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Texture Analysis in Brain Tumor MR Imaging

Akira Kunimatsu1,2*, Koichiro Yasaka1,2, Hiroyuki Akai1,2, Haruto Sugawara1,2,
Natsuko Kunimatsu3, and Osamu Abe4

Texture analysis, as well as its broader category radiomics, describes a variety of techniques for image
analysis that quantify the variation in surface intensity or patterns, including some that are impercep-
tible to the human visual system. Cerebral gliomas have been most rigorously studied in brain tumors
using MR-based texture analysis (MRTA) to determine the correlation of various clinical measures
with MRTA features. Promising results in cerebral gliomas have been shown in the previous MRTA
studies in terms of the correlation with the World Health Organization grades, risk stratification in
gliomas, and the differentiation of gliomas from other brain tumors. Multiple MRTA studies in
gliomas have repeatedly shown high performance of entropy, a measure of the randomness in image
intensity values, of either histogram- or gray-level co-occurrence matrix parameters. Similarly,
researchers have applied MRTA to other brain tumors, including meningiomas and pediatric posterior
fossa tumors.

However, the value of MRTA in the clinical use remains undetermined, probably because previous
studies have shown only limited reproducibility of the result in the real world. The low-to-modest
generalizability may be attributed to variations in MRTA methods, sampling bias that originates from
single-institution studies, and overfitting problems to a limited number of samples.

To enhance the reliability and reproducibility of MRTA studies, researchers have realized the impor-
tance of standardizing methods in the field of radiomics. Another advancement is the recent development
of a comprehensive assessment system to ensure the quality of a radiomics study. These two-way
approaches will secure the validity of upcoming MRTA studies. The clinical use of texture analysis in
brain MRI will be accelerated by these continuous efforts.
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Introduction
The occurrence of brain tumor is relatively rare, but it can
affect individuals of all ages, from newborn babies to aged

people. According to a recent report from the Central Brain
Tumor Registry of the United States, the annual U.S. inci-
dence of all primary brain and other central nervous system
(CNS) tumors is 23.41 per 100000 population.1

Approximately two-thirds of all cases are nonmalignant,
whereas the remainder is malignant.

The World Health Organization (WHO) has adopted his-
tological grades for CNS tumor classification since 2000:
from grade I tumors with low proliferative potential and a
clinically benign course to grade IV tumors with malignant
behaviors and a usually fatal outcome.2 After complete sur-
gical resection, recovery from grade I tumors with no or
minimal remaining symptoms can be expected; however,
chemoradiotherapy after maximal tumor resection is a choice
for the initial treatment of many grade IV tumors. Since
treatment strategies considerably vary between tumor
grades, estimating the histological grades using noninvasive
radiological imaging before surgery is clinically relevant.
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The two main components of CNS tissues are neurons and
glial cells. Briefly, neurons undertake electrophysiological
neural activities, and glial cells build supporting structures
for neurons and neural fibers. Within mature CNS tissues,
glial cells include astrocytes, oligodendrocytes, and micro-
glial cells. Glioma is a type of brain tumor that is character-
ized by morphologic and genetic features of glial cells.
Glioblastoma is the most aggressive tumor among gliomas
and is categorized as grade IV, with a 5-year survival rate of
6.8%.1 Importantly, glioblastoma is the most common malig-
nant primary brain tumor, accounting for approximately 15%
of all primary brain tumors.1,2 Although approximately 90%
of glioblastomas develop rapidly de novo (i. e., they develop
from no preceding lesion), recent evidence in the field of
genetics has suggested that, as multiple genetic alterations
cumulate, some glioblastomas develop from diffuse astrocy-
tomas (grade II) and anaplastic astrocytomas (grade III).3,4

The mutations of isocitrate dehydrogenase 1 (IDH 1) and less
frequently IDH 2 genes, which encode an enzyme that cata-
lyzes oxidative decarboxylation, are key molecular signa-
tures for glioblastomas that develop from lower-grade
astrocytic tumors. Consequently, the current edition of the
WHO classification published in 2016 divides glioblastomas
into two subtypes: glioblastoma, IDH–wildtype and glioblas-
toma, IDH–mutant.2 Of note, IDH mutation is associated
with better outcomes in patients with glioblastomas, with a
longer median survival time compared with those with IDH-
wild type glioblastomas (27.4 vs. 14 months, respectively).5

Another important genetic signature for gliomas is the
combined deletion of the short arm of chromosome 1 (1p) and
the long arm of chromosome 19 (19q) (1p/19q co-deletion).
In previous research, patients with co-deleted astrocytic tumors
lived longer than those with un-co-deleted tumors, irrespective
of chemoradiotherapy or radiotherapy alone.6 Depending
on the histological evidence of anaplasia, gliomas with
1p/19q co-deletion and IDH mutation are diagnosed with
oligodendroglioma (grade II) or anaplastic oligodendro-
glioma (grade III).2

The current standard treatment is maximal tumor resec-
tion followed by radiation therapy and chemotherapy for the
initial treatment of glioblastomas. Temozolomide, a deoxyr-
ibonucleic acid (DNA)–alkylating agent, is typically chosen
for chemotherapy in patients with glioblastomas.7 Humans
have a repair mechanism for DNA damage caused by alkyla-
tion, in which a protein named O6-methylguanine-DNA
methyltransferase (MGMT) removes alkyl groups from
the damaged DNAs. Thus, if glioblastomas have a large
amount of the MGMT nearby proteins, the damage of the
tumor gene due to alkylating agents can be repaired.
However, this repair protein synthesis is blocked by epige-
netic silencing by the methylation of the MGMT gene pro-
moters. Based on these in vitro findings, a clinical study has
shown that the methylation of the MGMT promoter is an
independent favorable prognostic factor for patients with
glioblastomas. Patients with glioblastomas that contain

methylated MGMT promoters demonstrate a longer survival
time than those with glioblastomas containing unmethylated
MGMT promoters.8

Rationale of Texture Analysis in Brain
Tumor MRI

In clinical settings, before making a working diagnosis of
a specific disease, radiologists summarize the findings of a
brain lesion using several imaging modalities. Unfortunately,
however, CT and MRI findings that are recognized and
interpreted by a radiologist do not correspond in certain
cases to a specific disease on a one-on-one basis. Some
brain lesions may resemble each other on MRI, even when
they are in totally different disease entities, such as neoplasm
and demyelination.

Qualitative imaging characteristics have been, respec-
tively, reported, which may be associated with IDH
mutation status, MGMT promoter methylation, and 1p/19q
co-deletion status in gliomas;9–12 however, determining the
presence or absence of these characteristics in a particular
image depends on a subjective judgment based on a radi-
ologist’s experience.

To overcome the uncertainty and limited detectability
of human perception, texture analysis (and its broader
category, radiomics) has been introduced into the field
of neuro-oncology, especially using MRI (Fig. 1). Texture
analysis describes a variety of image analysis techniques
that quantify the variation in surface intensity or patterns,
including some that are imperceptible to the human visual
system.13 MR-based texture analysis (MRTA) most often
uses hundreds of features of statistical characteristics. In
MRTA, intensity values of images are typically discre-
tized into intensity bins in its process. Discretization
reduces the burden of computing features and random
errors in intensity values by rounding them off to the
nearest bin.

First-order features consider the distribution of discre-
tized intensity values without concern for spatial relation-
ships of voxels.14 In this case, histograms are commonly
used to display voxel counts in respective intensity bins,
and thus, first-order texture analysis is also termed as histo-
gram analysis. In contrast, second-order statistics provide a
feature of the spatial arrangement of the voxel intensities.
Higher-order features are obtained by statistical methods
after mathematical transforms to the images.14 Gray-level
co-occurrence matrix (GLCM) features are categorized in
second-order statistics, while higher-order features include
gray-level run-length matrix (GLRLM), gray-level size zone
matrix (GLSZM), gray-level difference zone matrix, neigh-
borhood gray-tone difference matrix (NGTDM), and neigh-
boring gray-level dependence matrix features. Descriptions
of features are summarized in Table 1 (for more details,
please refer to standard radiomics features listed in
Supplementary file 1).

A. Kunimatsu et al.

2 Magnetic Resonance in Medical Sciences



Briefly, first-order statistics relate to the likelihood of
individual voxels having specific intensity values, whereas
second-order statistics relate to the joint likelihood of two
random voxels in the image having specific pairs of intensity
values.15 Higher-order statistics examine the spatial relation-
ship between three or more voxels.16 Importantly, first-order
features do not account for the location of the voxels and lack
any reference to the spatial interrelationship between
intensities.17 If two different tumors have a similar distribu-
tion of intensities but with different spatial interrelationships,
first-order features may not be able to differentiate these two

tumors; in such a situation, second- or higher-order features
may thus be preferable.

Other methods of texture analysis are model-based
approaches (e.g., fractal analysis) that analyze a form of pat-
tern and transform-based approaches (e.g., Fourier, Gabor, and
wavelet) that use a frequency and a scale domain of images.16

Generic image filters are sometimes used before feature
calculation, of which a Laplacian of Gaussian (LoG) filter is
most common. The purpose of filtering is to enhance and
preserve subtle image features that may be unintentionally
lost while analyzing the original images.18 For example,

Fig. 1 Schematic drawing for radiomics bridgingmedical images to the genotype and phenotype of a disease. Radiomics is amethod formedical
image analysis that quantifies the variation in the shape and texture of a lesion on medical images. Texture analysis forms the core techniques of
radiomics and uses intensity distributions and intensity patterns of the lesion. Radiomics features (i.e., shape and texture) are used to correlate
images with clinical measures of disease, including diagnosis, survival time, and histological grades of malignancy. Radiomics features can be
linked to genetic and epigenetic alterations of the disease, and this special field of radiomics is often called radiogenomics. Between genotype
and phenotype, the information represented by images is called imaging phenotype or image phenotype. PET, positron emission tomography.

Table 1 Feature families used in radiomics

Feature family Descriptions of feature family

Radiomics
features

Nontexture Morphology Volume, shape, elongation, compactness, sphericity, etc.

Texture

Local intensity Local intensities within the segmented volume

Intensity-based statistical Mean, standard deviation, minimum, maximum,
kurtosis, skewness, etc.

Intensity histogram Bin the intensities of the segmented volume

Intensity volume histogram Bin the volume as it relates to intensities

GLCM Occurrence of neighboring pixels

GLSZM Volume sizes for given intensities

GLRLM Length of consecutive pixels for given intensities

GLDZM Distance between volumes of varying intensities

NGTDM Distance between adjacent gray-tone regions

NGLDM Distance between adjacent gray-level regions

* Adapted from Refs. 19 and 67. GLCM, gray-level co-occurrence matrix; GLDZM, gray-level distance zone matrix; GLRLM, gray-level run-length
matrix; GLSZM, gray-level size zone matrix; NGLDM, neighboring gray-level dependence matrix; NGTDM, neighboring gray-tone difference
matrix.
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typical LoG filters derive brain textures of different scales
or sizes corresponding to filter scale values: fine
(emphasizing textures that are approximately two voxels in
width), medium (four voxels), and coarse (six voxels),
respectively.19 As a result, LoG filtration highlights the
gray-level change in fine, medium, and coarse textures
depending on the setting. Filtration can be used together
with any of the first-, second-, and higher-order features
mentioned above.

Studies in the literature have shown that the results of
MRTA are promising thus far in brain tumors; however,
despite the continued studies, consensus on the clinical role
of MRTA remains to be determined.18 In this study, we
reviewed the current applications, limitations, and future
perspectives of texture analysis in brain tumor MRI.

Technical Considerations
Multiparametric or single-parametric MRI
To elucidate tumor characteristics, MRI for brain tumors typi-
cally includes five or more imaging sequences. T1-weighted
imaging (T1WI), T2-weighted imaging (T2WI), and fluid-
attenuating inversion recovery (FLAIR) imaging can represent
anatomical and structural information. Additionally, diffusion-
weighted imaging (DWI) and contrast-enhanced T1WI
(CE-T1WI) are typically included in brain tumor MRI proto-
cols in many hospitals. The most commonly used index to
estimate tumor cellularity is the apparent diffusion coefficient
(ADC) derived from DWI.20 CE-T1WI highlights the
breakdown of the blood–brain barrier by a tumor; additionally,
smaller lesions apart from the main tumor often become

evident on CE-T1WI. More advancedMRI techniques include
perfusion-weighted imaging (PWI), dynamic contrast-
enhanced (DCE)-MRI, and multishell DWI with a complex
acquisition scheme, partly for research purposes. Previous
MRTA studies for brain tumors have used either multipara-
metric or single-parametric MRI. Image registration between
images with different image acquisition sequences is typically
required in multiparametric MRI. In single-parametric
MRTA studies on cerebral gliomas, CE-T1WI, followed by
T2WI and ADC maps, was most often used to obtain texture
features.18

Preprocessing
Noise suppression, skull stripping, nonuniformity correction,
and intensity normalization are typically conducted in post-
acquisition preprocessing (Fig. 2). A recent guideline pub-
lished by the Image Biomarker Standardization Initiative
recommends that researchers report whether and how they
perform preprocessing.21

Noise suppression and nonuniformity correction are used
to mitigate imperceptible bias in MR images that may be
specific to the patient or machine. If the image intensity is to
be normalized across the head, skull stripping may be
required, because fat tissue is a source of a large number of
voxels with high signal intensity, which causes bias in the
distribution of intensities. Intensity normalization is prefer-
able in images representing relative intensity values that are
used in T1WI, T2WI, and CE-T1WI because these sequences
have various ranges of intensities for the same image.
However, in images with an absolute or quantitative intensity
scale, including ADC maps, intensity normalization should

Fig. 2 Standard flowchart for MRI-based texture analysis. A 35-year-old woman with glioblastoma in the genu of the corpus callosum to
bilateral frontal lobes. Legion masks are segmented as described in the current nomenclature by the Multimodal Brain Tumor Segmentation
Challenge (https://www.med.upenn.edu/cbica/brats2020/): gadolinium-enhancing tumor (yellow), the peritumoral edema (green), and the
necrotic and nonenhancing tumor core (red). The texture analysis comprises several steps, typically in the following order: preprocessing of
images, segmentation of the target regions (either diseased lesions or normal-appearing structures), extraction of image features from the
regions, selection of important discriminating features, and the subsequent analysis of significant correlations between the selected features
and a target outcome, typically using machine learning models. * indicates an optional step. LASSO, least absolute shrinkage and selection
operator; PCA, principal component analysis.
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not be attempted. Intensity normalization is typically
achieved by remapping the brightness to an 8-bit (0–255)
scale between the minimum and maximum or within the
mean ± 3 standard deviations values of an image.18

Segmentation
Segmenting a tumor is an important but painstaking task.
During this process, researchers should decide how to place a
ROI on a tumor. There are several choices for ROI place-
ment: (1) ROI on a single or a few representative image slices
of a tumor or a volume of interest (VOI; i.e., stacked ROIs)
on a whole tumor and (2) fully automated, semiautomated,
and manually drawn ROI placement. Presently, no consensus
has been reached regarding these technical details, and each
has merits and demerits. For example, supposing that the
tumor image characteristics are fully represented in the core
region of a tumor, nondominant features at the periphery of
the tumor may be overstated by a whole-tumor VOI, whereas
substantial features might be missed by a single ROI on the
image showing the maximal tumor. Regarding tumor-con-
touring methods, automated segmentation often reports simi-
larity statistics with manual segmentation by experts, and
manual segmentation usually requires an interobserver com-
parison to demonstrate the validity of ROI placement.

Feature extraction
Feature extraction also raises brainstorming concerns. Both
2D and 3D feature calculation methods are available in the
state-of-the-art software programs for radiomics. The 3D
feature calculation is typically accompanied by isotropic
interpolation of the original images and the segmented

mask images for the lesions (i.e., ROI masks), whereas the
2D texture calculation is also available for a tumor volume,
and the calculation is conducted for every single image slice
and then averaged for the whole tumor. In this setting, there
are four options for averaging: no merging, merging by slice,
merging by direction, and full merging (Fig. 3).

Another important concern is discretization in image inten-
sities. Because many texture features are calculated based on
histogram-style discretization, fixed bin size and fixed bin num-
ber (typically 32 or 64) are available options for discretization.22

By applying generic image filters to the original images
before feature extraction, the number of texture features can
be easily doubled or tripled. Several current software pro-
grams offer a dozen kinds of these generic filters, and hun-
dreds of features can be calculated depending on the
parameter settings. However, a geometric increase in texture
features results in feature redundancy.23,24

Feature selection
It is well known that texture features demonstrate considerable
collinearities and redundancies (Fig. 4). Feature selection is the
process whereby important discriminating features are chosen
to describe a response (e.g., diagnosis or prognosis). The main
reasons for using feature selection are to make the model easier
to interpret, to remove features with multicollinearities, to
reduce computation costs, and to reduce overfitting. To select
a feature subset, machine learning techniques are commonly
used, where important discriminating features are selected
based on the model’s performance for different subsets of
features. These supervised methods include Pearson’s correla-
tion-based feature ranking, a least absolute shrinkage and

Fig. 3 Variety in 2D texture feature computation. In gray-level co-occurrence and run-length matrices, connections between
neighboring voxels on an image slice have four different directions (green double arrows). Depending on the presence or absence
of merging by slice or direction, texture feature computation has four options, resulting in different values of the same feature. The
subscript characters indicate slice numbers (1–3) and directions (a–d). F, feature; M, matrix.
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selection operator technique, support vector machines (SVMs)
with recursive feature elimination, and artificial neural net-
works. Unsupervised methods are also available, and principal
component analysis is an example.24

Analysis with discriminating features
After feature selection in typical MRTA studies, supervised or
unsupervised machine learning is conducted to detect any
significant correlations between discriminating features and
a target clinical outcome. In this process, regression or classi-
fication models, incorporating texture features, are typically
developed with one or more machine learning algorithms
(however, discussion on machine learning is beyond the aim
of this review, and please refer to nice reviews on machine
learning in the field of radiology).25,26 In some earlier MRTA
studies, especially those using a relatively limited number of
texture features, pairwise comparisons were used; however,
this strategy is now deprecated because of the continuous rise
in computing capability and the exploding number of texture
features used in recent studies.

Application of Texture Analysis to Brain
Tumor MRI
Glioma grading
Survival rates for gliomas with WHO grades I–IV show a
decreasing trend with increasing grades.27 Other than these

four grades, gliomas are commonly classified into two
broader categories: low grade and high grade. A standard
scheme categorizes gliomas with WHO grades I and II as
low-grade gliomas (LGGs) and those with WHO grades III
and IV as high-grade gliomas (HGGs).2

Differentiation of LGGs and HGGs is mandatory for risk
stratification and to tailor the best management strategies for
patients.28 In a study by Ryu et al., enrolling 40 patients with
gliomas (eight grade II, 10 grade III, and 22 grade IV
tumors), they found that GLCM entropy and fifth percentile
values of the ADC histogram differed significantly between
HGGs and LGGs (hereafter, see Supplemental file 2 for
feature definitions); however, only entropy was proven to
show significant differences between grade III and IV
tumors.29 The ADC entropy showed a sensitivity of 78.1%,
a specificity of 87.5%, an accuracy of 80.0%, and an area
under the curve (AUC) value of 0.830 in a receiver-operating
characteristic analysis in differentiating HGGs from LGGs.
Skogen et al. examined 95 patients with gliomas (27 grade II,
34 grade III, and 34 grade IV tumors) with an LoG filtration-
based histogram analysis on CE-T1WI.30 According to their
results, HGGs were best discriminated from LGGs using the
standard deviation values at a fine texture scale (sensitivity
and specificity of 93% and 81%, respectively, and an AUC
value of 0.910); however, they also reported that the
diagnostic ability to differentiate grades II–IV was lower
than that in differentiating HGGs and LGGs. Similar results

Fig. 4 Heatmap presentation of the variance–covariance matrix of texture features. A heatmap of the variance–covariance matrix can be 
used to find collinearities among features. Data from our previous study50 were reused. Unsupervised clustering was performed with 
Ward’s method using a free software for statistical computing (R: A language and environment for statistical computing; R Foundation for 
Statistical Computing, Vienna, Austria. https://www.r-project.org/.) and its heatmap3 package (https://github.com/cran/heatmap3). Features 
within the same branch of the dendrograms have substantial collinearities showing highly similar patterns of the covariance across the 
features. This heatmap indicates that three to five features are enough and optimal to describe a response.
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were replicated by Ditmar et al., who examined 94 patients
with gliomas (14 LGGs and 80 HGGs).31

Xie et al. used texture analysis for kinetic DCE-MRI
parameters in 42 patients with gliomas (15 grade II, 13
grade III, and 14 grade IV tumors).32 They showed that the
entropy and inverse difference moment (IDM) of the DCE-
MRI parameters were able to differentiate glioma grade II
from grade III and grade III from grade IV. By contrast, in a
study involving 42 patients with gliomas (10 LGGs and 30
HGGs), Su et al. applied texture analysis to DCE-MRI and
found that uniformity of permeability images had the highest
AUC value of 0.917 with 93% sensitivity and 90%
specificity.33

Regarding glioma grading using multiparametric MRTA,
Vamvakas et al. reported that the higher-ranked discriminat-
ing parameters were skewness and variance of CE-T1WI,
mean of diffusion anisotropy, and IDM of mean diffusivity
images.34 An SVM classifier achieved an accuracy of 95.5%,
sensitivity of 95%, specificity of 96%, and an AUC value of
0.955 at cross-validation. In their recent study, Alis et al.
enrolled 181 patients with gliomas (84 LGGs and 97 HGGs)
and evaluated the classification ability of an artificial neural
network model with 10 hidden layers.28 Models using texture
features obtained from FLAIR and CE-T1WI images
achieved AUC values of 0.87 and 0.86, respectively. The
combined artificial neural network model with eight selected
texture features achieved the highest diagnostic accuracy of
88.3%, with an AUC value of 0.92. The results of these
previous studies are summarized in Table 2.

Risk stratification in gliomas
Molecular status
Another important topic in oncology is tumor risk stratifica-
tion. As mentioned above, IDH mutation, 1p/19q co-deletion,
and MGMT promoter methylation are significant prognostic
factors for gliomas.5,6,8

Regarding IDH mutation, Zhou et al., in their study invol-
ving 165 patients with grade II or III gliomas, found that a
logistic regression model incorporating skewness, run-length
variance, and short-run low gray-level emphasis of GLRLM
on T2WI reached an AUC value of 0.86, sensitivity of 0.75,
and specificity of 0.78 for the presence of IDH1 mutation (a
major subtype of IDH mutation).35 For 1p/19q co-deletion
status, the set of features comprised GLRLM low gray-level
run emphasis on CE-T1WI, short-zone low gray-level
emphasis of GLSZM on T2WI, and GLRLM long-run high
gray-level emphasis on T2WI images reached an AUC value
of 0.96, sensitivity of 0.90, and specificity of 0.89. Each of
the aforementioned models outperformed an established
human visual scoring system in terms of diagnostic ability.
Another study conducted by Bahrami et al. involving 61
patients with grade II or III gliomas showed that compared
with patients with IDH–mutant tumors, patients with IDH–
wild-type tumors showed greater GLCM-based heterogene-
ity and lower gradient magnitude at the lesion edges within

the tumor on FLAIR images.36 Among patients with IDH–
mutant tumors, 1p/19q co-deleted tumors had greater signal
heterogeneity and lower edge contrast than 1p/19q intact
tumors. Tumors with methylated MGMT promoters showed
lower edge contrasts than those with unmethylated MGMT
promoters (Table 3).

MRTAwith ADC and CE-T1WI images may be useful for
risk stratification in grade IV glioblastomas. Kanazawa et al.
conducted ADC histogram analyses on 48 patients with
newly diagnosed glioblastomas and found that the combina-
tion of mean ADC value and ADC entropy predicted MGMT
promoter methylation, with a positive predictive value of
81.2% and a specificity of 88.9%.37 In another study con-
ducted by Lewis et al., CE-T1WI had the best performance
for IDH typing of glioblastoma (sensitivity of 91.9%, speci-
ficity of 100%, and AUC of 0.945) (Table 3).38

Prognosis
In the clinical course of patients with LGGs, malignant
transformation to HGGs can be a fatal problem. A recent
study by Zhang et al. demonstrated that the most discrimi-
nating features based on linear discriminant analysis resulted
in AUC values of 0.90 (85% sensitivity and 84% specificity)
for FLAIR, 0.92 (86% sensitivity and 94% specificity) for
ADC, 0.96 (97% sensitivity and 84% specificity) for T1WI,
and 0.82 (78% sensitivity and 75% specificity) for CE-T1WI
images.39 Their models correctly discriminated LGGs with
early signs of malignant transformation from those without
in 93%, 100%, 93%, and 92%, respectively. Longer survival
times often indicate favorable outcomes of treated brain
tumors. Chaddad et al. studied the association between the
overall survival and texture features of FLAIR and CE-T1WI
images obtained from 39 patients with glioblastomas.40 The
results of their study showed that four features (energy,
correlation, variance, and inverse of variance) obtained
from contrast-enhancing regions and homogeneity from
edema regions on FLAIR images were shown to be asso-
ciated with survival times. Similarly, on CE-T1WI images,
three features (energy, correlation, and variance) from con-
trast-enhancing regions were found to be useful for the pre-
diction of patient overall survival. In another study,
Kickingereder et al. demonstrated that supervised principal
component analysis with standard deviations (between
wavelet-transformed FLAIR and CE-T1WI) of six GLCM
features and standard deviations or mean values of five
GLRLM features allowed for the stratification into a low-
or high-risk group for progression-free survival and overall
survival.41 Prasanna et al. reported that MRTA features in the
peritumoral brain zone were most predictive of survival time
across T1WI, T2WI, FLAIR, and multiparametric combina-
tion of these methods.42 Interestingly, in their prediction
models, the authors found that Laws features, which identify
textural patterns corresponding to spots, level, waves,
ripples, or edges in an image, were the most predictive
(Table 4).

Texture Analysis in Brain Tumor MRI

Epub ahead of print 7



Differentiation from other brain tumors and tumor
mimics
Metastatic brain tumor
Distant metastasis to the brain tissue typically occurs in
advanced cancers, especially in lung and breast cancers.
Because breast or lung cancer occurs more frequently than
primary brain tumors, the incidence of metastatic brain
tumors is comparable with the total incidence of all primary
brain tumors in the adult population.43 However, the thera-
peutic strategy for a metastatic brain tumor is considerably
different from that for a primary brain tumor, because

patients with metastatic brain tumors typically suffer from
local recurrent tumors and other metastatic lesions in parts of
the body other than the brain.

Regarding the differentiation of glioblastomas or HGGs
from brain metastases, breast and lung cancers are the pri-
mary sites of metastases in the previous studies. An early
study conducted by Mouthuy et al. showed a significant
difference between metastatic tumors and glioblastomas in
GLCM parameters (energy, entropy, homogeneity, correla-
tion, inverse differential moment, and sum average)
calculated on PWI.44 Using T2WI and CE-T1WI images,

Table 2 Glioma Grading

Author
(Year)

Number of
Subjects

MRI
Sequence

Texture
Software

Type of Texture
Features

Best
Discriminating

Feature

Prediction
Model Main Findings

Differentiation between HGGs and LGGs

Ryu et al.
(2014)29

40 (8 grade II, 10
grade III, and 22
grade IV gliomas)

ADC In-house First-order,
GLCM

GLCM entropy No
(pairwise,
ROC)

AUC= 0.830
Accuracy = 80.0%

Skogen
et al.
(2016)30

95 (27 grade II, 34
grade III, and 34
grade IV gliomas)

CE-T1WI TexRAD*1 First-order with
LoG filtration

SD at fine scale No
(pairwise,
ROC)

AUC = 0.910

Ditmar
et al.
(2018)31

94 (14 LGGs and
80 HGGs)

ADC,
FLAIR, CE-
T1WI

TexRAD*1 First-order with
LoG filtration

Mean at fine
scale (CE-T1WI)

No
(pairwise,
ROC)

AUC = 0.900

Su et al.
(2019)33

42 (10 LGGs and
30 HGGs)

DCE-MRI OmniKinetics*2 First-order Uniformity of
Ktrans

No
(pairwise,
ROC)

AUC = 0.917

Vamvakas
et al.
(2019)34

40 (20 LGGs and
20 HGGs)

T1WI,
T2WI,
FLAIR, CE-
T1WI, DTI,
PWI, MRS

MaZda*3 First-order,
GLCM, GLRLM

21 top-ranked
features

SVM AUC = 0.955
Accuracy = 95.5%

Alis et al.
(2020)28

181 (84 LGGs and
97 HGGs)

FLAIR, CE-
T1WI

MaZda*3 First-order, HoG,
gradient-map-
based features,
GLCM, GLRLM,
autoregressive
model, Haar
wavelet features,
Gabor transform
features, and
local binary
patterns

8 features (5
GLCM and 3
GLRLM features)

ANN (MLP
with 10
hidden
layers)

AUC = 0.92

Differentiating grade III from grade IV

Xie et al.
(2018)32

42 (15 grade II, 13
grade III, and 14
grade IV gliomas)

DCE-MRI OmniKinetics GLCM Entropy and IDM
(Vp images)

No
(pairwise,
ROC)

AUC = 0.885
(Entropy) AUC =
0.901 (IDM)

*1 https://fbkmed.com/texrad-landing-2/. *2 GE Healthcare, Waukesha, WI, USA. *3 http://www.eletel.p.lodz.pl/programy/mazda/. ADC, apparent
diffusion coefficient; ANN, artificial neural network; AUC, area under the curve; CE-T1WI, contrast-enhanced T1-weighted imaging; DCE-MRI,
dynamic contrast-enhanced MR imaging; DTI, diffusion tensor imaging; FLAIR, fluid-attenuating inversion recovery; GLCM, gray-level co-occurrence
matrix; GLRLM, gray-level run-length matrix; HGG, high-grade glioma; HoG, histogram of oriented gradients; IDM, inverse difference moment; LGG,
low-grade glioma; LoG, Laplacian of Gaussian; MLP, multi-layer perceptron; MRS, MR spectroscopy; PWI, perfusion-weighted imaging; ROC,
receiver-operating characteristic; SD, standard deviation; SVM, support vector machine; T1WI, T1-weighted imaging; T2WI, T2-weighted imaging;
Vp, blood plasma volume.
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Table 3 Risk Stratification (Molecular Status)

Author
(Year)

Number of
Subjects

MRI
Sequence

Texture
Software

Type of
Texture
Features

Best
Discriminating

Features

Prediction
Model

Main Findings

IDH mutation

Zhou et al.
(2017)35

165 (grades II and III
gliomas, TCIA/TCGA
dataset)

T1WI,
T2WI,
FLAIR,
CE-T1WI

In-house First-order,
GLCM,
GLRLM,
GLSZM,
NGTDM

Skewness, run-length
variance, and short-run
low gray-level emphasis
of GLRLM (T2WI)

Logistic
regression

AUC = 0.86

Bahrami
et al.
(2018)36

61 (grades II and III
gliomas)

T1WI,
FLAIR,
CE-T1WI

Not
described

GLCM,
edge
contrast
(gradient
magnitude
of lesion
edges)

Correlation, edge
contrast (FLAIR)

Logistic
regression

Greater heterogeneity
and lower edge contrast
in wildtype tumors

Lewis et al.
(2019)38

97 (54 grade II, 20 grade
III, 23 grade IV gliomas)

T2WI,
CE-T1WI,
ADC

TexRAD*1 First-order Kurtosis (CE-T1WI, at
all scales)

No
(pairwise,
ROC)

IDH mutation in
glioblastoma AUC = 0.945

1p/19q co-deletion

Zhou et al.
(2017)35

165 (grades II and III
gliomas, TCIA/TCGA
dataset)

T1WI,
T2WI,
FLAIR,
CE-T1WI

In-house First-order,
GLCM,
GLRLM,
GLSZM,
NGTDM

GLRLM low gray-level
run emphasis (CE-T1WI)
GLRLM long-run high
gray-level emphasis,
GLSZM short-zone low
gray-level emphasis
(T2WI)

Logistic
regression

AUC = 0.86

Bahrami
et al.
(2018)36

61 (grades II and III
gliomas)

T1WI,
FLAIR,
CE-T1WI

Not
described

GLCM,
edge
contrast
(gradient
magnitude
of lesion
edges)

Correlation, edge
contrast (FLAIR)

Logistic
regression

Greater heterogeneity
and lower edge contrast
in co-deleted tumors

Lewis et al.
(2019)38

97 (54 grade II, 20 grade
III, 23 grade IV gliomas)

T2WI,
CE-T1WI,
ADC

TexRAD*1 First-order Skewness (ADC, no
LoG filtration)

No
(pairwise,
ROC)

1p/19q co-deletion
in grades II and III
AUC = 0.811

MGMT methylation

Bahrami
et al.
(2018)36

61 (grades II and III
gliomas)

T1WI,
FLAIR,
CE-T1WI

Not
provided

GLCM,
edge
contrast
(gradient
magnitude
of lesion
edges)

Edge contrast (FLAIR) Logistic
regression

Lower edge contrast in
methylated tumors

Kanazawa
et al.
(2019)37

48 glioblastomas ADC Synapse
Vincent*2

First-order Mean, entropy No
(pairwise,
ROC)

The combination of mean
ADC value and ADC
entropy predicted MGMT
promoter methylation,
with a positive predictive
value of 81.2% and
specificity of 88.9%

*1 https://fbkmed.com/texrad-landing-2/. *2 Fujifilm, Tokyo, Japan. ADC, apparent diffusion coefficient; AUC, area under the curve; CE-T1WI, contrast-
enhanced T1-weighted imaging; FLAIR, fluid-attenuating inversion recovery; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length
matrix; GLSZM, gray-level size zone matrix; LoG, Laplacian of Gaussian; MGMT, O6-methylguanine-DNA methyltransferase; NGTDM, neighborhood
gray-tone differencematrix; ROC, receiver-operating characteristic; T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; TCIA, The Cancer Imaging
Archive; TCGA, The Cancer Genome Atlas.
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Petrujkić et al. demonstrated that IDM yielded the highest
sensitivity and specificity in the differentiation of brain
metastases from glioblastomas.45 Zhang et al. found that
homogeneity and IDM calculated on ADC images were
significantly higher in glioblastomas than in metastases,
with AUC values of up to 0.886, sensitivity of 83.3%, and
specificity of 76.9%.46 Using 12 texture features obtained on
T2WI, CE-T1WI, and ADC images, the prediction perfor-
mance with SVM was calculated at an AUC value of 0.92,
which may be comparable with the performance of
radiologists.47 Other than the metastatic tumors themselves,
peritumoral edema in glioblastoma may show higher hetero-
geneity than the edema surrounding metastatic tumors,
differentiating them with a sensitivity of 80% and specificity
of 90% (Table 5).48

CNS lymphoma
Lymphoma can arise throughout the body, and primary
CNS lymphoma is a subtype of lymphoma that is prone
to be confined to the CNS tissues. Primary CNS

lymphomas most commonly affect older adults and
elderly people, as do glioblastomas, and notably, imaging
findings often resemble each other; however, chemother-
apy is the first choice of treatment for primary CNS
lymphomas, whereas surgery and subsequent chemora-
diotherapy are typically chosen for glioblastoma treat-
ment. Thus, differentiation by imaging before surgery is
of high clinical relevance.

Researchers have reported an MRTA-based classification
between primary CNS lymphomas and glioblastomas using
CE-T1WI images. Alcaide-Leon et al. demonstrated that the
classification performance between primary CNS lympho-
mas and glioblastomas by SVM classifiers was comparable
with that by radiologists, incorporating first-order, GLCM,
GLRLM, GLSZM, and NGTDM features, with a mean AUC
value of 0.877 for the SVM classifier in cross-validation.49

In another study conducted by Kunimatsu et al., the first-
order median and entropy, and GLRLM run-length
nonuniformity and run percentage were shown to be the
most efficient in differentiating primary CNS lymphomas

Table 4 Risk Stratification (Prognosis)

Author
(Year)

Number of
Subjects

MRI
Sequence

Texture
Software

Type of
Texture
Features

Best
Discriminating

Features

Prediction
Model Main Findings

Risk of malignant transformation

Zhang et al.
(2019)39

68 LGGs T1WI,
FLAIR,
CE-T1WI,
ADC

MaZda*1 Not
provided
(279
features)

30 top-ranked
features

Linear
discriminant
analysis

Accuracy = 93%
(FLAIR), 100% (ADC),
93% (T1WI), 92%
(CE-T1WI)

Survival

Chaddad et al.
(2016)40

39 glioblastomas
(TCIA/TCGA
dataset)

FLAIR,
CE-T1WI

Matlab*2 GLCM Energy, correlation,
variance, inverse
variance,
homogeneity
(FLAIR) Energy,
correlation,
variance (CE-T1WI)

No (Kaplan-
Meier)

Longer survival time was
associated with:Higher
energy, higher
correlation, lower
variance, lower inverse
variance (FLAIR)Higher
energy, higher
correlation, lower
variance (CE-T1WI)

Kickingereder
et al. (2016)41

119 glioblastomas FLAIR,
CE-T1WI

Medical
Imaging
Toolkit*3

First-
order,
GLCM,
GLRLM

SD of 6 GLCM
features (FLAIR)
Mean or SD of 5
GLRLM features
(FLAIR)

Cox
regression

Significant association
with both PFS (HR, 2.28;
P = 0.032) and OS (HR,
3.45; P = 0.004)

Prasanna et al.
(2017)42

65 glioblastomas
(TCIA/TCGA
dataset)

T2WI,
FLAIR,
CE-T1WI

In-house GLCM,
laws
features,
HoG,
Laplacian
pyramids

10 most predictive
features

Random
forest

Intensity heterogeneity
and textural patterns
were found to be
predictive of survival
(P = 1.47 × 10-5)

*1 http://www.eletel.p.lodz.pl/programy/mazda/. *2 MathWorks, Natick, MA, USA. *3 https://www.mitk.org/wiki/The_Medical_Imaging_
Interaction_Toolkit_(MITK). ADC, apparent diffusion coefficient; CE-T1WI, contrast-enhanced T1-weighted imaging; FLAIR, fluid-attenuating
inversion recovery; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; HoG, histogram of gradient orientations; HR,
hazard ratio; LGG, low-grade glioma; OS, overall survival; PFS, progression-free survival; SD, standard deviation; T1WI, T1-weighted imaging;
T2WI, T2-weighted imaging; TCIA, The Cancer Imaging Archive; TCGA, The Cancer Genome Atlas.
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from glioblastomas using principal component analysis.50

They also demonstrated that the AUC values of SVM classi-
fiers were as high as 0.99 in cross-validation and that the
prediction accuracy of 75% was achieved by the classifiers
with individual test images (Table 5).51

Radiation necrosis
When tumor cell death induced by chemoradiation therapy or
radiation therapy alone surpasses tumor cell proliferation, the
tumor will stabilize in size or even become smaller. In such a
condition, the dead region of a brain tumor, as well as typically

Table 5 Diagnosis (Differentiation from non-Glioma)

Author
(Year)

Number of
Subjects

MRI
Sequence

Texture
Software

Type of Texture
Features

Best
Discriminating

Features

Prediction
Model

Main Findings

Differentiation from metastatic brain tumor

Mouthuy
et al.
(2012)44

41
glioblastomas
and 14
metastases

PWI MaZda*1 GLCM Energy, entropy,
homogeneity,
correlation,
inverse
differential
moment, sum
average

No
(pairwise,
ROC)

Glioblastomas showed
higher energy, higher
homogeneity, higher
inverse differential
moment, and lower
entropy. Highest AUC =
0.75 (correlation)

Petrujkić
et al.
(2019)45

30
glioblastomas
and 25 solitary
brain
metastases

T2WI,
CE-T1WI,
SWI

ImageJ*2 GLCM Angular second
moment, inverse
difference
moment,
contrast,
correlation,
entropy

No
(pairwise,
ROC)

All five GLCM parameters
obtained from T2WI showed
significant difference between
glioblastomas and solitary
metastases. Highest AUC =
0.795 (inverse difference
moment,
CE-T1WI)

Zhang
et al.
(2019)46

36
glioblastomas
and 26 solitary
brain
metastases

ADC In-house First-order, GLCM Homogeneity,
inverse
difference
moment

No
(pairwise,
ROC)

AUC = 0.886 (homogeneity)
AUC = 0.732 (inverse
difference moment)

Tateishi
et al.
(2020)47

73
glioblastomas
and 53
metastases

T2WI,
CE-T1WI,
ADC

LIFEx*3 First-order, GLCM 12 a-priori
texture features

Logistic
regression,
SVM

Highest AUC = 0.92 (SVM
model)

Skogen
et al.
(2019)48

22
glioblastomas
and 21solitary
brain
metastases

ADC, FA TexRAD*4 First-order Entropy No
(pairwise,
ROC)

Texture features were
derived from peritumoral
edema Highest AUC = 0.911
(combined ADC and FA, no
LoG filtration)

Differentiation from PCNSL

Alcaide-
Leon et al.
(2017)49

71
glioblastomas
and 35 PCNSL

CE-T1WI In-house First-order, GLCM,
GLRLM, GLSZM,
NGTDM

Not provided SVM Mean AUC = 0.877 (at
cross-validation)

Kunimatsu
et al. (2018,
2019)50, 51

Training: 44
glioblastomas/
16 PCNSL) Test:
11
glioblastomas/
5 PCNSL

CE-T1WI R*5 First-order,
GLCM, GLRLM,
GLSZM

Entropy, median
(first-order)Run-
length
nonuniformity,
run percentage
(GLRLM)

SVM Highest AUC = 0.99 (at
cross-validation) Accuracy =
75% (in test dataset)

*1 http://www.eletel.p.lodz.pl/programy/mazda/. *2 https://imagej.nih.gov/ij/. *3 http://www.lifexsoft.org/. *4 https://fbkmed.com/texrad-landing-2/.
*5 https://cran.r-project.org/. ADC, apparent diffusion coefficient; AUC, area under the curve; CE-T1WI, contrast-enhanced T1-weighted imaging;
FA, fractional anisotropy; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size zone matrix; LoG,
Laplacian of Gaussian; NGTDM, neighborhood gray-tone difference matrix; PCNSL, primary central nervous system lymphoma; PWI, perfusion-
weighted imaging; ROC, receiver operating characteristic; SVM, support vector machine; SWI, susceptibility-weighted imaging; T2WI, T2-weighted
imaging.
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the surrounding brain tissues, sometimes mimics tumor recur-
rence after treatment, showing a ringlike contrast enhance-
ment on CE-T1WI. This phenomenon is referred to as
radiation necrosis. Because radiation necrosis means that the
therapy is effective, differentiation from tumor recurrence by
noninvasive imaging has gained clinical attention. Regarding
the differentiation of radiation necrosis from treated brain
metastases, only one study by Larroza et al. is available.52

They investigated the performance of SVM classifiers using
the top-ranked features for two different datasets. The GLCM
sum entropy and first-order variance were selected repeatedly
for both classifiers: however, the remaining discriminating
features were different between the classifiers. Despite the
substantial difference in the included features between the
classifiers, both classifiers showed excellent performance
with the AUC values of greater than 0.9.

Texture analysis in other brain tumors
Meningiomas are more common than gliomas, and they
account for approximately one-third of all primary CNS
tumors.1 Although the vast majority of meningiomas are
benign and categorized as WHO grade I, more aggressive
grades II and III meningiomas comprise 10% of all
meningiomas.53 Conventional MRI remains the standard radi-
ologic technique for the provisional diagnosis and surveillance
of meningioma; however, recent progress in radiomics
research in cerebral gliomas has encouraged researchers to
apply radiomics methodologies to meningiomas as well.

As in cerebral gliomas, the differentiation of meningioma
from clinically pertinent entities is of high clinical relevance.
In an early study, Georgiadis et al. reported 100% overall
classification accuracy in the differentiation of gliomas and
meningiomas using GLCM and GLRLM features and
SVMs.54 Similarly, several previous machine learning stu-
dies with a similar study purpose used MRI datasets, includ-
ing intra-axial brain tumors (e.g., glioblastomas and
metastases) other than extra-axial meningiomas.55–57 In this
regard, however, the real radiological challenge in the differ-
ential diagnosis of meningioma would be its distinction from
dura-based tumors, such as dural metastases and solitary
fibrous tumors/hemangiopericytomas.58,59

Meningioma grading is another attractive topic. Previous
studies have reported AUC values of 0.63–0.97 for the pre-
diction of WHO grade or for the differentiation of low- and
high-grade meningiomas, with the reflection of various types
of machine learning algorithms and either single-parametric
or multiparametric MRI, and the types of images they
used.60–64 A few studies have addressed the prognosis of
meningiomas.65,66 Morin et al. enrolled 314 patients with
meningiomas and reasonably included many cases of higher
grades of meningiomas (57% grade I, 35% grade II, and 8%
grade III).67 They demonstrated an accuracy of up to 77%
for overall survival using a random forest classifier incor-
porating both MRTA and non-MRTA features. Common
limitations in the previous MRTA studies in meningioma

are the retrospective design and the fact that meningioma
datasets predominantly comprised grade I lesions (i.e.,
there was an imbalance in categories).59

Other than meningioma, the classification performance
with texture analysis was reported in pediatric patients with
brain tumors arising in the posterior cranial fossa.68–70 In an
earlier study using first-order and GLCM features, Rodriguez
Gutierrez et al. suggested that first-order features in ADC
yielded the best tumor classification accuracy (78.9%–
91.4%).71 Differentiation between pituitary adenomas and
craniopharyngiomas is another interesting topic in MRTA. A
recent study by Zhang et al. suggested that first-order skew-
ness and GLCM contrast in T2WI, and GLCM energy in CE-
T1WI may be significant predictors between these tumors.72

Challenges and Perspectives

As shown above, MRTA studies have shown promising results;
however, several criticisms currently hinder the clinical use of
MRTA. One major criticism of MRTA is that it is not hypoth-
esis-driven.18MRTA collects numerousmathematical computa-
tions and clinical parameters to determine what are significantly
correlated using valid statistical methods; nevertheless, whether
this particular significant correlation indicates a true causal
relationship or a chance finding is impossible to know.

Researchers should note that the MRI acquisition process
has considerable effects on MRTA measurements. Previous
studies have shown that MRTA can be affected by many
acquisition parameters of MRI, including scanner platforms,
magnetic strength, number of coil elements and coil arrange-
ments, spin-echo or gradient recalled-echo acquisition, TE,
TR, flip angle, number of excitations, noise level, and image
reconstruction algorithms.73–75

Another important criticism is the fact that MRTA
requires explicit engineering of features (e.g., ROI selection,
feature calculation, and selection of features). In contrast to
conventional MRTA, the extraction of machine-learned fea-
tures is becoming widely applicable with deep learning
technologies.24,76 However, higher processing powers and a
huge number of images accompanied by high-quality ground
truth data are required for deep learning methods. Compared
with deep learning, MRTA is less data-hungry. Additionally,
the internal algorithms in deep learning may not always be
apparent (i.e., black box), whereas MRTA features can be
explained more easily.18

Finally, the common weaknesses of previous MRTA stu-
dies are their poor reproducibility and external validity (or
generalizability) of the results. The previous MRTA studies
have typically been conducted in a single institution with
fewer than 100 cases, using a single-vendor MRI and unified
MRI protocols. Homogeneity in subjects and analysis meth-
ods is of high importance in most of the scientific studies;
however, because the MRI acquisition process has an impact
on MRTA, such homogeneity unintentionally becomes a
source of bias that might result in overfitting to the present
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study samples in MRTA. The risk for overfitting problems
also increases when the models are developed especially
with limited (and thus highly biased) data. Therefore, when
conducting MRTA, sufficiently large datasets with unbiased
images are desirable. In this context, multi-institutional
image data using multivendor MRI machines will be advan-
tageous in MRTA.77 Conversely, because of the variation in
image processing, feature extraction, and feature selection,
MRTA methods should be standardized and systematically
reported. When developing machine learning models using
MRTA features to correlate with some clinical outcomes,
researchers should compare the performance in multiple
models with different algorithms.78

To improve the robustness and validity of texture analysis,
researchers in this field have proposed standardized schemes
to conduct and evaluate texture analysis. One example is
provided by the Image Biomarker Standardization Initiative
(https://theibsi.github.io/); the purpose of which is to stan-
dardize the extraction of image biomarkers from acquired
images for high-throughput quantitative image analysis (i.e.,
radiomics).21 Another example is the radiomics quality
score, which has been introduced to evaluate the quality of
radiomics studies.79 These two-way attempts will contribute
to the further improvement of MRTA reliability.

Summary

Studies have shown promising results for the use of
MRTA in brain tumors. Entropy, a feature that describes
the randomness in intensity values of an image, has been
shown to highlight the differences among multiple
MRTA studies of brain tumors. Discussions for metho-
dological standardization and quality checks for MRTA
studies are maturing. Continuous efforts to improve the
reliability and reproducibility of this method will accel-
erate the clinical use of texture analysis in brain MRI.
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