
Computers in Biology and Medicine 132 (2021) 104320

Available online 9 March 2021
0010-4825/© 2021 Elsevier Ltd. All rights reserved.

Radiomics-based machine learning model for efficiently classifying 
transcriptome subtypes in glioblastoma patients from MRI 

Nguyen Quoc Khanh Le a,b,c,*, Truong Nguyen Khanh Hung d,e, Duyen Thi Do f, 
Luu Ho Thanh Lam d,g, Luong Huu Dang h, Tuan-Tu Huynh i,j 

a Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 106, Taiwan 
b Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, 106, Taiwan 
c Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan 
d International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan 
e Orthopedic and Trauma Department, Cho Ray Hospital, Ho Chi Minh City, 70000, Viet Nam 
f Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, 106, Taiwan 
g Children’s Hospital 2, Ho Chi Minh City, 70000, Viet Nam 
h Department of Otolaryngology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 70000, Viet Nam 
i Department of Electrical Engineering, Yuan Ze University, No. 135, Yuandong Road, Zhongli, 320, Taoyuan, Taiwan 
j Department of Electrical Electronic and Mechanical Engineering, Lac Hong University, No. 10, Huynh Van Nghe Road, Bien Hoa, Dong Nai, 76120, Viet Nam   

A R T I C L E  I N F O   

Keywords: 
Radiogenomics 
Glioblastoma 
Neuroimaging 
Transcriptome subtypes 
Radiomics biomarker 
XGBoost 
Artificial intelligence 
Magnetic resonance imaging 

A B S T R A C T   

Background: In the field of glioma, transcriptome subtypes have been considered as an important diagnostic and 
prognostic biomarker that may help improve the treatment efficacy. However, existing identification methods of 
transcriptome subtypes are limited due to the relatively long detection period, the unattainability of tumor 
specimens via biopsy or surgery, and the fleeting nature of intralesional heterogeneity. In search of a superior 
model over previous ones, this study evaluated the efficiency of eXtreme Gradient Boosting (XGBoost)-based 
radiomics model to classify transcriptome subtypes in glioblastoma patients. 
Methods: This retrospective study retrieved patients from TCGA-GBM and IvyGAP cohorts with pathologically 
diagnosed glioblastoma, and separated them into different transcriptome subtypes groups. GBM patients were 
then segmented into three different regions of MRI: enhancement of the tumor core (ET), non-enhancing portion 
of the tumor core (NET), and peritumoral edema (ED). We subsequently used handcrafted radiomics features (n 
= 704) from multimodality MRI and two-level feature selection techniques (Spearman correlation and F-score 
tests) in order to find the features that could be relevant. 
Results: After the feature selection approach, we identified 13 radiomics features that were the most meaningful 
ones that can be used to reach the optimal results. With these features, our XGBoost model reached the predictive 
accuracies of 70.9%, 73.3%, 88.4%, and 88.4% for classical, mesenchymal, neural, and proneural subtypes, 
respectively. Our model performance has been improved in comparison with the other models as well as previous 
works on the same dataset. 
Conclusion: The use of XGBoost and two-level feature selection analysis (Spearman correlation and F-score) could 
be expected as a potential combination for classifying transcriptome subtypes with high performance and might 
raise public attention for further research on radiomics-based GBM models.   

1. Introduction 

Glioblastoma (GBM) is a term indicating the most aggressive and 
exceptionally invasive brain tumors and is categorized based on its cell 
of origin [1]. GBM has an incidence of two to three per 100,000 people 

worldwide per year, accounting for 52% of all primary brain tumors. 
Although GBM has a relatively low incidence, its poor prognosis 
(aggressive and infiltrative growth pattern) renders the curative treat-
ment impossible [2,3]. Despite plenty of efforts worldwide, the treat-
ment of GBM is still considered the most difficult work in clinical 
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oncology. Histopathological analysis of the tumor tissue is the reference 
standard of a definitive diagnosis of GBM. More recently, tumor genomic 
characterization (tissue available from the surgical resection) has 
advanced GBM’s clinical evaluation to provide additional predictors of 
the response and outcome to treatment. 

Radiomics is a new approach that has been commonly used to 
identify the association between clinical symptoms and underlying ge-
netic characteristics [4]. Potentially, tumor phenotypes can be deter-
mined by collecting large quantities of features from high-throughput 
medical radiographic images by breakthrough data characterization [5]. 
Different subtypes of gliomas have been classified in the previously 
published works using the radiomics model. For instance, glioma 
grading has been qualified by using magnetic resonance imaging (MRI) 
transformed gray-scale invariant textures [6], five significant features 
[7], wavelet-based features [8], or even deep learning features [9]. For 
the molecular subtype classification, isocitrate dehydrogenase (IDH) 
mutation status, 1p/19q codeletion status, TERT promoter status, and 
O6-methylguanine-DNA methyltransferase (MGMT) methylation status 
have been served as key biomarkers. For that reason, Lu et al. conducted 
a radiomics-based machine learning model for three-level classification 
of gliomas [10]. These molecular subtypes have been defined by mu-
tation status of IDH gene and codeletion status of 1p/19q. For each 
mutation status itself, radiomics model has been used in predicting the 
status of IDH [11–14], 1p/19q deletion [12,15], TERT promoter [16, 
17], p53 [18], and MGMT [19,20]. 

In addition to the WHO grade or molecular subtypes, the classifica-
tion of transcriptome subtypes also plays an essential role in the 
assessment and treatment of GBM. According to Ref. [21], GBM could be 
classified into four transcriptome subtypes: classical, mesenchymal, 
neural, and proneural, respectively. These subtypes include different 
biological biomarkers such as collective loss in chromosome 10 and 
chromosome 7 amplification in classical subtypes, the largest occur-
rence of focal hemizygous deletions in the region at 17q11.2, including 
NF1 genes in mesenchymal subtypes, PDGFRA aberrations and IDH1 
mutations in proneural subtypes, and GABRA1, SYT1, NEFL, and 
SLC12A5 in neurine subtypes. Recent research [22] has also shown that 
subcategory genetic abnormalities have the ability to act as predictive 
markers and therapeutic targets. With the relatively high importance of 
these transcriptome subtypes in GBM, they are considered a critical 
factor in temozolomide resistance and poor progression-free survival 
(PFS). Thus, non-invasive imaging biomarkers for identifying the tran-
scriptome subtypes could pave the way to a better future for GBM 
treatment with accurate treatment guidance and prognosis. 

The question of how to classify the transcriptome subtypes of GBM 
using MRI features is a challenging task nowadays. Some radiomics 
studies have been performed to deal with this problem. For example, 
Saima et al. [23] classified transcriptome subtypes of GBMs with an 
average accuracy of 71%. Macyszyn et al. [24] achieved a multi-
classification accuracy of 76% when creating a multiparametric 
MRI-based model with 105 patients and 60 diverse features. Lee et al. 
[25] solved this multi-classification problem by separating it into four 
binary classifications. In an attempt to find efficient radiomics features 
for this problem, Yang et al. [26] confirmed that textual features might 
play an important role in classifying GBM transcriptome subtypes. For 
more detail on a specific transcriptome subtype, Kourosh et al. [27] 
retrieved 46 GBM patients for identifying the mesenchymal molecular 
subtype only. Nicholas et al. [28] created a radiogenomics-based pilot 
study for classification between mesenchymal and classical subtypes. 

Previous works have proposed some promising machine learning 
models and radiomics signatures for classifying transcriptome subtypes 
in GBMs. However, the performance is still not satisfactory and it is 
challenging to look at the other models that could help to enhance the 
classification performance. Aiming at addressing this problem, this 
study suggested an efficient radiomics signature by using eXtreme 
Gradient Boosting (XGBoost) and two-level (Spearman correlation and 
F-score) feature selection. 

2. Materials and methods 

Fig. 1 demonstrates our proposed radiomics framework and sys-
tematic is described in the following subsections. 

2.1. Patients cohort 

Our patient cohort has been obtained from The Cancer Imaging 
Archive (TCIA) [29], a public resource for a large collection of cancer 
medical images that can be downloaded. Since we aimed to classify the 
transcriptome subtypes of GBM, we selected the patient data from 
TCGA-GBM project [30]. It is a project including 262 participants 
(collected from eight institutions in U.S.A. and Italy) with their 
pre-operative multimodal magnetic resonance imaging (MRI) images. 
The selected MRI modalities were T1-weighted pre-contrast (T1), 
T1-weighted post-contrast (T1-Gd), T2, and T2-FLAIR. The subject 
counts of the transcriptome subtypes are 20, 34, 11, and 21 for classical, 
mesenchymal, neural, and proneural, respectively [31]. Meanwhile, we 
used these 86 patients with transcriptome subtypes information to be 
included in our next analyses. 

Most radiomics guidelines suggest an external validation set to 
believe its reproducibility and repeatability [32]. Therefore, we also 
retrieved another GBM set from TCIA to validate our predictive per-
formance as well as our radiomics features. The selected set was Ivy 
Glioblastoma Atlas (IvyGAP) [33] that contained genomic alterations 
and gene expression patterns for GBM patients. There were 34 GBM 
patients that contained transcriptome subtype information with the 
number of 15, 12, 12, and 10 for classical, mesenchymal, neural, and 
proneural, respectively. Notice here is that few patients were marked as 
belonging to two or even greater than two transcriptome subtypes 
together, and we used all of this information. Therefore, we used these 
34 GBM patients as our external validation cohort. 

2.2. MRI segmentation and radiomics features 

The medical images have been segmented consistently based on the 
criteria of BraTS challenge [34]. On the basis of this criterion, GBM MRIs 
may be broken down into three distinct regions: (1) the enhancement of 
the tumor core (ET) is distinguished by areas with hypertensity in T1-Gd 
relative to both T1 and normal/healthy white matter (WM) in T1-Gd; (2) 
the non-enhancing portion of the tumor core (NET) reveals hypo-intense 
presence in T1-Gd compared to both T1 and normal/healthy WM in 
T1-Gd; and (3) finally, hyper-intense signal in T2-FLAIR volumes is used 
to characterize peritumoral edema (ED). 

BraTS challenge also released the benchmark segmentations [35] 
that contained the standard ground truth and radiomics features of 
TCGA-GBM project. In detail, before segmentations, a preprocessing 
step was performed on mMRI volumes including re-orienting to the LPS 
(left-posterior-superior), co-registered to the same T1 anatomic tem-
plate, resampling to 1 mm3 voxel resolution, and skull-stripping (using 
FMRIB Software Library (FSL) [36]). Next, GLISTRboost [37], an 
advanced version of GLioma Image SegmenTation and Registration 
(GLISTR) [38] was used to produce the segmentation labels. An 
important notice shown in the original article is that they did not use any 
non-parametric, non-uniform intensity normalization algorithm to 
standardize the MRIs before segmenting. The reason is that they 
observed that the application of such an algorithm obliterated the 
T2-FLAIR signal. 

An example of how to segment a GBM patient into three different 
regions has been shown in Fig. 2. Next, the original study also developed 
Cancer Imaging Phenomics Toolkit (CaPTk) [39] for extracting the 
radiomics features from images as well as segmentation. All the radio-
mics features using in this study were consistent with 174 standardized 
features that have been introduced by the Image Biomarker Stand-
ardisation Initiative (ISBI) [40]. The radiomics features included the 
intensity information, image derivative, geodesic information, texture 
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features, and GLISTR posterior probability maps. Bin discretization of 64 
have been chosen when extracting radiomics features. We then re-used 
704 radiomics features that had been extracted and fed into our machine 
learning model to evaluate the predictive performance. 

2.3. Two-level radiomics feature selection 

The most important problem in radiomics-based machine learning 
model is the dimension of data. Since a big number of radiomics are used 
as feature sets in machine learning models, it will expand the compu-
tational complexity of the model as well as the overfitting problem. 
Therefore, an essential task that needs to be performed is to reduce the 
number of features. There are many common methods for solving this 

task (such as correlation-based, information theory-based, etc.), and this 
study would like to propose a two-level feature selection technique on it. 
First, we performed a Spearman correlation test to evaluate the signif-
icant features for transcriptome subtype classification. A feature was 
significant if it had a high correlation coefficient (>0.8) among any of 
other features. Consequently, we would like to test the possibility of F- 
score analysis in extracting the best features among these aforemen-
tioned ones. The idea behind F-score is to simply check the differences in 
the performance results between two sets of values [41] as follows: 

Fig. 1. A flowchart of this study. It comprises of four sub-processes: data cohort collection, radiomics feature extraction, feature selection, and machine learning 
implementation. 

Fig. 2. An example of segmenting GBM patients on multimodal MRI images (patient ID: TCGA-06-5413, neural transcriptome subtype).  
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feature of the kth negative instance. F-score analysis has been applied in 
the previous study to search for the optimal radiomics features in GBM 
binary classification [42]. Here we extended the F-score analysis into a 
multi-classification in which we measured the accuracy of a test from 
four sets of real numbers (corresponding to four classes of GBMs). We 
firstly calculated F-score values for all significant radiomic features, and 
then ranked them descending to see the top-rank important features. 
After that, we fed the important features one-by-one increasingly to our 
model to test the cut-off value for feature selection. The point that has 
achieved the best value will be chosen as our optimum cut-off point for 
the selection of the F-score features. To display the performance results 
at different number of features, we used recursive feature elimination 
(RFE) technique to present. It is an efficient approach for displaying the 
training performance after increasing the number of features one by one. 

2.4. Machine learning implementation 

Different machine-learning models were implemented in this 
research to see which algorithms perform well for these forms of 
radiomics. These included k-nearest neighbors (kNN), Naïve Bayes, 
Random Forest, support vector machine (SVM), and XGBoost. Our ma-
chine learning models were implemented using Python programming 
language and scikit-learn library [43]. Each machine learning algorithm 
needed a process namely hyperparameter optimization to enable the 
best results. 

2.5. Statistical analysis and measurement metrics 

To deal with a multiple classification problem, we treated it as 
multiple binary classifications and then calculated the individual pre-
diction metrics. Because of the limited data, we used leave-one-out 
cross-validation (LOOCV) as evaluation method to validate the com-
plete output. In this method, each sample is used as a test collection, 
while the other samples are used for training and the accuracy stated is 
the mean of the accuracy of all tests. After creating the model, we also 
had an external validation set to evaluate the predictive performance of 
our model on unseen data. We adopted different performance metrics in 
the prediction model such as accuracy, receiver operating characteristic 
(ROC) curve, and Area under the curve (AUC) to stratify the training 
data to improve machine learning-based GBM subtype classification. 
Among them, ROC curve and AUC have been used to overcome the 
imbalance dataset problem by showing the overall performance at 
different threshold points. These measurement metrics are common in 
machine learning and they have been successfully used in many 
biomedical works with high evidence [42,44]. 

3. Results 

3.1. Patient’s clinical characteristics 

Table 1 shows the patient’s characteristics of our training and vali-
dation cohort. Our training data contained 20, 34, 11, and 21 patients 
for classical, mesenchymal, neural, and proneural transcriptome groups, 
respectively. Most of our patients had IDH1-wildtype in their genomic 
information, thus this study could be treated as a transcriptome subtype 
classification among IDH1-wildtype GBM patients. According to the 

data characteristics, patients with proneural subtype are younger than 
the other subtypes (average age of 54.6 compared to 61.4, 59.7, and 
62.8 from the others). There are also many differences in gender among 
four transcriptome subtypes, with a higher number of males in mesen-
chymal and neural subtypes. On the other hand, there are a higher 
number of female in classical transcriptome subtype. Furthermore, there 
are not many differences in MGMT methylation status among different 
transcriptome subtypes and methylation classes. Data statistics also 
showed a consistent level between the training data and validation data, 
which means that we could use this IvyGAP dataset as a quality external 
dataset to validate the performance results. 

3.2. Generating the efficient MRI radiomics signatures 

Two-level feature selection has been applied to find the radiomics 
signatures of GBM transcriptome subtype classification. As a detail, we 
first conducted the Spearman correlation test to statistically look at the 
significant features that might affect the predictive performance. After 
this step, we found that there were 470 significant radiomics features 
(with correlation coefficient > 0.8). Next, we applied F-score analysis in 
these features and determined some top-rank features with high F-score 
values such as VOLUME_NET_OVER_ED (f-score = 0.18037), TEXTUR-
E_GLCM_ET_FLAIR_Entropy (F-score = 0.15062), and TEXTUR-
E_GLSZM_ET_FLAIR_SZHGE (F-score = 0.1432). All the detailed 
information on radiomics features and their F-score values are shown in 
Supplementary Table S1. After that, our RFE curve (Fig. 3) shows that 
we can use the first 13 features (with optimum cut-off F-score of 0.1085) 
as input into the model to get the highest results. The aforementioned 
features might be our innovative signature to help to classify GBM 
transcriptome subtypes with high performance and the use of features as 
little as possible. 

3.3. Model performance 

The first experiments were conducted to look at the optimal pa-
rameters of individual machine learning classifiers. The same setting 
was applied to each algorithm; and then the ranges of all searched 
hyperparameters as well as the optimal values were given in Table 2. For 
the experimental results, our radiomics-based classifiers reached an 
average accuracy of 69.8%, 75%, 77.3%, 71.5%, and 80.2% for kNN, 
Naïve Bayes, Random Forest, SVM, and XGBoost respectively (as shown 
in Table 3). The average sensitivity and specificity of XGBoost (51.9% 
and 87.5%, respectively) were also superior to the others. Wilcoxon tests 
have been also conducted to see the significant improvements of 
XGBoost compared to the other classifiers. We are able to observe that 
the XGBoost had improvements in most measurement metrics compared 
to the other classifiers. Among the individual classifiers of four subtypes, 

Table 1 
Patients’ characteristics of our training and validation cohort.   

Training (n = 86) Validation (n = 34) 

Age(mean ± SD, years) 59.22 ± 12.7 59.6 ± 10.3 
Gender   

Male 57 17 
Female 29 17 

Transcriptome subtype   
Classical 20 15 
Mesenchymal 34 12 
Neural 11 12 
Proneural 21 10 

IDH1 status   
Wildtype 68 31 
Mutant 18 3 

MGMT status   
Methylated 22 12 
Unmethylated 27 20 

(MGMT: O6 methylguanine DNA methyltransferase). 
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the model held good potential on identifying mesenchymal (sensitivity 
of 70.6%) and proneural (sensitivity of 66.7%) subtypes. The worst 
performance came from the other two subtypes; however, it was also an 
acceptable level for a challenging multi-classification problem and the 
specificities were high enough to show the efficiency of the models. 

In order to see the performance at different threshold levels, it is 
important to present the ROC curves and AUCs. We provided ROC 
curves of our XGBoost models on different transcriptome subtypes one 
by one (Fig. 4). According to the information shown in this figure, we 
again observed that our model worked well with the use of signature 
radiomics features (AUCs of four transcriptome subtypes reached 0.711, 
0.763, 0.745, and 0.854, respectively. Therefore, it strongly suggests 
that we could incorporate these 13 features and XGBoost algorithm to 
classify GBM transcriptome subtypes with high performance. 

3.4. Validation results 

To ensure the efficiency of our final model, we used a validation 
dataset to evaluate the predictive performance of this model and 
radiomics signature. In detail, we used the same 13 radiomics features 
from 39 IvyGAP patients [33] and inserted them into our model. Fig. 5 

then shows the comparative performance between training and valida-
tion dataset in terms of sensitivity, specificity, and accuracy. We 
observed that there were consistent between these two sets and this 
ensured that our model was reliable and did not contain much over-
fitting. It also means that our 13-signature features might be significant 
in classifying transcriptome subtypes of GBM patients. 

4. Discussions 

Medical imaging features are deemed as the cornerstone of the al-
gorithm for managing and evaluating the further response of cancer. 
Many disease characteristics, especially in the field of oncology, have 
been uncovered thanks to the extraction of hundreds of quantitative 
radiomics features including CT, PET, and MR scans. Recently, with the 
increasing opening of public medical datasets [29], it is possible to 

Fig. 3. RFE curve for classifying GBM transcriptome subtypes using different number of features. The best performance was reached with the use of the first 13 
features after Spearman correlation test and F-score analysis. 

Table 2 
Hyperparameters optimization for each machine learning algorithm.  

Machine learning Ranges of hyperparameters Optimal value 

kNN n_neighbors = [1,2,3,..,10] 1  
weights = [uniform, distance] uniform  
metric = [euclidean, manhattan, minkowski] minkowski 

Random Forest max_depth = [80, 90, 100, 110] 110  
max_features = [2, 3] 3  
min_samples_leaf = [3, 4, 5] 4  
min_samples_split = [8, 10, 12] 8  
n_estimators = [100, 200, 300, 1000] 100 

SVM C = [0.001, 0.01, 0.1, 1, 10] 1  
gammas = [0.001, 0.01, 0.1, 1] 0.001  
kernels = [rbf, linear] rbf 

XGBoost min_child_weight = [1, 5, 10] 1  
gamma = [0.5, 1, 1.5, 2, 5] 1  
subsample = [0.6, 0.8, 1] 0.8  
colsample_bytree = [0.6, 0.8, 1] 1  
max_depth = [3, 4, 5] 4  

Table 3 
Leave-One-Out cross-validation among different subtypes and machine learning 
algorithms.  

Machine learning Subtype Sensitivity Specificity Accuracy 

kNN Classical 50.0 80.3 73.3  
Mesenchymal 67.6 42.3 52.3  
Neural 9.1 94.7 83.7  
Proneural 0.0 92.3 69.8 

Naïve Bayes Classical 45.0 81.8 73.3  
Mesenchymal 61.8 63.5 62.8  
Neural 36.4 88.0 81.4  
Proneural 42.9 95.4 82.6 

Random Forest Classical 25.0 90.9 75.6  
Mesenchymal 85.3 50.0 64.0  
Neural 0.0 93.3 81.4  
Proneural 61.9 96.9 88.4 

SVM Classical 15.0 97.0 77.9  
Mesenchymal 82.4 28.8 50.0  
Neural 0.0 98.7 86.0  
Proneural 28.6 86.2 72.1 

XGBoost Classical 25.0 84.8 70.9  
Mesenchymal 70.6* 75.0* 73.3*  
Neural 45.5* 94.7 88.4*  
Proneural 66.7* 95.4 88.4 

All machine-learning algorithms have used the optimal hyperparameters. * 
shows the significant improvements after Wilcoxon tests. 

N.Q.K. Le et al.                                                                                                                                                                                                                                 



Computers in Biology and Medicine 132 (2021) 104320

6

greatly enhance the predictive performance of radiomics-based machine 
learning problems in general and GBM transcriptome subtypes in 
particular. In this study, the capacity of multimodal fusion and two-level 
feature selection techniques to identify GBM subtypes was demonstrated 
through investigations of the TCGA-GBM [30] dataset. The final model 
was also validated on an external dataset (IvyGAP) [33] with valuable 
results. 

Traditionally, a lot of feature selection techniques have been applied 
in radiomics-based machine learning models to classify GBM tran-
scriptome subtype such as sequential forward feature selection [23], 
individual predictive test [24], spatial point pattern analysis [25], or 
Mann–Whitney test [27]. This study, therefore, provided evidence on 
applying another efficient technique for this classification purpose. Our 
13-signature features might differentiate from the previous methods and 
they could help to generate a promising performance in multi-
classification. Moreover, via using a combination of Spearman and 
F-score analysis, our radiomics features are reliable and could be 
interpretable easily. 

Our study also analyzed the efficiencies of different machine learning 
models in learning radiomics features. The results of this study (Table 3) 
showed that XGBoost is superior to other methods to classify tran-
scriptome subtypes for patients with gliomas. This finding is consistent 
with the previous study where XGBoost is also the optimal model for 
glioblastoma studies such as [42,45]. Therefore, this study again em-
phasizes the significance of ensemble learning (especially XGBoost) in 
radiomics. Further radiomics studies could consider it as the first choice 

in learning features efficiently. 
Different radiomics-based GBM studies used different patient co-

horts, thus it is challenging to have a comparison among different 
studies fairly and accurately. However, to have a relative view on the 
effectiveness of our method, we also provided the comparison results 
among our model and previous works on the same transcriptome sub-
type classification. There were some published works on the classifica-
tion of GBM transcriptome subtypes with promising performance such 
as [23,26]. Their performance results were retrieved to support the 
comparison purpose. For instance, compared to the work of [23] on the 
same TCIA dataset, our model has improved at about 5% on average 
accuracy. Focusing on detailed performance results among the individ-
ual subtypes, our model achieved better performance than [26] in 
mesenchymal, neural, and proneural subtypes. The comparative per-
formance observed that at the same and fair level of comparison, our 
model’s performance had a little bit better than the others had. 

In addition, our optimal set of 13 radiomics features might attract 
much attention to GBM research. This radiomics signature combing with 
XGBoost classifier could hold potential in classifying transcriptome 
subtypes with high performance. Another finding is that in our 
biomarker set containing 13 features, most of them were from textual 
analysis. It has been consistent with previous works on radiomics-based 
GBM models such as prediction of MGMT methylation status [46,47], 
IDH1 mutation, and 1p/19q-codeletion status [48,49]. In addition, it is 
observed that the transformation of the wavelet (i.e. GLSZM) appeared 
mainly in the essential set of features. Therefore, with the joint of either 

Fig. 4. ROC curve analysis of classifying GBM transcriptome subtypes using XGBoost on 13 top-rank radiomics features.  

Fig. 5. Comparative performance results among training and validation data.  
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wavelet transform features or NET-hit features, it becomes far more 
possible for a computational model to classify transcriptome non-
invasively and pre-operatively in GBM patients. 

Despite the positive results of this research, it is also important to 
look at the limitations of this study. First, to improve the quality of this 
research, it is necessary to increase the sample sizes for assessing the 
generalization of our model. However, by repeating the training many 
times via LOOCV, this study so that somehow addressed this limitation. 
In addition, we have released the detailed information of the selected 
radiomics features; it would be useful for other centers to validate the 
results in further studies. Second, the updated TCGA molecular subtype 
of GBM has removed the neural subtype, which is more likely to be the 
adjacent brain tissues other than GBM tumor mass. Thus, further tran-
scriptome subtype-based studies could exclude the neural subtype in 
TCGA-GBM project to avoid insufficient data. Finally, as shown in pre-
vious radiomics study [50], repeatability of radiomic features is affected 
due to test–retest and image registration. Thus, yet importantly, image 
normalization or standardization could be performed to the heteroge-
neous data before applying radiomics analyses. 

5. Conclusion 

Through investigations on the dataset of 86 GBM patients, this study 
investigates the role of two-level feature selection and radiomics-based 
XGBoost model in classifying transcriptome subtypes in GBM patients. 
Multi-classification has been resolved by treating it as individual binary 
classifications. Thereafter, our feature selection analysis with 13 fea-
tures can help to boost the predictive performance and stability of our 
model. The final predictive model that used 13 features as input ach-
ieved accuracies of 70.9%, 73.3%, 88.4%, and 88.4% for four subtypes, 
respectively. Our AI-based radiomics model also shows a significant 
performance on an external validation dataset. This study shows that 
combining Spearman correlation, F-score and XGBoost functionality is a 
promising approach for the classification of GBM transcriptome sub-
types. This finding might be replicated to enhance the predictive per-
formance of further radiogenomics studies. 
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