaging, which affect
feature extraction. Thus, different combinations of MRI modal-
ities and feature types need to be tailored to individual molecular
markers.

Biological interpretability of ML models was only explored
by a few.22,36 The feasibility of image-guide biopsy,24 however,
suggests it is possible to more accurately characterize radio-
genomic correlates across tumor subregions. This is significant
given that studies found varying contribution of radiomics
features from tumor subregions, such as peritumoral area, in
genotype prediction.26,45,46 The intrinsic heterogeneity of ML
studies in patient selection, image acquisition, processing, and
ML algorithms further poses a challenge. However, the conglom-
erate of evidence suggests that advances such as in DL and
adherence to high quality methodology, eg, evaluating stability of
features across different conditions16,79 can improve the precision
and reliability of ML models.
Lastly, current findings are largely limited to retrospective

analysis. Bisdas et al55 prospectively examined patients with
suspected low- or indeterminate grade gliomas who underwent
multimodal MRI including diffusion kurtosis imaging (DKI)
preoperatively, followed by texture analysis to classify IDH
mutation using an SVM model. Hu et al24 recruited patients
with clinically suspected glioblastoma undergoing preoperative
conventional MRI for stereotactic biopsies, and then built
decision-tree models based on texture features for predicting
core driver genes. However, both included a small number of
patients. As current ML models are reliant on labeled data, ie,
histopathology for model training, future studies should prospec-
tively validate trained models using larger sample sizes in the
preoperative setting for clinical translation.

Limitations of the Study
This review has some limitations. While direct within-study

comparisons of ML algorithms are desirable, we selected the
top-performing model due to the variable algorithms employed.
Heterogeneity was partly explained by prespecified covariates
in IDH mutation and resolved for MGMT methylation.
Poor reporting in some studies also restricted our assessment
of methodological quality, but correspondence with authors
and tailoring the QUADAS-2 tool allowed more thorough
assessment. Lastly, we did not search gray literature (ie, conference
proceedings and theses) to identify unpublished studies, although
we extended our search to 4 databases. Publication bias was
detected for 1p/19q codeletion, which may be attributed to
unexplained heterogeneity and selective reporting, but should
be interpreted with caution due to the small number of
studies.

CONCLUSION

Current evidence shows that IDH mutation can be predicted
with moderate-high accuracy, while MGMT methylation and
1p/19q codeletion demonstrated promising results that need to
be further validated. Interpretation of other markers is limited,
although greater prediction performance was reported for ATRX
and TERT promoter mutation. The quality of evidence is overall
stronger for IDHmutation andMGMTmethylation considering
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the precision, applicability, lack of publication bias, and investi-
gated heterogeneity, where data augmentation and choice of MRI
sequences were contributing factors. These radiogenomic markers
should be prioritized in future studies investigating feasibility in
routine workflow to maximize clinical application.
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Supplemental Digital Content 3. Figure. Sensitivity and false positive rate (1 –
specificity) of studies that evaluated prediction of 1p19 codeletion in training
dataset. Each study is represented by an open circle with the shaded circle repre-
senting the pooled sensitivity 0.828 (95% CI 0.722-0.899) and specificity 0.763
(95% CI 0.706-0.813) surrounded by a 95% confidence ellipse (solid line) and
prediction ellipse (dashed line).
Supplemental Digital Content 4. Figure. Coupled forest plots of included
studies using machine learning to predict MGMT methylation status in training
dataset.

Supplemental Digital Content 5. Figure. Sensitivity and false positive rate (1 –
specificity) of studies that evaluated MGMT methylation status prediction in
training dataset. Each study is represented by an open circle with the shaded circle
representing the pooled sensitivity 0.808 (95% CI 0.720-0.873) and specificity
0.800 (95% CI 0.726-0.858) surrounded by a 95% confidence ellipse (solid line)
and prediction ellipse (dashed line).
Supplemental Digital Content 6. Figure. Funnel plot of publication bias for
1p/19q codeletion prediction in training dataset.
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