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KEY POINTS

� Vaccines are capable of mounting a peripheral immune response that can penetrate the blood brain
barrier for the treatment of brain tumors.

� Peptide vaccines against epithelial growth factor receptor variant III, survivin, various heat shock
protein complexes, and personalized tumor antigens have been developed for the treatment of
glioblastoma.

� Dendritic cell vaccines can be designed against a variety of targets including tumor lysate, known
antigens, and messenger RNA to combat high-grade gliomas and have demonstrated robust im-
mune responses.
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Vaccines are regarded as one of the most impact-
ful medical advancements because they have had
tremendous success reducing morbidity and mor-
tality associated with many infectious diseases.
Modern vaccination began with Dr Edward Jen-
ner’s experiments to inoculate patients with cow-
pox—a mild, noncontagious disease—to prevent
the far deadlier smallpox. Widespread vaccination
led to the complete eradication of smallpox while
continued technological advancement has
resulted in the development of licensed vaccines
for more than 30 diseases, which are estimated
to save 2 to 3 million lives each year.1,2

Adaptive or acquired immunity is achieved
through exposure to a pathogen or vaccination.
This arm of the immune system is specific to
particular pathogens and can provide long-
lasting protection. Fundamentally, vaccines exert
their effects by activating a patients’ adaptive im-
mune system against a target that resembles a
pathogen or toxin. To accomplish successful im-
mune system stimulation, 2 broad categories of
vaccines have been developed: live attenuated
vaccines and subunit vaccines.3 Upon interacting
with the vaccine, antigen-presenting cells (ie, mac-
rophages, dendritic cells [DC], B cells) recognize
the foreign antigens and load them onto major
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presentation to the adaptive arm of the immune
system. Direct MHC I presentation to CD81 cyto-
toxic T cells results in a cell-mediated response
and the destruction of target cells. MHC II presen-
tation to CD41 helper T cells can further facilitate a
cytotoxic response or stimulate a humoral immu-
nity by activating B cells to produce antibodies.
These antibodies can bind pathogens, resulting
in neutralization and increased phagocytosis of
antibody-bound antigen. Importantly, memory
cells are also created and remain dormant until
re-exposure to the infectious agent or toxin, result-
ing in restimulation of the immune cascade and
pathogen elimination.4

Interest in using the immune system to fight ma-
lignancies has exploded in recent years.5 Immuno-
therapies such as chimeric antigen receptor T cells
prime engineered T cells to kill cancer cells and im-
mune checkpoint inhibitors work to activate the
immune system by disinhibiting tumor immune
suppression.6,7 One challenge in using the im-
mune system stems from immune cells’ ability to
precisely distinguish “self” from “foreign” tissues
to prevent autoimmunity. Most antigens
expressed by cancers are self-antigens present
on normal tissue, which may be slightly immuno-
genic or nonreactive. Therapeutic cancer vaccines
have the potential to increase the immune
l of Medicine at UCLA, University of California Los
, CA 90095, USA

ne
ur
os
ur
ge
ry
.th

ec
li
n

mailto:LLIAU@mednet.ucla.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nec.2021.01.003&domain=pdf
https://doi.org/10.1016/j.nec.2021.01.003
http://neurosurgery.theclinics.com


Lee et al226
system’s antitumor activity by training immune
cells to target antigens expressed on cancers.
Although vaccination has had tremendous suc-
cess in preventing infectious disease and virally
initiated cancers, namely, liver and cervical can-
cers caused by hepatitis B virus and human papil-
lomavirus, respectively, vaccination as therapy
against established disease has proven much
more challenging.8–10 Immune system evasion is
a hallmark of cancers that represents a major hur-
dle for vaccine development. Cancers actively
disguise themselves from immune cells by
creating an immunosuppressive tumor microenvi-
ronment to dampen the immune system’s cancer-
fighting potential.6 However, recent clinical results
have shown clinical benefit and established thera-
peutic cancer vaccination as an attractive platform
for further development.
In 2010, the US Food and Drug Administration

approved the first therapeutic cancer vaccine
(sipuleucel-T) composed of peripheral blood
mononuclear cells stimulated against a recombi-
nant fusion protein for the treatment of
castration-resistant prostate cancer.7 Therapeutic
vaccines have since been developed for breast
cancer, lung cancer, melanoma, pancreatic can-
cer, colorectal cancer, and renal cancer. These
vaccines stimulate the immune system against
tumor-associated antigens (TAAs), tumor-specific
antigens, or neoantigens on malignant tumor cells.
TAAs such as HER2/NEU are often overexpressed
in malignancy, but are also expressed at lower
levels in some healthy tissues.11 One example of
exploiting this increased expression of these
genes in cancer includes the antibody-based
immunotoxins against mesothelin, an overex-
pressed TAA. The treatment of advanced meso-
thelioma, as well as lung, pancreatic, and ovarian
cancers demonstrated cancer regression without
appreciable toxicity.12 Tumor-specific antigens
and neoantigens also present attractive targets
because they are mutated antigens resulting
from genomic instability and represent a unique
cancer-specific target. However, these targets
are not globally expressed across all tumor cells
and are restricted to the subclonal populations
within the heterogenous cancer. Previous work
demonstrated the safety and immunogenicity of
a vaccine targeting 20 predicted personal tumor
neoantigens in melanoma, warranting further
study.13

Although improvements have been made in the
design and production of therapeutic vaccines,
further developments are required to induce
robust CD41 and CD81 effector function against
tumor cells while avoiding induction of autoimmu-
nity, immune reaction–like cytokine storm, or on-
target off-tumor toxicity. Additionally, the efficacy
of cancer vaccines and immunotherapy in general
correlates with tumor mutational burden and mi-
crosatellite instability; as mutations increase, anti-
genic targets for the immune system to activate
against also expands.14 Innovations in cellular en-
gineering have enabled adoptive cell therapy,
where patients’ own immune cells are isolated
and either engineered or stimulated ex vivo to
enhance their cancer-fighting capabilities.15 DC
vaccines are one type of adoptive therapy in which
isolated DCs are stimulated with tumor markers
ex vivo and reintroduced to the patient to activate
cytotoxic and humoral immunity and importantly
have the ability to target multiple antigens in paral-
lel to enhance antitumor effects.16

Gliomas represent approximately 81% of newly
diagnosed malignant primary brain tumors and
glioblastomas are the most aggressive type, with
less than 3% of patients surviving 5 years and a
mean survival of less than 15 months.17 Despite
an increasingly comprehensive understanding of
the molecular drivers of glioblastoma, targeted
therapies have remained largely ineffective in
improving prognosis beyond standard therapy of
surgical resection, radiation, and chemotherapy.18

Because of this poor prognosis, novel innovative
treatments are needed such as cancer vaccines,
which have the potential to overcome
the challenges faced by previous treatments.
However, vaccine development must still address
challenges resulting from rapid growth,
tumor heterogeneity, low tumor mutational
burden, and immunosuppression in brain can-
cers.19 Under physiologic conditions, the brain pa-
renchyma is tightly shielded from the systemic
immune system via the blood–brain barrier and
minimal lymphatic vessels for antigen presenting
cells to traffic to lymph nodes.20 Additionally,
microglia, brain resident macrophages, establish
the bulk of the immune cell population, but have
lower antigen-presenting capacity than other cells
of the macrophage lineage.21 Another important
consideration for brain tumors is the recruitment
of myeloid and lymphoid cells that play an integral
role in supporting malignant growth. Tumor-
associated macrophages represent the most
abundant stromal cell type in glioblastoma, consti-
tuting 30% of the tumor mass and skew toward
the immunosuppressive M2 phenotype, which in-
hibits CD41 and CD81 T-cell functions while
inducing T regulatory cell differentiation.22 T regu-
latory cells secrete IL-10 to contribute to immuno-
suppression and tumor-infiltrating lymphocytes
display high levels of programmed death 1,
CTLA-4, LAG3, TIM3, TIGIT, and CD39, which all
indicate T-cell exhaustion.23,24 These factors
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contribute to an immunosuppressive environment,
or immunologically cold tumors, which generally
demonstrate a poor response to immunostimula-
tory therapies such as therapeutic cancer
vaccines.20

Advancements in neuro-oncology, including the
discovery of new therapeutic targets, the develop-
ment of mechanisms to increase tumor sensitivity
to current immunotherapies, and an improvement
in the tumor-specific pathway targeting have
opened the doors to developing therapeutic vac-
cines for brain tumors.
PEPTIDE VACCINES

After the cloning of the first human TAA gene in
the early 1990s, peptide vaccines were devel-
oped to stimulate patient’s immune system
against both TAAs and neoantigens.25 Peptide
vaccines offer the potential to induce T-cell–
based killing and antibody production against
foreign tumor antigens. They are generally
made of amino acid sequences of various
lengths attached to an immunogenic adjuvant
to increase immunogenicity.26 The administra-
tion of a synthetic or naturally occurring polypep-
tide vaccine results in uptake, processing, and
presentation via MHC I on APCs, or direct
Fig. 1. Peptide and HSP vaccines. Peptides can be conjugat
cyanin [KLH]) linked to EGFRvIII peptide (PEPvIII-KLH) rind
for vaccine preparation and administered intradermally. M
VAC-101[APVAC1:unmutated 1 APVAC2:neoantigens]) b
peptide-proteins complex-96 (HSPPC-96) is extracted from
similar manner as peptide vaccines. The antigen(s) recogn
to helper T-cells (CD41) and cytotoxic T-cell lymphocytes (C
the peptide.
insertion into MHC II, which ultimately leads to
the activation of the adaptive immune response
against the administered antigen. Through
antigen-presenting cells interaction with naı̈ve
lymphocytes, CD81 T cells directly targeting
cancer cells or CD41 T cells boosting antitumor
immunity are activated as cancer-fighting agents
(Fig. 1).27,28

One of the first protein-based vaccines was
against epithelial growth factor receptor variant
III (EGFRvIII), a cell membrane receptor unique
to cancer cells. The EGFRvIII tumor-specific anti-
gen results from a frame deletion mutation of
exons 2 to 7 in the extracellular domain of
EGFR, which creates a unique glycine residue be-
tween exons 1 and 8 that can be exploited thera-
peutically.29–32 It is an attractive target for a
peptide vaccine because it is expressed in breast,
ovarian, and lung malignancies in addition to
approximately 24% to 67% of glioblastoma
cases, and it is absent in normal tissue.33 The
EGFRvIII peptide vaccine aims to stimulate
a patient’s immune system against EGFRvIII-
positive glioblastoma cells. Phase I/II trials of
CDX-110 (rindopepimut), a 14-mer peptide conju-
gated to the keyhole limpet hemocyanin (an
immunostimulatory carrier protein) peptide vac-
cine injected intradermally, demonstrated safety,
ed to immunogenic haptens (ie, keyhole limpet hemo-
opepimut or survivin peptide (Survivin-KLH, SurVaxM)
ixture of personalized peptide antigen vaccines (GAP-
ased on patient tumor specific profile. Heat shock
patient’s tumor samples, purified, and injected in a

ized by antigen presentation cells (DCs) and presented
TL, CD81). Activated B-cells then produce antibodies to



Lee et al228
a tumor-specific immune response, and improved
survival compared with matched control patients.
However, the phase III double-blind randomized
control trial (ACT IV) unfortunately showed no sig-
nificant difference between the control and vac-
cine groups, and the trial was discontinued.34–37

In the vaccine group, patients expressed
increased EGFRvIII antibody production and the
majority of resected recurrent tumors were nega-
tive for EGFRvIII. These data suggested that the
EGFRvIII peptide vaccine successfully targeted
EGFRvIII positive tumor cells but in the process
selected for EGFRvIII negative or low expressing
tumor cells. Therefore, in a heterogenous tumor
such as glioblastoma, single antigen therapy
may have very limited success rate despite
measurable positive immune response.
Peptide vaccines have also been developed for

additional glioma specific mutations including var-
iants of the isocitrate dehydrogenase type 1 (IDH1)
and histone-3 genes. IDH1 mutations most often
occur at the Arg132 residue in the catalytic pocket,
promoting malignant transformation and genomic
hypermethylation.38,39 More than 70% of diffuse
grade II and III gliomas contain the IDH1(R132H)
mutation, which is an immunogenic epitope that
can be targeted via peptide vaccination.40 Preclin-
ical data demonstrated that IDH1(R132H) peptide
vaccines are presented on MHC II and induce
mutation-specific CD41 T-cell activation and anti-
body production.41 Multiple phase I trials have
been launched to determine vaccine safety
(NCT02454634, NCT02193347).42 Similarly, in
aggressive midline gliomas, K27M mutations in
the histone-3 gene result in methylation pattern al-
terations and subsequent changes in gene expres-
sion.43 Preclinical work demonstrated that
H3K27M peptide vaccines are presented via
MHC I and elicit mutation-specific CD41 and
CD81 immune responses in MHC-humanized
mice.44 A phase I clinical trial evaluating a syn-
thetic peptide targeting the H3.3.K27 M protein is
underway (NCT02960230).
Another target for peptide vaccination is survi-

vin, a tumor-associated antigen that is a mem-
brane inhibitor of apoptosis and regulator of the
cell cycle. Its expression is absent in terminally
differentiated tissues but present in various can-
cer types, including glioblastoma.45 A peptide
vaccine targeting survivin is currently under inves-
tigation. The vaccine uses a 15-mer survivin pep-
tide linked to keyhole limpet hemocyanin
(SurVaxM) to stimulate an immunogenic
response. Early clinical trial data demonstrated
antibody production and T-cell response to survi-
vin vaccine. A phase I trial of recurrent malignant
glioma patients with surviving-positive tumors
were given subcutaneous SurVaxM with sargra-
mostim, a bone marrow stimulant, at 2-week in-
tervals. SurVaxM administration was well
tolerated. 6 of 8 immunologically evaluable pa-
tients demonstrated IgG production against the
survivin peptide and increased survivin respon-
sive CD41 and CD81 T cells. The median overall
survival was 86.6 weeks from study entry with 7
of the 9 patients surviving more than 12 months.46

An early phase II trial is underway for patients
newly diagnosed with glioblastoma with restricted
HLA types (HLA-A*02/03/11/24 haplotype)
(https://clinicaltrials.gov/ct2/show/
NCT02455557). The data so far are optimistic with
a 12-month overall survival of 94.2%.47

To overcome the challenges associated with
single antigen therapies, peptide vaccines tar-
geting multiple glioblastoma antigens have
been developed as personalized therapeutic
vaccines. This new strategy seeks to exploit mul-
tiple antigens to overcome the low mutational
burden involving around 30 to 50 nonsynony-
mous mutations and the immunosuppressive
environment of glioblastoma.48 A recent study
demonstrated that a multiepitope, personalized
neoantigen-based vaccine based on patient’s tu-
mor transcriptomes and immunopeptidomes is
feasible for patients with glioblastoma. This
phase I/Ib study compared resected glioblas-
toma tissue with healthy tissue via whole-
exome sequencing and RNA sequencing data
to determine neoantigens. From these data and
using patient-specific HLA allotype assessment,
peptides with high predicted HLA binding affinity
were designed and synthesized. The neoantigen
peptide vaccine library was administered after
radiotherapy and stimulated a neoantigen-
specific T-cell response in patients with an
increased concentration of circulating and
tumor-infiltrating T cells in vaccine treated pa-
tients. While demonstrating that personalized
neoantigens can favorably alter the immune
landscape in a glioblastoma, tumor-infiltrating T
cells after vaccination expressed multiple co-
inhibitory receptors, consistent with an exhaus-
tion phenotype.49 An additional study, the phase
I trial GAPVAC-101 of the Glioma Actively
Personalized Vaccine Consortium, used both
unmutated antigens and neoepitopes in an effort
to increase immune cell activity against the
limited glioblastoma target space. This study
similarly demonstrated feasibility with an activa-
tion of CD81 T cells and the development of a
sustained response via memory T cells using
the unmutated APVAC1 antigen panel or a pre-
dominantly CD41 T-cell response using the
APVAC2 neoantigen vaccine.50

https://clinicaltrials.gov/ct2/show/NCT02455557
https://clinicaltrials.gov/ct2/show/NCT02455557
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Another type of peptide vaccine that has
garnered interest for their immunogenic properties
are heat shock proteins (HSPs). HSPs are pro-
duced by cells in response to stressful conditions
and provide a physiologic link between the innate
and adaptive immune systems through chaper-
oning antigens to APCs like DCs. During cell
stress, HSPs are expressed intracellularly and
bind misfolded proteins to prevent aggregation.
HSPs loaded with protein may be released into cir-
culation and bind to CD91 receptors on APCs to
initiate both MCH I and II presentation.51 In malig-
nancy, HSPs bind to tumor specific neoantigens to
activate both innate and adaptive immunity
against patient-specific cancer mutations. To
leverage this physiologic role of HSP, tumor cells
are lysed and the HSPs of interest are isolated
for intradermal vaccines. To date, HSP–antigen
complexes have been used in a variety of cancer
types including melanoma,52,53 renal cell carci-
noma,54 colorectal cancer,55 and gliobas-
toma,55,56 and have been well-tolerated with a
low toxicity. Despite optimistic findings in early
phase clinical trials, a larger phase II randomized
trial treating recurrent patients with glioblastoma
with HSP peptide complex 96 (HSPPC-96) failed
to show survival benefit when compared with
Fig. 2. DC vaccines. DCs isolated from peripheral blood le
gen, messenger RNA, or lysate, that is, ICT107: HER2, TRP
ephA2, surviving, DCVax-L (autologous tumor lysate), or C
cine to patients peripherally. Following injection, DCs t
against tumor epitopes. Activated cytotoxic T-cells and ant
cells with the surface receptor.
bevacizumab alone (overall survival 7.5 vs
10.7).57 However, experiments measuring INF-g
release demonstrated increased tumor-specific
peripheral blood mononuclear cells after exposure
to autologous tumor lysate.58 Because the data for
patients with newly diagnosed glioma continue to
demonstrate increased survival when pro-
grammed death ligand 1 is upregulated onmyeloid
cells, a phase II trial of HSPPC-96 with patients
newly diagnosed with glioblastoma with and
without programmed death 1 inhibitor pembrolizu-
mab (NCT03018288) is underway.59
DENDRITIC CELL VACCINES

Different from peptide vaccines, which rely on a
host’s ability to direct pathogens to APCs, DC
vaccines are directly primed against specific tar-
gets to mount a robust immune response against
tumor cells. DCs are professional APCs capable
of activating adaptive immunity through the pre-
sentation of epitopes that can be harnessed to
combat tumor cells. Most autologous DC vac-
cines are made from DCs extracted from patients
through leukapheresis and exposed ex vivo to
tumor-associated antigens (peptides or
messenger RNA) of choice. The cells are then
ukapheresis are pulsed against tumor associated anti-
-2, gp100, MAGE-1, IL13Ra2 and AIM-2, SL701: ILRa2,
MV pp65. Primed DCs are then administered as a vac-
hen recruit CTLs and stimulate antibody production
ibodies cross the blood brain barrier and target tumor
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delivered either peripherally or intracranially to the
patient to generate a cell-mediated and humoral
immune response against various targets
(Fig. 2). DC vaccines are capable of stimulating
T cells to cross the blood–brain barrier. Addition-
ally, they have a low toxicity profile. The ability of
DCs to target multiple antigens provides an
advantage compared with single antigen thera-
pies when treating tumors with heterogeneous
cell populations.
DCs pulsed with known antigens demon-

strated an increased overall survival and immune
response in preclinical models and clinical trials.
In an early phase I study of multiple-peptide
pulsed DC vaccine (ICT-107), in patients with
newly diagnosed glioma with HLA-A1 or HLA-
A2 and at least 1 TAA (HER2, TRP-2, gp100,
MAGE-1, IL13-Ra2, or AIM-2) were given 3 intra-
dermal doses of DCs pulsed with TAA along with
standard chemotherapy and radiation. At an
average follow-up of 40.1 months, 6 of 16 pa-
tients with newly diagnosed glioblastomas had
no evidence of tumor recurrence. Overall, the
phase I trial showed promise with an increased
(median progression-free survival of 16.9 months
and a median overall survival of 38.4 months).60

In a randomized phase II multicenter trial
(NCT01280552, n 5 124), patients receiving the
DCs pulsed with TAAs had greater progression-
free survival without a significant improvement
to overall survival (progression-free survival of
11.2 months vs 9.0 months [P 5 .011] and overall
survival of 18.3 months vs 16.7 months
[P 5 .64]).61 Based on this trial, an HLA-A2 pa-
tient subpopulation was identified to have a
significantly increased overall survival and
increased responder rates for a phase III trial
(STING, NCT02546102). Unfortunately, STING
for HLA-A2 newly diagnosed glioma was termi-
nated owing to an inability to secure funding.
With the success of the multiple peptide vaccine,
another autologous DC vaccine pulsed with
known TAAs—IL13-Ra2, EphrinA2 and Survivin
(trade name: SL701)—was developed. Currently,
SL701 with or without Avastin (bevacizumab) is
under phase II investigation (NCT02078648).62

Human cytomegalovirus (CMV) proteins are
another interesting target being studied for DC
vaccines. Some reports suggest that human
CMV is frequently expressed in glioblastomas
but absent in surrounding normal tissue.63–65

CMV pp65 is a major CMV structural tegument
protein found in a subset of glioblastoma cells.
DCs pulsed with messenger RNA for pp65
generated T cells against CMV pp65. Early
phase I trials for patients newly diagnosed with
glioblastoma treated with DC pulsed with CMV
pp65 messenger RNA demonstrated increased
survival, safety, and significant immune
response against pp65.66,67 Larger phase II
studies of DC-pp65 have since demonstrated
reproducibility of previous clinical trial data
with, an overall survival of 37.7 and 38.3 months
in the ATTAC-GM and ATTAC-Td studies,
respectively. The most recent study also
demonstrated increased DC migration to the
draining lymph nodes bilaterally.68 Further trials
will be conducted to examine CMV pp65 vac-
cine’s efficacy alone or in combination with var-
lilumab for the activation of CD271 lymphocytes
(NCT03688178, NCT02465268).
Because DCs can mount an immune response

to a series of known antigens, DCs exposed to un-
known antigens through autologous tumor lysates
could also generate systemic immune responses
against a variety of tumor cells, with a possible
benefit to overall survival. DCs pulsed with autolo-
gous human tumor lysate that is, either acid-eluted
or freeze-thawed (DCVax-L) provide a patient-
specific vaccine based on a patient’s resected tu-
mor and covers a wide array of epitopes. In a
phase I trial, 12 patients (5 recurrent and 7 newly
diagnosed patients) treated with DCVax-L showed
an improved median progression-free survival
(median progression-free survival of 19.9 months
vs 8.2 months) and overall survival (median overall
survival of 35.8 months vs 18.3 months) compared
with historic controls with 50% survival at 2 years
and 2 patients still alive at the time of publication
(>58.0 and >48.4 months).69 These patients are
still alive today, over 16 years since the conclusion
of this initial Phase I trial. Six of the 12 patients
developed a systemic cytotoxic T-lymphocyte
response on in vitro lysis assays, 4 of the 8 patients
had tumor-infiltrating lymphocytes on reresection,
and 1 patient showed objective MRI changes after
injection. This phase I trial showed safety, bioac-
tivity, and feasibility, and led to a randomized,
multi-institute, double-blind, placebo-controlled
phase III clinical trial (NCT00045968) of DCVax-L.
The phase III trial compared chemoradiation
(n 5 99) with DCVax-L plus chemoradiation
(n 5 232) for patients newly diagnosed with glio-
blastoma in a 2:1 randomization, with crossover
upon progression.70 Because datalock was just
recently completed at the time of this writing, the
data remain blinded for this trial. However, a
recent interim update showed that the overall sur-
vival seems to be favorable (intention-to-treat me-
dian overall survival of 23.1 months; 2-year
survival rate of 46.2%; 3-year survival rate of
25.4%) and continues to be well-tolerated with
low levels of adverse events. Also, as expected,
the overall survival correlated with the extent of
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the resection.51 In contrast, DC lysate In order to
further enhance the efficacy of DCVax-L, a phase
II randomized trial for recurrent glioma patients
treated in combination with with DCVax-L in com-
bination with with programmed death 1 blockade
(NCT03014804) is underway.
� Brain tumor vaccines tested to date have
generally been well-tolerated, with the
most common side effects being moderate in-
jection site reactions. However, severe
adverse events, including toxic epidermal
necrolysis, have been reported.

� Steroids diminish the general immune
response to immunotherapy. In a small early
phase clinical trial using neoantigen peptide
vaccines, patients who received dexametha-
sone did not respond to therapy. Patients
receiving brain tumor vaccines should be on
minimal doses of steroids.

� Preliminary evidence on SurVaxM peptide has
shown amedian overall survival of 86.6 weeks
and 2 phase I studies on multiepitope,
personalized vaccines have shown potential
in inducing T-cell responses in glioblastoma.

� An interim analysis of the intent-to-treat pop-
ulation in a phase III DCVax-L study demon-
strated a median overall survival of
23.1 months from the surgery and a median
overall survival of patients with methylated
MGMT of 34.7 months from surgery; both
represent a significant increase when
compared with that of standard of care
treatment.

� The benefits derived from therapeutic vac-
cines are often observed at later time points
after treatment when compared with other
therapy types. This factor is often demon-
strated in the tail of survival curves.
SUMMARY

Glioblastoma treatments are in dire need of
additional therapeutic options. Peptide and DC
vaccines have demonstrated safety as potential
treatments for brain tumors. A few treatments
including SurVaxM and DCVax-L show early
promising results with data from DCVax-L
pending evaluation of phase III data. Cancer
vaccines activate robust antitumor responses
through immunostimulation against cancer anti-
gens or transfusion of DCs stimulated ex vivo
against tumor antigens to initiate adaptive im-
munity. Importantly, vaccines have shown the
ability to induce antitumor T-cell trafficking and
antibody production across the blood–brain bar-
rier. GAPVAC-101 and DCVax-L also have the
benefit of activating an immune response
against multiple cancer antigens, and DCVax-L
in particular can target unknown antigens by
pulsing the cells with autologous tumor lysate,
thereby potentially overcoming the problem of
tumor heterogeneity. Recent results have
demonstrated the potential for cancer vaccines
to become an important therapeutic option in
addition to surgery, radiation, and
chemotherapy.

Although tumor vaccines have shown poten-
tial, there are still many opportunities to improve
their cancer fighting capabilities. Activated T
cells that migrate to the tumor face a harshly
immunosuppressive environment and previous
studies have demonstrated that vaccine-
stimulated T cells exhibit many of the classic
exhaustion markers once they engage with the
cancer. To overcome these challenges, combi-
nation therapies incorporating both tumor vac-
cines and checkpoint inhibitors or
immunostimulants are currently underway.
Furthermore, vaccines targeting single antigens
create selection pressure for tumor cells
expressing the antigen at lower levels, which
leads to therapeutic resistance. Vaccines target-
ing a broader cancer antigen landscape have
been developed, but their efficacy must be vali-
dated and reproduced in larger studies. There
have also been great strides made in using
patient-specific tumor transcriptome or prote-
ome data to develop personalize vaccines. This
strategy can identify personalized neoantigens
to combat the heterogenous glioblastoma tumor
population, but the efficacy of targeting pre-
dicted neoantigens in glioblastoma is only theo-
retical and further research is needed to
determine their effectiveness.
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