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Abstract

Faced with unique immunobiology and marked heterogeneity, treatment
strategies for glioblastoma require therapeutic approaches that diverge from
conventional oncological strategies. The selection and prioritization of tar-
geted and immunotherapeutic strategies will need to carefully consider these
features and companion biomarkers developed alongside treatment strate-
gies to identify the appropriate patient populations. Novel clinical trial
strategies that interrogate the tumor microenvironment for drug penetra-
tion and target engagement will inform go/no-go later-stage clinical stud-
ies. Innovative trial designs and analyses are needed to move effective agents
toward regulatory approvals more rapidly.
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INTRODUCTION

Gliomas are among the most common primary tumors of the central nervous system (CNS) and
are classified into World Health Organization (WHO) grades from grade I, most benign tu-
mors, to grade IV, most aggressive (1). Approximately 50% of gliomas present as WHO grade
IV glioblastoma, which are the most aggressive among gliomas. Glioblastoma accounts for 48.6%
of primary malignant brain tumors, with an annual incidence of 3.23 per 100,000 in the United
States (2). Despite the immense efforts made to cure this cancer over decades of effort, the prog-
nosis remains dismal, with median overall survival (OS) of 15 months (3), and only 7.2% of pa-
tients surviving 5 years after diagnosis (2). The 2016 and 2021 WHO classification of tumors of
the CNS uses both histological tumor typing and molecular markers such as genetic mutations
in the metabolic enzymes isocitrate dehydrogenase (IDH) 1 and 2 genes, histone H3 genes, and
codeletion of 1p19q (1). Glioblastoma designated as IDH-wildtype is distinct from IDH mutated
astrocytoma, WHO grade IV, with the latter being much more prognostically favorable despite a
similar histological appearance (4, 5).

The current standard of care for glioblastoma consists of maximal safe resection of the tumor
followed by concurrent chemoradiation therapy using the alkylating agent temozolomide (TMZ)
and an additional 6-12 cycles of adjuvant TMZ if tolerated (3). Tumor-treating fields (I'TF) can
be added to this regimen. TTF triggers tumor cell death by disrupting the microtubules in the
mitotic spindle with alternating electrical fields. This strategy has been shown to prolong OS in a
randomized controlled trial (6, 7), but the T'TF device must be worn on the scalp 18 h/day, which
limits patient compliance.

Despite these treatments, glioblastoma inevitably recurs because (#) genetic heterogeneity pre-
cludes a single, targetable oncogenic pathway (8); (b)) aggressive and infiltrative tumor growth in
an essential organ limits the curative potential of surgical therapy (9); () a blood-brain barrier
(BBB) and chemotherapy-resistant mechanisms protect tumor cells (10); (d) glioma stem cells are
resistant to chemotherapy and radiation therapy (11, 12); (¢) a unique immune environment in-
cludes microglia that may be tumor supportive (13, 14); and (f) treatment modulates the tumor
microenvironment (TME), which influences responses to therapy (13). For recurrent glioblas-
toma, no systemic therapy has been shown to improve survival since the introduction of TMZ in
2005 (15). In this review, we discuss new approaches to glioblastoma in the domains of surgery,
chemotherapy, targeted molecular therapies, and immunotherapy.

SURGICAL ADVANCEMENTS: THE SUPER-RESECTION

The goals of surgery are to provide pathological tissue for diagnosis and potential precision
medicine initiatives, to reduce the volume of the tumor tissue (cytoreduction) and tumor-mediated
immune suppression, to decompress the normal brain and/or relieve neurological symptoms, and
to maximize the effects of radiation and chemotherapy. The current standard of surgical care for
glioblastoma is complete safe resection of the gadolinium-enhancing tumor (16). Given the prog-
nostic influence of the IDH1 mutant in high-grade astrocytomas, a retrospective study showed
that resection of both enhancing and non-enhancing tumors contributed to a better prognosis
observed in the IDHI mutant group (17). Supratotal resection is an emerging concept of glioma
surgery that is defined as a resection beyond the T'1 gadolinium-enhanced region, including the
FLAIR (fluid-attenuated inversion recovery) abnormal region to maximize cytoreduction (18, 19).
A single-center study evaluating supratotal resection found survival significantly increased with no
significant differences in neurological deficits (20). In a second retrospective case series, a cutoff
threshold of 45% or greater removal of the FLAIR residual tumor volume had an impact on
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2-year OS (21). Tumor visualization adjuncts such as 5-ALA may provide additional intraoper-
ative guidance for achieving these supratotal resections. The evidence to support the emerging
concept of supratotal resection is limited and requires prospective multicenter studies with larger
cohorts to be established as a standard of care. Cumulatively, the data support maximal safe resec-
tion to achieve long-term disease control, improve quality of life, and prolong OS (21, 22). More
recently, there has been a shift toward considering the volume of residual tumor post resection as
being a more valuable and accurate metric in determining outcomes (23, 24).

COMBINATORIAL CHEMOTHERAPY WITH ESTABLISHED AGENTS

TMZ is the first-line chemotherapy treatment for patients with glioblastoma and provides a ther-
apeutic benefit of an increase in OS to approximately 2.5 months when added to radiotherapy (3).
There is a greater benefit in patients whose O(6)-methylguanine-DNA methyltransferase gene
(MGMT) is silenced through methylation in the promoter (25). However, given the lack of other
treatment options, TMZ is generally given to all patients regardless of MGMT status. In patients
with an unmethylated MGMT promoter gene, who are less likely to respond to TMZ, omission
of TMZ would be justifiable to allow evaluation of experimental therapies without additional
toxicities from TMZ or potentially inducing hypermutation (26, 27). Gliomas may be especially
prone to subclonal mutations, which can induce resistance to therapies such as immune check-
point blockade (28). This increase in mutational burden can be induced by TMZ, which causes
defects in DNA mismatch repair genes. This is also associated with an increased degree of intratu-
moral heterogeneity that may also pose challenges to antigen-specific immunotherapies. Lomus-
tine (CCNU), like TMZ, is an alkylating agent and was commonly given with procarbazine and
vincristine (a combination known as the PCV regimen) for glioblastoma. An open-label phase III
trial has shown that the addition of lomustine to TMZ chemo-radiotherapy may increase survival
for patients with primary MGMT-methylated glioblastoma (29). This study was terminated early
due to slow accrual and lack of statistical power. A larger study is being planned to confirm the
findings.

Poly ADP-ribose polymerase inhibitors (PARPi) block the PARP-1 and PARP-2 enzymes (30,
31), which are important in repairing DNA damage, and data suggest that they can be effective
radiosensitizers (32, 33). The combination of the PARPi veliparib and TMZ demonstrates syn-
ergistic activity when used to treat MGMT-methylated glioblastoma cell lines (34, 35). There
were also encouraging responses when this combination was applied to MGMT-unmethylated
cell lines, especially in those with elevated baseline expression levels of DNA repair genes (35),
consistent with the proposed mechanism of veliparib (36, 37). The brain-to-plasma concentra-
tion ratio of veliparib was substantially higher relative to other PARPI such as olaparib, ruca-
parib, and talazoparib (38). However, the triplet combination of veliparib, radiation, and TMZ
was toxic when administered concurrently in clinical trials, causing severe thrombocytopenia
(39). As such, veliparib has been further studied in MGMT-methylated glioblastoma in the ongo-
ing A071102 trial INCT02152982), added to adjuvant TMZ after completion of the concurrent
radiation/TMZ therapy. A parallel trial in patients with newly diagnosed glioblastoma with un-
methylated MGMT promotor in which veliparib was combined with only radiation (no con-
current TMZ), followed by adjuvant TMZ and veliparib, demonstrated an acceptable safety
profile but no survival advantage (40). Several other PARPi including olaparib and pamiprab
(BGB-290) have better BBB penetration and are being developed in early-phase stud-
ies in glioblastoma, in a variety of combinations with radiation/TMZ and other therapies

(NCT03212742,NCT03150862, and PARADIGM-2).
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PRECISION ONCOLOGY AND TARGETED THERAPY
IN GLIOBLASTOMA

Advances in sequencing technology have enabled a greater understanding of the genomic land-
scape of glioblastoma (41). Identifying targetable and actionable driver genomic alterations
promises to expand the list of potential therapies. One of the strongest selective pressures may
occur early during glioblastoma development (42). The epidermal growth factor receptor vari-
ant III (EGFRVIII), which is a constitutively active form of the EGFR (43), has been the focus
of many targeted therapies with tyrosine kinase inhibitors (TKIs) such as erlotinib and others.
These therapies have largely failed to demonstrate significant efficacy (44, 45) as a function of
insufficient drug penetration and target engagement. Depatux-M, an antibody-drug conjugate
targeting EGFR, has shown activity in a phase II trial in combination with TMZ in recurrent
EGFR-amplified glioblastoma. However, it has failed to demonstrate a benefit in a larger con-
firmatory trial in newly diagnosed glioblastoma (46, 47). Peptide vaccine strategies also failed at
late-stage clinical trials secondary to target heterogeneity and target loss (48).

Glioblastoma is a highly vascular tumor with overexpression of vascular endothelial growth fac-
tor (VEGF). Bevacizumab is a monoclonal antibody against VEGF-A that has been investigated
in multiple large clinical trials in glioblastoma, also demonstrating no benefit on OS (49). How-
ever, bevacizumab has steroid-sparing effects on surrounding edema, allowing for reduced steroid
use and consequent reduced immunosuppression (50). Dexamethasone, if given during vaccine
priming, may induce systemic depletion of memory and naive CD4/CD8 T cells, rendering im-
munotherapy ineffective (51). In this context, bevacizumab is worth re-evaluating, specifically for
its ability to reduce the need for immunosuppressive corticosteroids (52, 53). Given that VEGF is a
good target in glioblastoma, there have been several trials of VEGF or multi-kinase TKIs directed
to the TME. Cediranib, an oral VEGF TKI, failed to show a survival benefitin a randomized phase
IIT trial, either as monotherapy or in combination with lomustine in recurrent glioblastoma (54).
Trials of other agents such as tivozanib (55), pazopanib (56), and sunitinib (57) have shown minimal
activity, indicating that VEGF monotherapy has a limited role in an unselected population. More
recently, a phase II trial of regorafenib in the relapse setting showed an efficacy signal with a sur-
vival benefit compared to lomustine (58). To confirm this finding, regorafenib is now under eval-
uation in the Adaptive Global Innovative Learning Environment for Glioblastoma (AGILE) trial
(27). AGILE is a Bayesian multi-arm clinical platform that can nimbly test multiple therapies at the
same time against standard of care (https://www.gcaresearch.org). Other targeted agent stud-
ies in AGILE (NCT03970447) currently include (#) the bi-alkylating agent dianhydrogalactitol,
Val-083, which induces interstrand crosslinks at N7-guanine leading to persistent DNA double-
strand breaks and cell cycle arrest in a p53-dependent or p53-independent manner (59) and (¥) the
brain penetrant PI3K/mTOR inhibitor Paxalisib (GDC-0084) (60). The PI3K/mTOR pathway
is frequently dysregulated in glioblastoma (61), although previous trials targeting this pathway
have not shown efficacy. For example, buparlisib, a pan-PI3K TKI, demonstrated minimal single-
agent efficacy in recurrent PI3K-activated glioblastoma patients (62). mTOR inhibitors, such as
temsirolimus, have also demonstrated a lack of efficacy in phase II trials (63).

Less frequently targeted than EGFR and VEGF are the BRAF V600E activating muta-
tions present in approximately 6% of glioblastomas (64), with a predominance in the epithe-
lioid glioblastoma histological variant. Preliminary data from studies of vemurafenib indicated
modest activity in BRAF V600E mutant glioblastoma (65). However, combination BRAF/MEK
inhibition with dabrafenib and trametinib may be more promising (66). Gene fusions are also
detected in rare subsets of glioblastoma patients, and they can be targeted with NTRK TKIs such
as larotrectinib and entrectinib. These have already received tumor-agnostic approval from the US
Food and Drug Administration (FDA) for patients with solid tumors, including a small number of
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glioblastomas harboring NTRK fusions, based on impressive response rates in early basket trials
(67, 68). Subgroup analyses suggest benefit for NTRK inhibitors in patients with gliomas in the
aforementioned trials. Alterations in the cyclin D1-cyclin-dependent kinase 4/6-retinoblastoma 1
pathway in glioblastoma have also been targeted with a CDK4/6 inhibitor in glioblastoma (69). Al-
terations in the CDK4/6 proteins and RB1 are reportedly involved in over 78% of glioblastomas,
mainly in the classical and mesenchymal subtypes (70). Abemaciclib is currently being evaluated
in the Individualized Screening Trial of Innovative Glioblastoma Therapy (INSIGhT) (71).

Currently, several basket trials are evaluating targeted therapies based on molecular sig-
natures in solid tumors including glioblastoma. These include Lung-MAP (NCT02154490),
NCI-MATCH (NCT02465060), and My Pathway (NCT02091141). Moreover, adaptive trial
designs have been used in recent trials, such as the aforementioned INSIGhT adaptive plat-
form trial NCT02977780) and the glioblastoma AGILE adaptive platform trial (NCT03970447)
(27, 72). Similarly, the Neuro Master Match-N2M? (NOA-20) (N*M?) umbrella phase I/Ila trial
NCT03158389 evaluates novel therapies in a tumor-specific manner based on molecular charac-
terization and includes combinations of targeted therapies such as palbociclib and immune check-
point inhibitors such as atezolizumab (73, 74). These designs are increasingly used for targeted
therapies to circumvent lengthy pauses between trial phases. Their usage still lags behind for im-
munotherapies (75).

THE IMMUNOTHERAPY CONUNDRUM FOR CENTRAL NERVOUS
SYSTEM TUMORS

The CNS has been traditionally considered immune-privileged due to the presumed BBB and ab-
sence of a conventional lymphatic drainage system. These notions have been dismantled (76, 77)
and refuted by immune checkpoint inhibitor therapeutic efficacy against CNS brain metastases
(78,79). This is in direct contrast with the lack of therapeutic effect of this strategy in the vast ma-
jority glioblastoma patients (80). There are multiple explanations, including infrequent expression
of immune checkpoint biomarkers such as PD-1 and PD-L1 (81, 82), low tumor mutation bur-
den and mismatch repair (83), and minimal infiltrating T cells in glioblastoma compared to other
malignancies (14, 84). Furthermore, there are many redundant mechanisms of tumor-mediated
immune suppression in glioblastoma (85, 86).

Immune cells in the glioblastoma microenvironment mainly consist of macrophages and mi-
croglia, which account for up to 30-50% of the total cellular composition (87). Myeloid cells
predominate over lymphoid lineage cells in glioblastoma, in contrast to other solid tumors (88).
Glioblastoma is known as a “cold tumor” because of its immunosuppressive TME. Possible reasons
are paucity of effector T cells (89); presence of tumor-associated macrophages (TAMs); expansion
of regulatory T cells; impaired antigen presentation due to impaired upregulation of major histo-
compatibility (MHC) class II (90); increased expression of checkpoint receptors, such as PD-1 or
PD-L1, on T cells and TAMs (81); and expression of multiple immune suppressive mechanisms,
such as the signal transducer and activator of transcription 3 (STAT3) (91) and indoleamine 2,3-
dioxygenase (92). The T cells in glioblastoma patients are sequestered in the bone marrow (93)
and are typically refractory to the restoration of effector responses regardless of the immune ther-
apeutic strategy used (94, 95), indicating that alternative strategies will be needed for the unique
immunobiology of glioblastoma.

To overcome the challenge of an immunologically cold tumor, various oncolytic viral therapies
have been devised and tested (96). Oncolytic viruses are tumor selective because the tumor cells
express viral entry receptors and rapid cell division in tumor cells makes it easier for the virus
to replicate. Many tumor cells have deficiencies in pathways that eliminate virus, such as type I
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interferon signaling through the Janus kinase (JAK)-STAT axis or cGAS-STING (cyclic GMP-
AMP synthase—stimulator of interferon genes) pathway for DNA viruses (97). These viruses can
induce the release of tumor-associated antigens and trigger immune activation that may ultimately
confer responses to immune checkpoint inhibitors (97). Talimogene laherparepvec has received
FDA approval for advanced melanoma (98). In various solid tumors (99, 100) including glioblas-
toma (NCT02798406), strategies include adenovirus (99), poliovirus (101), reovirus (102), and
retrovirus (103), alone or in combination with immune checkpoint inhibitors. Although there
have been some long-term responders, a number of challenges remain to be overcome, including
clearance of virus due to host immunity, insufficient access to tumor, and infectivity throughout the
TME (104). An alternative strategy is the development of STING agonists. The cGAS-STING
pathway is a component of innate immunity that detects the presence of cytosolic DNA and, in re-
sponse, triggers production of proinflammatory cytokines and type I interferon by myeloid cells
that, in turn, trigger T cell recruitment and activation (105, 106). Although several promising
STING agonists have been developed to activate macrophages in the TME, none of them have
demonstrated therapeutic efficacy in early clinical trials in immune checkpoint—refractory solid
tumors (107). This strategy has not been tested yet in human glioblastoma, which is markedly
enriched for the ¢cGAS-STING target myeloid immune cell population but has demonstrated
marked radiographic regression of canine glioblastoma (108).

Bispecific antibodies are designed to bind to a tumor-associated antigen with one arm in order
to guide and accumulate them in the TME and then to activate T cells locally via a T cell recep-
tor agonist arm in order to engage their cytotoxic effector function against the tumor. Bispecific
fully human antibodies targeting EGFRvIII and T cells have been tested in preclinical models of
glioblastoma and demonstrated the ability to evoke an immune response strong enough to cure
established and invasive patient-derived xenografts engrafted into the brains of mice (109). Bispe-
cific antibodies against another glioma target, interleukin (IL)-13Ra2, have been shown to activate
peripheral blood and tumor-infiltrated lymphocytes harvested directly from patients’ tumors and
kill glioma cells. A single injection of neural stem cells engineered to secrete this therapeutic pro-
tein directly to the tumor bed significantly improved the survival of mice bearing patient-derived
glioma xenografts (110). Eventually, targeting both EGFRVIII and IL-13Ra2-expressing tumors
should provide broader antigenic tumor coverage. The bispecific antibodies engaging T cells are
translatable, off-the-shelf therapeutics and less costly than adoptive cellular therapies. Combined
with other therapeutic modalities for maximal therapeutic efficacy, these molecules are poised to
improve outcomes in patients affected by glioblastoma.

ADOPTIVE IMMUNOTHERAPY CELLULAR STRATEGIES
TO OVERCOME T CELL DEFICIENCY

Lack of antigen-presenting dendritic cells (DCs) in the TME contributes to the cold tumor state,
and, therefore DC immunotherapy typically utilizes DCs collected from the patient periphery or
generated ex vivo from patient tissue. The DCs are then loaded with the target protein or deriva-
tive peptides or, alternatively, transduced or transfected with DNA or RNA coding for the target.
Cytomegalovirus phosphoprotein 65 (CMV pp65) is widely expressed in glioblastoma and, when
pulsed onto DCs, can generate potent tumor-targeted cytotoxic CD8* T lymphocyte (CTL) re-
sponses (111, 112). This strategy has been tested in multiple clinical trials and has been shown
to be safe, with a signal of response in subjects (113, 114). In contrast, when adoptive CMV-
specific T cells are administered to glioblastoma, there is insufficient maintenance of immune
effector activity and insufficient distribution throughout the TME (115). This has now given
rise to efforts to use concurrent BBB opening ultrasound in combination with either immune
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checkpoint inhibitors or adoptive immunotherapy in the setting of glioblastoma since preclini-
cal models indicate this approach enhances therapeutic activity (116). Although pp65 expression
is common in the TME, it is heterogeneous. To provide additional antigenic coverage, multi-
epitope vaccine-based approaches have been tested in glioblastoma [e.g., in the GAPVAC trial
(NCT02149225)], but it should be noted that many tumor antigens are not particularly immuno-
genic and fail to elicit sufficient T cell clonotypic expansion (117, 118). An alternative strategy
would be targeting a shared clonal neo-epitope such as IDH1-R132H to overcome tumor hetero-
geneity (NCT02454634). In a phase Ib trial of neoantigen vaccination for glioblastoma, patients
who generated neoepitope-specific systemic immune responses were found to have an increased
level of infiltrating T cells, although these expressed multiple coinhibitory receptors (119). Syn-
ergistic effects have been observed in preclinical models where multivalent neoantigen vaccines
combined with checkpoint blockade were found to generate superior efficacy, even in models with
reduced anti-PD-L1 sensitivity (120). Vaccination, when combined with checkpoint blockade, has
been shown preclinically to expand the memory T cell compartment, which may help to induce
more durable antitumor responses (121).

As an alternative to DC vaccines, a subset of activated B cells has been identified as having
potent anti-glioblastoma activity, and these B cells are a new potential source for cellular-based
therapy (122). This B-cell-based vaccine induces both cellular immunity (antigen presentation and
activation of T cells) and humoral immunity (production of tumor-reactive antibodies). Similar to
many DC-based vaccines, B cell vaccines are pulsed with tumor lysates to actas T cell activators. In
preclinical models, B cell vaccines have demonstrated high in vivo persistence, capacity to migrate
to secondary lymphoid organs and tumors, and resistance to glioblastoma immunosuppressive
pressure, known to inhibit function of tumor-infiltrating B cells (123). Effective therapeutic re-
sults were obtained in glioma-bearing mice treated with B cell vaccines pulsed with tumor lysates,
radiation/TMZ, and PD-L1 blockade; these results lay the groundwork for eventual combinato-
rial clinical trials. The B cell vaccine is currently under development for clinical application.

Although there has been enthusiasm for chimeric antigen receptor (CAR) T cells in glioblas-
toma, clinical trials to date have shown modest effects. In the case of EGFRvIII-specific CAR
T cells, tumor recurrence was associated with antigen escape (124)—similar to observations of
peptide vaccine strategies 10 years earlier. The intended selective targeting of cells or sponta-
neous elimination of target cells at recurrence produces an outgrowth of antigen-negative cells
resulting in relapse (48, 124, 125). A novel approach that may help to address heterogeneity is to
use therapeutic T cells with synthetic Notch (synNotch)—controlled expression (126) or tandem
CAR approaches with receptors that recognize multiple tumor antigens (127). Another approach
is the development of chlorotoxin (scorpion venom protein with a high affinity for glioblastoma
tumor cells) targeted CAR T cells that can engage the majority of tumor cells and mediate potent
activity even in tumors lacking expression of other glioblastoma-associated antigens, resulting in
tumor regression in orthotopic xenograft glioblastoma tumor models with no reported off-target
effect (128). Despite these advances, CAR immunotherapy still faces significant challenges, in-
cluding time to generate the product, cost, and dependence on fitness of patient T cells (which is
often compromised by the disease or previous treatment).

Given the lack of glioblastoma-specific antigens, alternative adoptive immunotherapy strate-
gies such as natural killer cell immunotherapy may overcome some barriers, since they do not
require broadly expressed, tumor-specific antigens for targeting. In order to overcome their de-
activation by transforming growth factor (T'GF)-B, allogeneic natural killer cells were combined
with either genetic or pharmacological blockade of the TGF-p pathway enabling them to elicit
marked therapeutic responses in glioblastoma stem cell orthotopic preclinical models (129). Clin-
ical trials of this strategy are now under way (NCT04489420).
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DISCUSSION

Glioblastoma continues to have one of the poorest outcomes in oncology. Unique challenges, in-
cluding immunosuppression and heterogeneity, remain considerable barriers to progress. Gliomas
are especially prone to subclonal mutations, which can induce resistance to immune checkpoint
blockade. Treatment-induced intratumoral heterogeneity and extensive steroid utilization in the
glioma patient population indicate that more trials in the newly diagnosed setting are warranted.
Targeted and immunotherapeutic strategies will continue to be challenged by the fundamental is-
sues of target heterogeneity, immune suppression, immune editing, and TME distribution. Prior
to proceeding to larger later-stage clinical trials, window-of-opportunity analysis can be infor-
mative, not only for drug concentrations and target engagement but also for interrogation of
mechanisms of treatment resistance. After a multitude of recent phase III clinical trial failures,
it is increasingly apparent that monotherapy approaches with a single targeted therapy or im-
munotherapy are unlikely to suffice. Novel strategies and combinations with additive or synergistic
mechanisms, including conventional chemotherapy and radiotherapy as well as immunotherapies,
will be required.

KEY TAKE-HOME POINTS

m Because of fundamental differences in the biology of glioblastoma relative to other ma-
lignancies, we cannot necessarily apply or extrapolate from therapeutic approaches or
biomarkers used in other malignancies

m Immune therapeutics need to consider modulation of other antitumor immune effector
populations besides T cells for glioblastoma or devise strategies that enrich the T cells in
the TME.
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