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Abstract
Glioblastoma (GBM), the most common primary malignant brain tumor, remains difficult to treat and shares phenotypes, 
including an aberrant immune response, with other neurological disorders. Understanding the cellular and molecular mecha-
nisms underlying this pathological immune response remains a priority, particularly as standard of care for advanced cancers 
evolves to include immunotherapies, which have yet to show strong clinical efficacy in GBM. Epidemiological evidence 
supports a sex difference in GBM, with increased prevalence in males, and recent studies identified differences between 
males and females ranging from genetic aberrations to cellular programs. Sex differences have also been identified in immune 
response, and in this mini-review, we present these differences to highlight potential sex-specific cellular and molecular 
mechanisms that underly GBM growth and response to immunotherapies. These sex differences offer an opportunity to 
understand GBM pathogenesis and extend beyond GBM to other tumors and neurological disorders to inform the develop-
ment of next-generation therapies.
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Introduction

Glioblastoma (GBM) remains the most common primary 
malignant brain tumor and, despite aggressive multi-modal 
therapies including surgical resection and concomitant radia-
tion and chemotherapy, is associated with a poor prognosis. 
Overall survival has not increased dramatically over the last 
30 years, and identifying targetable cellular and molecu-
lar mechanisms in GBM remains a priority. While targeted 
pathway therapies, anti-angiogenic approaches, and now 
immunotherapies (including immune checkpoint inhibi-
tors (ICIs), vaccines, and chimeric antigen receptor (CAR) 

T cell therapy) have shown efficacy in advanced cancers, 
results from large-scale GBM clinical trials continue to be 
negative (Brahm et al., 2020). This underscores the need to 
better understand GBM pathogenesis, including the role of 
a potently suppressive immune microenvironment and may 
contribute to immunotherapy resistance. In GBM, males 
have an increased prevalence and poorer outcome (Ostrom 
et al., 2018). These sex differences are an emerging area of 
interest, and studies have identified sex-specific genetic aber-
rations and sex differences in cellular programs, including 
increased cancer stem cell signaling in samples from males 
with GBM, and magnetic resonance imaging patterns (Beig 
et al., 2020). In addition, it is well established that there is a 
profound sex difference in immune responses, with females 
having a more active immune system than males (Klein & 
Flanagan, 2016), suggesting the role of immune system in 
sexual dimorphism in GBM pathogenesis. In this mini-
review, we highlight these sex differences in the context of 
GBM, the immune system, and immunotherapy response 
with the goal of identifying potential sex-specific mecha-
nisms that can be leveraged for the generation of more effec-
tive therapies (Fig. 1). While GBM is used as a paradigm for 
this discussion, these differences have implications for other 
advanced cancers and neurological disorders.
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Sex Differences in Myeloid Cells

The importance of sexual dimorphism in neuro-inflamma-
tion becomes apparent when considering microglia, the 
innate immune cells of the brain. Sex hormones are a key 
determinant of brain development in rodents and are par-
tially responsible for differences observed in microglia num-
ber and morphology in male and female mice (Wright-Jin 
& Gutmann, 2019). These sex hormone-induced differences 
in microglia also help regulate masculinization of the brain 
in rodents, a process that drives male copulatory behavior 
(Wright-Jin & Gutmann, 2019). New evidence suggests that 
these sex-specific differences in male and female microglia 
persist into adulthood. RNA sequencing has revealed distinct 
expression patterns of microglia isolated from the brains 
of adult male and female mice, while further examination 
of their activation states highlights an elevated inflam-
matory phenotype of male microglia compared to female 
(Villa et al., 2018). Notably, gene expression patterns of 
female microglia are retained when transplanted into male 
mice, suggesting that hormonal influence early in develop-
ment may have lasting effects on these cells (Villa et al., 
2018). These expression patterns are also matched by func-
tional differences, as shown in experimental stroke models 
where female microglia are protective and can attenuate the 
severity of stroke in male mice (Villa et al., 2018). These 

microglial phenotypes become increasingly relevant in a 
disease context, as seen in children with neurofibromatosis 
type 1 (NF1). NF1 predisposes both male and female chil-
dren to the development of optic pathway gliomas; however, 
girls develop vision loss at a much higher rate than boys (by 
3- to 5-fold), an observation that has since been attributed 
to the effect of estrogen on microglia (Wright-Jin & Gut-
mann, 2019). While further work is needed to determine 
how sex-specific differences in microglia influence tumor 
maintenance and progression in GBM, the work highlighted 
above and recent observations revealed initial sex-specific 
molecular mechanisms for microglia activation (Turaga 
et al., 2020).

In GBM, breakdown of the blood–brain barrier results in 
infiltration of monocytes, macrophages, and other immune 
cells into the tumor microenvironment. Single-cell RNA 
sequencing studies of sorted microglia, monocyte, and mac-
rophage populations from male and female tumor-bearing 
rodent brains has revealed an upregulation in MHC class 
II-associated genes in male microglia, consistent with pre-
vious data suggesting that these cells are more reactive in 
males compared to females (Ochocka et al., 2021). Analysis 
of human data from The Cancer Genome Atlas (TCGA) and 
single-cell sequencing data from patients with diffuse glioma 
(WHO grade II) corroborated these findings, demonstrating 
sex-dependent differences in MHC class II gene expression 
(Ochocka et al., 2021). A strong sexual dimorphic phenotype 
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Fig. 1  Factors underlying sex differences in GBM. Schematic depict-
ing differences in GBM incidence and outcome as well as distinct 
responsiveness to immune checkpoint inhibitor (ICI) therapy between 
male and female cancer  patients, along with differences in immune 

response, microbiome, tumor genetic mutation, and sex chromosomes 
(PPAR peroxisome proliferator-activated receptor, SCFA short chain 
fatty acid, TMB tumor mutational burden, NP neutrophil, MΦ mac-
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has also been described in the two myeloid-derived suppres-
sor cell (MDSC) subsets, monocytic (m-) and granulocytic 
(g-) MDSCs. Male mice with GBM tumors were found to 
have mMDSCs localized to the tumor microenvironment, 
whereas female tumor-bearing mice had enrichment of 
gMDSCs in the blood (Bayik et al., 2020). Importantly, 
these differences were shown to regulate a differential thera-
peutic response, which has important clinical implications 
(Bayik et al., 2020). These studies provide evidence for the 
importance of sex differences in the myeloid compartment 
in GBM and highlight the need for additional insight into 
how these differences can be leveraged for the treatment of 
GBM, especially in immunotherapy response.

Broader Sex Differences in the Immune 
System

Sex differences in immune response have been implicated/
studied in autoimmune and infectious diseases for more 
than a decade. Typically, females have stronger and more 
robust innate and adaptive immune response compared to 
males (Fig. 2). In healthy females, neutrophils exhibit higher 
expression of genes associated with type I interferon signal-
ing, whereas male neutrophils have significantly increased 
mitochondrial metabolism, an indicator of immature phe-
notype (Gupta et al., 2020). Females have a greater number 
of CD4+ T cells and a higher CD4:CD8 ratio, and males 
have higher CD8+ and regulatory T cell (Treg) counts (Klein 

& Flanagan, 2016). Upon activation, female CD4+ T cells 
tend to exhibit a Th1 phenotype, producing high levels of 
IFN-γ, whereas male CD4+ T cells become Th17 cells that 
mainly produce IL-17A (Zhang et al., 2012). Data suggest 
that this Th1/Th17-biased sexual dimorphism is driven by 
sex hormones. In vivo treatment of male mice with estrogen 
resulted in a marked increase in IFN-γ production in splenic 
T cells via upregulation of T-bet expression, mimicking the 
female phenotype (Karpuzoglu et al., 2007). In contrast, 
androgen negatively regulates NF-κB- and c-Jun-mediated 
IFN-γ production in T cells via the upregulation of peroxi-
some proliferator-activated receptor (PPAR)-α (Dunn et al. 
2007). Androgen response elements were found in the pro-
moter regions of PPAR-α (Zhang et al., 2012) as well as 
protein tyrosine phosphatase (PTPN)-1, which inhibits IL-12 
signaling and thereby antagonizes Th1 cell differentiation 
(Kissick et al., 2014). A recent study using a murine model 
of bladder cancer showed that male CD8+ T cells adopt 
an exhausted phenotype over the course of tumor progres-
sion, while their female counterparts maintain their effector 
function (Kwon et al., 2020), suggesting divergent repro-
gramming of T cells in a sex-dependent manner. In addition 
to the sex hormone effect, genetic factors also contribute 
to sex differences in immune response. Given that many 
immune-related genes and micro-RNAs are encoded by 
the X chromosome and sex-specific immune responses are 
observed pre-puberty and are thus sex hormone independent 
(Klein & Flanagan, 2016), identifying sex hormone-versus 
sex chromosome-derived factors will be essential. The four 

Fig. 2  Sex differences in the 
hematopoietic lineage. Sche-
matic depicting sex differences 
in hematopoietic differentiation, 
with the dotted line indicating 
a cell differentiation process 
and sex differences specifically 
found in cancer (HSC hemat-
opoietic stem cell, CLP com-
mon lymphoid progenitor, NK 
natural killer cell, DC dendritic 
cell, GMP granulocyte-mono-
cyte progenitor, MP monocyte 
progenitor, MLPG monocyte-
like precursors of granulocytes, 
GP granulocyte progenitor, NP 
neutrophil, BP basophil, EP 
eosinophil)
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core genotypes model can be a useful tool to explore the 
mechanisms underlying sex differences. This model gener-
ates XX gonadal males or females as well as XY gonadal 
males or females, which enables to distinguish whether the 
sex differences arise from hormonal effects or sex chromo-
some complement.

Sex Differences in Immunotherapy

Despite clear sex-biased incidence and outcome of cancers 
including brain cancers, little is known about sex differences 
in cancer immunology. As ICI therapies have emerged, the 
impact of sex differences on anti-cancer immune functions 
has begun to be elucidated. In cancers which are responsive 
to ICI, the ICI treatment is predominantly more effective in 
male compared to female patients. Particularly, anti-CTLA-4 
treatment led to prolonged overall survival in male patients, 
with the exception of melanoma patients, while no sex 
difference was observed with anti-PD-1/PD-L1 treatment 
(Grassadonia et al., 2018). Moreover, a more comprehen-
sive meta-analysis study further showed that the level of 
PD-L1 expression by tumor cells has a critical impact on 
sexual dimorphism in anti-PD1/PDL-1 ICI efficacy (Li et al., 
2020). Enhanced overall survival of both sexes was observed 
in patients with high PD-L1 expression (> 1%) whereas ICI 
was effective exclusively in female patients with low PD-L1 
expression (< 1%). A previous murine study showed that 
PD-L1 expression on female Treg was critical for main-
taining its suppressive function against estrogen-mediated 
functional reduction (Lin et al., 2010), suggesting that PD-
L1-dependent regulation of Treg function may underlie the 
female-specific efficacy of PD-1/PD-L1 targeted ICI treat-
ment. Including GBM, female tumors tend to have lower 
tumor mutational burden (TMB) due to strong MHC class 
II-based immune selection during tumor development (Cas-
tro et al., 2020). This weaker antigenicity of female tumors 
may lead to less effective anti-tumor immune response upon 
ICI treatment in female patients.

Sex Differences in Genetic and Epigenetic 
Regulations

Genetic mutation also plays an important role in sexual 
dimorphism, as demonstrated by recent findings reveal-
ing the contribution of sex to brain tumor incidence and 
outcome. Independent of isocitrate dehydrogenase (IDH) 
mutation, the overall survival rate of female patients was 
higher than that of males (Ostrom et  al., 2018). It was 
also suggested that the higher level and frequency of the 
O6-methylguanine-DNA methyltransferase (MGMT) pro-
moter methylation might correlate with increased survival 

in female patients (Ostrom et al., 2018). In addition, astro-
cytes in males with mesenchymal GBM display increased 
deactivation of the tumor suppressor retinoblastoma (RB), 
which leads to increased growth and induction of stem-like 
cell populations, indicating tumor-intrinsic sex differences 
(Sun et al., 2014). A recent study focused on tumor-intrinsic 
factors that drive sex differences expanded on this to per-
form intensive analysis of tumor transcriptome and outcome 
data from male and female GBM patients. Male and female 
tumors exhibited increased gene expression signatures asso-
ciated with cell cycle and integrin signaling, respectively, 
and these sex-specific factors critically impact patient sur-
vival (Yang et al., 2019). Given the link between TMB and 
ICI response, determining how these genetic differences 
impact immunotherapy response remains an immediate 
priority.

Emerging Areas: Microbiome and Metabolic 
Alterations

With the growing availability of metagenomics sequencing, 
the gut microbiome is gaining additional attention, and sex 
differences in the gut microbiome have been confirmed over 
the past few years (Vemuri et al., 2019). The interaction of 
the gut microbiome with immune cells in the gastrointestinal 
tract can have both local and systemic effects, implicating 
a gut-microbiome-tumor interface that requires a thorough 
investigation. Studies have shown that gut dysbiosis caused 
by antibiotics decreases the efficacy of ICI therapy as a can-
cer treatment (Gopalakrishnan et al., 2018). Fecal micro-
biota transplants of “favorable” microbiota into mice with 
“unfavorable” gut microbiota restores the effectiveness of 
ICI treatment. As this treatment has had limited efficacy in 
GBM (Brahm et al., 2020), investigating the gut microbiome 
may provide a potential avenue to improve GBM patient 
response to immunotherapy.

Expanding from the conventionally assessed gut and skin 
microbiome areas, the human tumor intracellular microbi-
ome was recently elucidated, illuminating distinct bacterial 
fingerprints found in different tumor types, including GBM 
(Nejman et al., 2020). Based on our understanding of sex 
differences in the gut microbiome and interactions between 
the gut microbiome and local immune cells, it is likely that 
sex differences in the tumor microbiome affect GBM and 
the local immune response. Gut bacteria populations in both 
mice and humans go through significant changes at sexual 
maturation, indicating sex hormones may drive selection of 
gut microbiota (Vemuri et al., 2019). The sexual dimorphism 
in the immune environment of GBM may add an extra layer 
of complexity to this interaction, as well. Other populations, 
such as the gut mycobiome and virome, are also in the early 
stages of investigation for cancer connections.



NeuroMolecular Medicine 

1 3

Sexual dimorphism may also play a role in GBM by 
affecting metabolic pathways. Glycolysis in grade 2 gliomas 
is not only different between males and females but is also 
predictive of prognosis when combined with gene expres-
sion and metabolite profiling data (Ippolito et al., 2017). 
Overall, nutrient utilization in GBM may differ between 
males and females, and this could contribute to the sex dif-
ferences in survival and prognosis that have been observed. 
Metabolic phenotyping could provide further information on 
sex differences and their implications in GBM.

Conclusions

These examples demonstrate the breadth and depth of sex 
differences that likely underlie differences in GBM inci-
dence, pathogenesis, and therapeutic response. Future 
studies should focus on fully elucidating these cellular 
and molecular mechanisms to drive the development of 
more effective therapies. Given these sex differences, pre-
clinical therapeutic assessments would benefit from taking 
into account sex as a biological variable, as these studies 
may reveal differences in efficacy and sex-specific resist-
ance mechanisms to inform clinical use. Finally, given the 
sex differences currently observed in GBM incidence and 
outcome, the structure of clinical interventions should be 
revisited, including the design of clinical trials that are also 
statistically powered to observe these sex differences. Taken 
together, sex differences may offer insight into multiple 
aspects of GBM, ranging from fundamental pathological 
processes to therapeutic response, and provide a new lens 
through which this complex disease can be viewed.
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