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Glioblastoma is the most common and most aggressive primary brain cancer in adults. Standard treat-
ment of glioblastoma consisting of maximal safe resection, adjuvant radiotherapy and chemotherapy
with temozolomide, results in an overall median survival of 14.6 months. The aggressive nature of
glioblastoma has been attributed to the presence of glioblastoma stem cells which express components
of the renin-angiotensin system (RAS). This phase I clinical trial investigated the tolerability and efficacy
of a treatment targeting the RAS and its converging pathways in patients with glioblastoma. Patients who
had relapsed following standard treatment of glioblastoma who met the trial criteria were commenced
on dose-escalated oral RAS modulators (propranolol, aliskiren, cilazapril, celecoxib, curcumin with piper-
ine, aspirin, and metformin). Of the 17 patients who were enrolled, ten completed full dose-escalation of
the treatment. The overall median survival was 19.9 (95% Cl:14.1-25.7) months. Serial FET-PET/CTs
showed a reduction in both tumor volume and uptake in one patient, an increase in tumor uptake in nine
patients with decreased (n = 1), unchanged (n = 1) and increased (n = 7) tumor volume, in the ten patients
who had completed full dose-escalation of the treatment. Two patients experienced mild side effects and
all patients had preservation of quality of life and performance status during the treatment. There is a
trend towards increased survival by 5.3 months although it was not statistically significant. These
encouraging results warrant further clinical trials on this potential novel, well-tolerated and cost-

effective therapeutic option for patients with glioblastoma.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:

Glioblastoma

Glioblastoma stem cells
Renin-angiotensin system
Renin-angiotensin system inhibitors
Renin-angiotensin system modulators
Drug re-purposing

1. Introduction

Glioblastoma or WHO grade IV astrocytoma is the most com-
mon and most aggressive primary brain cancer in humans. It is

Abbreviation: ACEls, angiotensin-converting enzyme inhibitors; ARBs, an-
giotensin receptor blockers; CI, confidence interval; CSCs, cancer stem cells; GSCs,
glioblastoma stem cells; IDH, isocitrate dehydrogenase; MGMT, methylation of O
[6]-methylguanine-DNA methyltransferase; QoL, quality of life; RAS, renin-
angiotensin system.
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characterized by microvascular endothelial proliferation and cen-
tral necrosis [1]. Current standard treatment of glioblastoma con-
sists of maximal safe surgical resection with adjuvant
radiotherapy and chemotherapy with temozolomide [2], an alky-
lating agent that promotes methylation of O[6]-methylguanine-
DNA methyltransferase (MGMT) [3] which is associated with an
improved survival of glioblastoma patients [4]. Despite this inten-
sive treatment, tumor recurrence in glioblastoma patients is inevi-
table with an overall median survival time of 14.6 months with a
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mean range of 12-14 months, which has not changed since 2005
[5,6].

The aggressive nature of glioblastoma has been attributed to the
presence of glioblastoma stem cells (GSCs), a small sub-population
of cancer cells in glioblastoma imbued with pluripotency properties
and the capacity for perpetual self-renewal and proliferation [7,8].
These GSCs are responsible for tumor growth and recurrence after
serial transplantations [9]. The presence of such GSCs is well-
supported in the literature and their interaction with the extracellular
matrix and tumor microenvironmental factors, including transform-
ing growth factor-B and hypoxia, may contribute to their resistance to
radiotherapy and chemotherapy [10]. Targeting GSCs may open a
therapeutic option that may improve both overall survival and
progression-free survival of patients with glioblastoma [11].

Multiple links exist between the renin-angiotensin system
(RAS) and cancer stem cells (CSCs) including the expression of
components of the RAS by GSCs [12]. Pro-renin receptor is crucial
for glioma development via the Wnt/B-catenin signaling pathway
[13], upstream of the RAS. Expression of components of the RAS
by CSCs has also been reported in other cancer types [14-20].
The RAS in the bone marrow can mediate hematopoietic cell pro-
duction [21] and plays a role in the hemangioblast fate decision
to form either blood cells or endothelial cells [22]. Angiotensin II
has been found to enhance the CSC phenotype of lung cancer cells
[23]. Renin is present in glioblastoma and may contribute to the
mechanisms of neo-vascularization in glioblastoma [24]. Further-
more, downregulation of the Ang(1-7)/MAS axis by podocalyxin
leads to enhanced glioblastoma cell invasion and proliferation
[25]. Cathepsins B, D and G which constitute bypass loops of the
RAS, are expressed in glioblastoma [26,27] with cathepsins B and
D being expressed by GSCs [28]. The RAS also plays a role in the
CSCs [29] and tumor microenvironment [30] in glioblastoma.

Medications such as B-blockers [31], angiotensin-converting
enzyme inhibitors (ACEIs) [32], aliskiren that blocks renin [33],
angiotensin receptor blockers (ARBs) [34], non-steroidal anti-
inflammatory drugs [35,36], that inhibit the RAS, its bypass loops
and converging pathways are off-patent and are in common use.
Furthermore, metformin that inhibits the insulin growth factor/in-
sulin growth factor receptor-1 pathway [37], and curcumin that
inhibits cathepsin B [38,39] result in inhibition of RAS activity
(Suppl. Fig. 1). These medications have been proposed as anti-
cancer therapies and may offer therapeutic options of targeting
GSCs in glioblastoma, and CSCs in other cancers [12,40]. Review
of epidemiological studies have demonstrated a reduced risk of
cancer and improved survival of cancer patients taking medica-
tions that modulate the RAS [41].

There has been interest in using combinations of cytotoxic
drugs, vascular endothelial growth factor blockers and checkpoint
inhibitors to enhance outcomes of standard treatment whilst
maintaining the quality of life (QoL) of patients with glioblastoma,
however, to date no particular combination has been shown to
prolong overall survival over the Stupp protocol [2,42,43]. The
CUSP-9 protocol, using nine re-purposed drugs, following the stan-
dard treatment of glioblastoma has also shown no significant
improvement of overall survival [44,45].

As GSCs express components of the RAS, and RAS modulators
have been found to have anti-cancer properties, we propose that
inhibiting the RAS using a combination of oral RAS modulators,
may offer a novel therapeutic option for patients with glioblastoma
who have exhausted conventional treatment options.

2. Methods

We conducted an open-label proof-of-concept phase I clinical
trial investigating the safety of a combination of RAS modulating
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drugs in slowing the progression of glioblastoma and/or preserving
the QoL and performance status, and improving the overall median
survival of patients with glioblastoma who had exhausted conven-
tional treatment options. Such patients were generally expected to
have limited life expectancy with deteriorating QoL. Each patient
served as their own control. This study was approved by the Cen-
tral Health and Disability Ethics Committee (ref. no. 17/CEN/8) and
the Standing Committee for Therapeutic Trials (ref. no. cancer-
studyRAS1) and was registered with the Australian New Zealand
Clinical Trials Registry (ref. no. ACTRN12619001078145). Written
consent was obtained from all participants.

The oral medications administered in this study were propra-
nolol, aliskiren, cilazapril, celecoxib, curcumin with piperine,
aspirin and metformin, to block the key steps of the RAS (Suppl.
Fig. 1). Piperine (an active ingredient of pepper) was included in
the curcumin formulation to increase the bioavailability of cur-
cumin [46]. As there are multiple steps within the RAS pathway
the treatment regimen was designed to inhibit as many of these
steps as possible to reduce the production of angiotensin effector
peptides. The treatment regimen was initiated by introducing
these RAS modulating drugs in a stepwise fashion and the dosages
were escalated over a period of ten weeks (Suppl. Table 1). The
fully dose-escalated treatment regimen was then maintained for
the entire duration of the study unless there were significant side
effects, or if it provided no benefit to the patient(s), or if the patient
(s) exited the study.

If the patient was already taking an ACEI and/or a B-blocker,
they would be substituted with the equivalent dose of cilazapril
and/or propranolol, respectively. If the patient developed a cough
associated with cilazapril, then cilazapril was discontinued and
losartan (150 mg daily) added. If the patient was already taking
metformin prior to the study, then the dosage of the medication
would continue and increased to 500 mg twice daily, if necessary.
Omeprazole 20 mg daily was administered to mitigate the risk of
gastrointestinal bleeding whilst on aspirin.

2.1. Eligibility criteria

Patients with glioblastoma who had relapsed and had
exhausted conventional treatment options, had a Karnofsky perfor-
mance score of at least 60, and did not meet the exclusion criteria
listed in Supplementary Table 1, were enrolled in this study.

2.2. Monitoring

Clinical examination, including blood pressure measurements,
was performed and data was collected at 2-weekly intervals during
the medication escalation period and thereafter at 3 monthly inter-
vals until exit from the trial. Baseline electrolytes and creatinine
levels and full blood count were measured and repeated during
escalation of treatment 2 weeks after a change in dosage of either
aliskiren or cilazapril (or losartan), and 3-monthly afterwards. The
date and the reason(s) for exiting the trial, and the date and cause
of death, were documented as appropriate.

2.3. Data collection

Patient demographic details including age, gender, co-
morbidities, smoking history, alcohol use, medications including
the type and dosage of RAS modulators, aspirin and other non-
steroidal anti-inflammatory drugs, and anti-diabetic treatment
were collected. Allergies and any contraindication to the trial med-
ications, and details of the tumor at the original diagnosis and the
response to previous treatment(s) were recorded and entered on
the clinical trial database.
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Each patient completed the EORTC QLQ-30 and EORTC QLQ-
BN20 Questionnaires [58] and Karnofsky score prior to (baseline)
and 2-monthly during treatment, to assess and record their QoL
and performance status, until death or exit of the study. Patients
whose Karnofsky scores fell below 60 were required to exit the
study. Questions 1-28 of the EORTC Questionnaires assessed their
general health and well-being while Questions 31-50 assessed
brain-specific matters. These questionnaires were scored as 1
(not at all) to 4 (very much), i.e., a higher score indicates poorer
QoL. For statistical analysis, these scores were aggregated and
transformed into a percentage of the total score. Questions 29
and 30 asked the patients to rate their overall health and QoL, from
1 (very poor) to 7 (excellent), i.e., a high score indicates better
health or QoL respectively. For statistical analysis, all these
responses were also recorded as a percentage score.

Baseline and serial (3, 6, and 12 months following initiation of
treatment) FET-PET/CTs were performed. The calculated volume
(by multiplying the maximal cranio-caudal, sagittal and lateral
dimensions) and the maximal avidity of the tumor(s), were
recorded. The date and the reason(s) for exiting the trial, including
death, and the cause of death, were documented as appropriate.

2.4. Statistical analysis

To calculate the overall survival from diagnosis, survival analy-
sis methods were used, including Kaplan-Meier survival curves
and the calculation of mean and median survival with 95% confi-
dence intervals. Other time variables (e.g., time on study) were
analyzed in the same way. QoL and performance scores were sim-
ply assessed graphically so that changes over time could be
examined.

3. Results

Of the 28 patients with glioblastoma referred for the study, 11
were excluded for various reasons (Suppl. Table 2) according to
the exclusion criteria, including three patients in whom no uptake
of the tumor was demonstrated on FET-PET/CT (Suppl. Table 2). 17
(10 male and 7 female) patients, aged 19-75 (mean, 55.4; median,
56) years, were enrolled. Ten patients had full dose-escalation (at
least ten weeks) of the treatment. Seven patients did not achieve
full dose-escalation of the treatment and had 3-69 (average 16.7)
days of treatment. Six of these patients had extensive tumor bur-
den (Fig. 1) at enrolment, suffered rapid deterioration with a
Karnofsky score of less than 60, and the remaining patient with-
drew from the study 69 days following initiation of treatment.
Patients who had full dose-escalation of treatment had, on average,
205 (range 105-398) days of treatment. All patients are now
deceased.

The presence of isocitrate dehydrogenase (IDH) mutation and
MGMT methylation of the glioblastoma of the participants, where
available, are shown in Supplementary Table 3.

Serial FET-PET/CTs of the ten patients who had full dose-
escalation of the treatment showed a reduction in both tumor
uptake and volume in one patient (Fig. 2), an increase in tumor
uptake in nine patients in whom there was decreased tumor vol-
ume in one patient, no change in tumor volume in another patient,
and increased tumor volume in seven patients.

Fig. 3 shows the cumulative survival of the trial participants.
The average time from diagnosis to death was 20.5 (s.d. 2.09;
95% CI: 16.4-24.6) months with a median overall survival of 19.9
(range 8.7-35.3; 95% CI: 14.1-25.7) months for the entire cohort.
The average time from diagnosis to death was 23.8 (s.d. 3.8; med-
ian 24.0) months for patients who had full dose-escalation of the
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treatment, and 15.7 (s.d. 9.5; median 13.8) months for patients
who did not have full dose-escalation of the treatment.

3.1. Quality of life

The patients who had completed full-dose escalation of the trial
medications maintained their QoL throughout the study. The mean
percentage scores for Q1-28, Q29, Q30 of the EORTC QLQ-30 Ques-
tionnaires, and Q31-50 of the EORTC QLQ-BN20 Questionnaires for
the trial participants over time are shown in Fig. 4. Patients who
did not complete full dose-escalation of the trial medications did
not complete QoL measurements beyond their baseline measure-
ments and so are not included in these graphs.

The means were between 0 and 50% at all time points for both
percentage scores for Q1-28 and Q31-50, indicating mild to moder-
ate difficulties both in general (Q1-28) and with respect to brain
function (Q31-50). For Q29, the means were 50-75%, indicating
moderately good general health, and for Q30 the means were
50-75%, up to 12 months before there was a slight decline. The
confidence intervals were wider for the later times as fewer
patients had data for analysis.

To determine if there was a difference at baseline QoL that was
associated with the patient’s likelihood of completing the therapy,
a t-test was used to compare the means of the four summary vari-
ables between patients who had full dose-escalation of the treat-
ment and those who did not. At baseline, the means for patients
who had full dose-escalation of the treatment were lower than that
for patients who did not have full dose-escalation of the treatment,
as evidenced by the percentage scores for Q1-28 of 20.4 + 14.9 vs
27.2 £ 8.1 and Q31-50 of 20.7 £ 10.6 vs 28.3 = 14.7 indicating that
patients who had full dose-escalation of the treatment had a better
QoL. In addition, for Q29 and Q30, the means were higher for
patients who had full dose-escalation of the treatment
(63.3 £17.2 vs 59.5 + 18.9 and 65.0 + 21.4 vs 61.9 * 15.9), again
indicating a better health and QoL. However, the standard devia-
tions were high, so these results did not achieve statistical signifi-
cance (p-values 0.229-0.751).

There was no indication of a trend of either improvement or
worsening QoL over time (regression analysis).

3.2. Performance status

The performance status of all trial participants, measured by
Karnofsky scores, was maintained until death or exit from the
study. Patients exited the study once their Karnofsky score was less
than 60. Therefore, the length of time from diagnosis until study
exit measures the time when the patients had good (Karnof-
sky > 60) performance status. Overall, for the entire cohort, the
mean time at Karnofsky > 60 was 18.4 months (95% CI: 13.9-
22.8) and the median was 16.2 months (95% CI: 12.4-19.9). For
patients who had full dose-escalation of the treatment, the mean
was 21.7 (17.1-26.3) and the median 18.5 (range 10.5-26.5).
Patients who did not have full dose-escalation of the treatment,
the mean was 13.6 (range 6.0-21.3) and the median 11.1 (range
9.0-13.2). To further describe the time that patients maintained
at Karnofsky > 60, the duration above 60 is grouped in Table 2.

3.3. Side effects

One patient developed a marginal bradycardia of 58 beats/min-
ute (60 beats/minute at baseline) attributed to propranolol. One
further patient developed indigestion possibly related to curcumin.
However, symptoms resolved without the need to cease curcumin.
No patient developed hypotension and serial blood tests showed
no deterioration of renal function.
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Fig. 1. FET-PET/CTs showing extensive recurrent glioblastoma in a 60-year-old female patient (A), and a 31-year-old male patient (B) who did not have full escalation of the

trial treatment.

Fig. 2. FET-PET/CTs of a 65-year-old male patient with glioblastoma who had full dose-escalation of the trial treatment, beore (A), and 3 months following initiation of the
trial medications (B) showing reduced tumor volume (from 32 cm? to 19 cm?®) and the mean standardized uptake values (from 4.1 to 3.8).

4. Discussion

This phase I clinical trial demonstrates the treatment regimen
consisting of a combination of modulators of the RAS and its con-
verging pathways for patients with glioblastoma is well-tolerated
with minimal side effects. The average survival of the entire cohort
was 20.5 months, with a median overall survival of 19.9 months.
Although this compares favorably to the 12-14 months of median
overall survival following standard treatment for glioblastoma
patients [6], it is not statistically significant (95% CI: 14.1-

51

25.7 months) given the small sample size. Another limitation of
this study is that there may be a potential bias in that median sur-
vival time is predicated on the date of diagnosis. As the study was
not a randomized control trial, patients acted as their own controls
although this is acceptable for a feasibility study. Rapid deteriora-
tion of the patients who had advanced disease with a large tumor
burden demonstrated on FET-PET/CTs, contributed to the seven
patients not completing full dose-escalation of the trial treatment.
Despite six of these patients having MGMT methylation they had a
mean survival of 15.7 (s.d. 9.5; median 13.8) months, compared
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Cumulative Survival

1000 2000 3000 4000

Months from diagnosis to death

Fig. 3. Kaplan-Meier survival curve of 17 patients with glioblastoma treated with
the trial medications. All patients entered the trial > 9 months following
conventional treatment.

with 23.8 (s.d. 3.8; median 24.0) months for the patients who com-
pleted full dose-escalation of the treatment, suggesting a survival
benefit for the latter. Moreover, patients who had full dose-
escalation of the trial treatment maintained their Karnofsky scores
of > 60 for a mean of 21.7 (range 17.1-26.3) months, reflecting rea-
sonable control of their glioblastoma, good tolerance of the trial
medications and consequently maintenance of a satisfactory QoL
until death. However, these results may be limited by the fact that
IDH mutation was present in two patients and MGMT methylation
was present in five patients. Consequently, these patients may
have been expected to survive longer independent of other factors
such as administration of RAS-modulating drugs. Notwithstanding
the lack of statistically significant overall survival benefit, the low

Journal of Clinical Neuroscience 95 (2022) 48-54

incidence of adverse effects, and the survival outcomes are favor-
able compared to other studies using bevacizumab and pem-
brolizumab which show a higher rate of adverse effects with no
survival benefit for patients with recurrent glioblastoma [47,48].

Three of the 28 patients referred for the trial who showed no
uptake on FET-PET/CT despite relapse demonstrated on MRI scans,
were excluded from this trial. An MRI scan is an adequate imaging
tool in documenting treatment-naive glioblastoma and is typically
used in the clinical setting to monitor glioblastoma following treat-
ment [49]. However, FET-PET/CTs are increasingly used as they
offer advantages in determining active pre-treatment tumor,
tumor volume and tumor recurrence following treatment [50].
Current trends value FET-PET/CTs not as a surrogate marker for
the tumor but a direct measurement and an anatomical map of
greater amino acid metabolism of the tumor cells, compared to
normal brain tissue exhibiting less protein synthesis [51]. The
cohort of patients who failed to complete full dose-escalation of
the trial medications had a greater volume of tumor burden at
the time of recruitment seen on FET-PET/CTs. Early FET-PET/CTs
in our study protocol could detect early active tumor recurrence,
but could also show the absence of active tumor indicated by
MRI scan, as with the three patients excluded from our study. Fur-
ther to early FET-PET/CTs in glioblastoma post-operatively to
reduce margins of radiotherapy [52], we would suggest the value
of using FET-PET/CTs routinely in the clinical setting.

This study shows the use of a combination of repurposed com-
monly prescribed oral RAS modulators is well-tolerated in patients
with glioblastoma with minimal adverse effects. This study has
shown a trend towards an improvement in survival. A phase II/III
clinical trial, with earlier introduction of this treatment regimen
is warranted to further investigate this novel, well-tolerated and
cost-effective therapeutic option for patients with glioblastoma.
Furthermore, these results may support the proposed role for the
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RAS in GSCs in glioblastoma and underscores the need for further
research from bedside to bench to unravel these complex signal
pathways.
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