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Abstract

Background and Purpose: Glioblastoma (GBM) is an aggressive primary CNS neoplasm

with poor overall survival (OS) despite standard of care. On MRI, GBM is usually charac-

terized by an enhancing portion (CET) (surgery target) and a nonenhancing surrounding

(NET). Extent of resection is a long debated issue in GBM, with recent evidence suggest-

ing that both CET and NET should be resected in <65 years old patients, regardless of

other risk factors (i.e., molecular biomarkers). Our aim was to test a radiomic model for

patient survival stratification in<65 years old patients, by analyzingMRI features of NET,

to aid tumor resection.

Methods: Sixty-eight <65 years old GBM patients, with extensive CET resection, were

selected. Resection was evaluated by manually segmenting CET on volumetric T1-

weighted MRI pre and postsurgery (within 72 h). All patients underwent the same treat-

ment protocol including chemoradiation. NET radiomic features were extracted with a

custom version of Pyradiomics. Feature selection was performed with principal compo-

nent analysis (PCA) and its effect on survival tested with Cox regression model. Twelve

months OS discrimination was tested by t-test followed by logistic regression. Statistical

significance was set at p<0.05. The most relevant features were identified from the com-

ponentmatrix.

Results: Five PCA components (PC1-5) explained 90% of the variance. PC5 resulted sig-

nificant in the Cox model (p = 0.002; exp(B) = 0.686), at t-test (p = 0.002) and logistic

regression analysis (p=0.006). Apparent diffusion coefficient (ADC)-based featureswere

themost significant for patient survival stratification.

Conclusions: ADC radiomic features on NET predict survival after standard therapy and

could be used to improve patient selection for more extensive surgery.

KEYWORDS

GBM,MRI, neurosurgery, radiomics, survival

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and nomodifications or adaptations aremade.

© 2021 The Authors. Journal of Neuroimaging published byWiley Periodicals LLC on behalf of American Society of Neuroimaging

1192 wileyonlinelibrary.com/journal/jon J Neuroimaging. 2021;31:1192–1200.

https://orcid.org/0000-0001-7406-7951
mailto:alberto.dinapoli@uniroma1.it
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/jon
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjon.12903&domain=pdf&date_stamp=2021-07-07


GLIOBLASTOMARADIOMICS TOPREDICT SURVIVAL 1193

INTRODUCTION

Glioblastoma (GBM) is the most common and severe primary malig-

nant brain tumorof the adult.1 The standardof careof newlydiagnosed

GBMconsists of surgical resection followed by concomitant radiother-

apy (RT) and chemotherapy with temozolomide (TMZ).2 The extent of

resection is mainly guided by the boundary of the contrast-enhancing

portion of the tumor (CET) on T1-weighted images from MRI, and

directly correlates with patient survival.3–6 RT planning is also per-

formed following CET borders.7 However, the overall survival (OS) of

patients with GBM remains dismal, with a median of 15–17 months.8

GBMs are known to extend beyond the border of CET, affecting brain

tissue even in distant areas.9 MRI hyperintensity surrounding the

enhancing tumor on T2 and Fluid Attenuated Inversion Recovery

(FLAIR) images is a common finding in GBM, representing a com-

bination of infiltrating tumor cells and vasogenic edema, hence it is

usually referred as noncontrast enhancing tumor (NET),10,11 whose

extension has been correlated with poor prognosis.12 After surgical

resection, recurrence occurs more frequently along the resection

margins where NET contains more infiltrating cells.13 NET resection

has long been debated in the literature, due to exponential risk of

postsurgical deficits accompanying increasing radicality.14,15 As a con-

sequence, it is always difficult for neurosurgeons to decide the extent

of surgical resection.16–18 Recently, a seminal study from Molinaro

et al. correlated the extent of resection (both CET and NET) in GBM

with OS in one of the largest cohorts to date; their results showed

that young patients (<65 years) benefit from extensive NET resection

regardless of other classic outcome predictors, such as isocitrate

dehydrogenase 1–2 (IDH1–2) mutation, and O6-methylguanine-DNA

methyltransferase promotor methylation status in IDH wild-type

tumors.19 The study concludes with the recommendation to pursue

maximal radicality in NET resection in patients <65 years old, inde-

pendently from molecular data. Since extensive resection could lead

to more severe loss of functions, a detailed survival stratification is

mandatory, especially in young patients.

Neuroimaging can provide useful insights for such stratification

by means of noninvasive biomarkers from MRI. While conventional

imaging sequences have poor accuracy in discriminating infiltrating

neoplasm from vasogenic edema, with frequent overlapping features,

few studies have attempted detection of viable neoplasm in NET

regions by means of advancedMR techniques, such as perfusion imag-

ing, diffusion imaging, or spectroscopy.20–22 The rationale of such

attempts lies in the correlation between MR parameters and micro-

scopic characteristics of the brain tissue, such as cellularity for dif-

fusion parameters23,24 or vascularization for perfusion techniques,25

which are typically more elevated in tumoral rather than edematous

tissue.More recently, radiomics, a radiology field based onquantitative

features extraction from medical images, mostly invisible to the naked

eye, has shown promising results on this matter.26 Current radiomic

studies have showed the possibility of capturing NET heterogeneity,

providing useful prognostic biomarkers based on conventional27 and

advanced MRI,7 which could guide surgical resection and postopera-

tive RT. However, most of these studies do not select patients based

on the extent of resection, which is one of the main determinants of

survival, creating a potential bias. Furthermore, results are often not

directly applicable to the clinical practice because the studies fail to

address a population of patients<65 years, which represents the main

target for NET radical resection permost recent recommendations.19

The aim of the present study is to obtain a survival stratification of

GBMpatients based on radiomic features extracted from preoperative

NET in both conventional (FLAIR) and advanced (diffusion weighted

images [DWI] and dynamic susceptibility contrast perfusion weighted

images [DSC-PWI]) MRI sequences in a selected population of young

patients (<65years)whounderwent extensiveCET resection of patho-

logically proven GBM. Our goal is to identify noninvasiveMR biomark-

ers predictive of patient survival to help the decision of extended sur-

gical radicality in this specific population.

METHODS

Subjects

This retrospective observational study was conducted in agreement

with theHelsinki declaration andwas approved by the institutional IRB

(protocol number: 19 SA_2020). We selected patients with a diagno-

sis of GBM, who underwent preoperative MRI from March 2005 to

May 2019, and underwent extensive (>80%) CET resection.6 To eval-

uate survival stratification based NET only, we excluded patients with

CET resection <80% since the residual tumor may significantly impact

survival in this group.6 Data were collected on a 1.5T scanner (Mag-

netom Sonata, Siemens, Erlangen, Germany). We enrolled patients ful-

filling the following inclusion criteria: histopathological diagnosis of

GBM; preoperative MRI with structural images and diffusion or per-

fusion techniques; postoperative MRI within 72 h from surgery with

structural images; >80% CET resection as demonstrated on MRI; and

availability of survival data. Exclusion criteria were motion artifacts or

other causes of suboptimal images, loss of patients’ information during

follow-up.

All patients received postoperative focal RT plus concomitant daily

TMZ, followed by adjuvant TMZ therapy, with the same treatment pro-

tocol. RT started within 4 weeks of surgery and consisted of fraction-

ated focal irradiation at a dose of 60 Gy, delivered in 30 fractions of

2 Gy over 6 weeks. Concomitant chemotherapy consisted of TMZ in

a dose of 75 mg/m2 administered 7 days/week from the first day of

RT. Adjuvant TMZ therapy began 4 weeks after the end of RT and

was delivered for 5 days every 28 days, up to 12 cycles. The dose was

150 mg/m2 for the first cycle and was increased to 200 mg/m2 for the

second one.

Patientswere labeled to discriminate between long- and short-term

survivors with the threshold of 12 months from diagnosis (survival >

12 or < 12 months), based on the typical median survival time of GBM

patients and previous studies.28–30

MR image acquisition

MR examinations were acquired with a 1.5T scanner and the following

protocol: axial FLAIR [repetition time [TR]/echo time [TE] 10,000/126
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ms; slice thickness [ST] 4 mm, inversion time [IT] 2500 ms; flip angle

[FA] 150◦; matrix 512 × 512); DWI (TR/TE 3000/84 ms; ST 5 mm; FA

90◦; matrix, 256 × 256) with three levels of diffusion sensitization (b-

values 0, 500, and 1000) and relative apparent diffusion coefficient

(ADC) maps; DSC-PWI during contrast injection (Gadoteric acid; dose

0.1 mmol/kg, injection rate 5 ml/s) followed by a 20-ml saline flush,

based on T2*-weighted gradient-echo echo-planar sequence (TR/TE

1490/40 ms; flip angle 90◦; FOV 230 × 230 mm; matrix 128 × 128, 14

sections of 5mm thickness, 50 volumes);magnetization prepared rapid

gradient-echo (MPRAGE) (TR/TE 1840/4.4 ms; ST 1 mm; IT 1100 ms;

FA 15◦; matrix 256 × 256) after administration of contrast. Perfusion

parametric maps were obtained through a dedicated software pack-

ageOleaSphere software (version 3.0,OleaMedical, LaCiotat, France).

A relative cerebral blood volume (rCBV) map was generated by using

an established tracer kinetic model applied to the first-pass data.31 As

previously described,32 the dynamic curves were mathematically cor-

rected to reduce contrast agent leakage effects.

Image processing

For every patient, MRI sequences were automatically coregistered

with reference to MPRAGE using FMRIB’s Linear Image Registra-

tion Tool (FLIRT) of FSL.33 Three regions of interest (ROIs) were man-

ually drawn on MPRAGE and FLAIR images by a neuroradiologist

(L.P., with 6 years of experience in radiology) using 3D-Slicer (https:

//www.slicer.org). Doubtful cases were solved as for consensus with

a senior neuroradiologist (A.B., with 25 years of experience in radi-

ology). ROIs were contrast-enhancing tumor (CET), necrosis (NEC)

and whole tumor including peritumoral edema (T2). The nonenhancing

tumor (NET) ROI was obtained from T2, CET, andNECROIs as follows:

T2 – (CET+NEC).

The extent of resection was evaluated by a Resection Index (RI).

Briefly, pre and postcontrast volumetric images were selected from

postoperative studies performed within 72 h of surgery and automat-

ically coregistered to MPRAGE using FLIRT of FSL. CET was manually

segmented on postoperative scans by a neuroradiologist (A.D.N. with 6

years of experience in radiology) using 3D-Slicer. The enhancing tumor

was distinguished from blood products by comparison between pre

and postcontrast images. Doubtful cases were solved as per consen-

sus with a senior neuroradiologist (A.B., with 25 years of experience

in radiology). RI was calculated from the volume of preop and postop

CET ROIs as follows: %[CET (preop) – CET (postop)]/CET(preop). The

surgical resection was considered radical if more than 80% tumor was

removed, similar to previous studies.6,19

Radiomic feature extraction and statistics

Based on recent findings,34 we performed intensity nonstandardness

correction on our multi-institutional data by scaling each image with

respect to its mean value within specific the brain structure (i.e., NET

ROI) usingMATLAB R2017a environment (MATLAB 2017, version 9.2

- R2017a, Natick, Massachusetts: The MathWorks Inc). We did not

rescale the intensity range between 0 and 255 to prevent loss of infor-

mation related to image downsampling.

Radiomic features were extracted from NET on ADC, FLAIR,

rCBV images by using Pyradiomics package on Python 2.7 (http://

www.radiomics.io/pyradiomics.html). These sequences were chosen

based on the expected capability of discriminating between hyper-

cellular/hyperperfused tumor and edema from previous studies.21,22

Since patients had a different combination of MR sequences, each

sequence was evaluated separately in our analysis. In particular,

14 shape features, 18 intensity features, and 75 texture features

(gray level co-occurrence matrix, gray level difference method, gray

level size zone, gray-level run length matrix, and neighborhood

gray tone different matrix texture) were extracted from original

images. Additionally, we included three fractal features: box count-

ing 2D, box counting 3D, and differential box counting (https://www.

mathworks.com/matlabcentral/fileexchange/13063-boxcount), prop-

erly adapting the code of the Pyradiomics pipeline. A total of 110

original features were obtained from the NET of each MR sequence

separately.

Statistical analysiswas performedwith SPSS (software version20.0,

Chicago, IL, USA). To reduce the dimensionality of the features, princi-

pal component analysis (PCA) was employed. A Cox regression model

was exploited to test the effect of all PCA components on survival

calculated in days. Feature projections onto the principal components

(PC) were evaluated to determine the most relevant features for sur-

vival. In a second analysis, a two-tail t-test between long and short

survivors with threshold at 12 months (SURV) was applied to those

PCA components having significant contribution to the Cox regression

model. Logistic regressionwas applied to validate the survival analysis.

Statistical significance was set at p<0.05.

RESULTS

According to our inclusion criteria, 68 adult patients (mean age =

51 years, range = 35–64 years, 24 females) were selected for this

study. All subjects had confirmed diagnosis of GBM and underwent

extensive CET resection (>80%) as demonstrated by postoperative

scans obtained within 72 h after surgery. Mean survival was 541 days.

Twenty-five patients were labeled as short survivors per the 12-month

threshold (mean survival 177 days), while 43 patients were labeled as

long survivors per the 12-month threshold (mean survival 844 days).

Patient-MR sequence distribution was as follows: 68 patients with

FLAIR images; 65 patients with ADC images; and 45 patients with

rCBV images.

Five PCA components were chosen as they explained 90% of the

variance. Only the PCA component number 5 (PC5) was significant

in the Cox model, with p = 0.002 and exp(B) = 0.686 (Figure 1). The

most relevant features projecting to PC5 as evaluated from compo-

nent matrices are reported in Table 1. Information regarding the other

PCA components is reported in Tables 2–5. Only ADC-based fea-

tures resulted significant for patient survival stratification. Particularly,

https://www.slicer.org
https://www.slicer.org
http://www.radiomics.io/pyradiomics.html
http://www.radiomics.io/pyradiomics.html
https://www.mathworks.com/matlabcentral/fileexchange/13063-boxcount
https://www.mathworks.com/matlabcentral/fileexchange/13063-boxcount
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F IGURE 1 The figure describes the survival model obtained fromCox regression analysis for our patients. The image on the left (A) reports the
survival function as probability of survival over time grouped by high and low principal component analysis (PCA) values (cutoff= 0.15). The image
on the right (B) shows the hazard function as probability of survival over time

TABLE 1 List of the best performing features for principal
component (PC) 5

PC5 (p= 0.002)

Features Matrix values

original_glszm_ADC_LargeAreaLowGrayLevelEmphasis 0.545

original_glszm_ADC_LargeAreaEmphasis 0.460

original_glszm_ADC_ZoneVariance 0.460

original_shape_ADC_Sphericity 0.451

original_glrlm_ADC_LongRunLowGrayLevelEmphasis 0.446

original_fractal_features_ADC_Counting3d 0.381

original_ngtdm_ADC_Busyness 0.370

original_glrlm_ADC_RunVariance 0.362

original_glrlm_ADC_LongRunEmphasis 0.319

original_firstorder_ADC_Energy 0.291

Note: The best 10 features were selected according to the absolute value

of the projection’s components (reported on the right). PC5 resulted signif-

icant for survival stratification (p= 0.002).

Abbreviation: ADC, apparent diffusion coefficient.

textural features, shape features, and fractal dimension (FD) demon-

strated high relevance for PC5 (Table 1). The PC5 resulted significant

in discriminating survival at 12 months as demonstrated by the two-

tailed t-test (p = 0.002) (Figure 2) and logistic regression analysis (p =

0.006).

DISCUSSION

Our results prove that ADC-based radiomic features of the NET,

obtained on presurgical MRI, are predictive of patients’ survival after

extensive CET resection and adjuvant chemoradiation (Figure 3).

Extension of NET has been correlated with shorter survival in

both pre and postoperative setting,35,36 as it is often the site of

TABLE 2 List of the best performing features for principal
component (PC) 1, selected from the component matrix

PC1 (p= 0.181)

Features Matrix values

original_glcm_ADC_JointEntropy 0.970

original_glcm_ADC_DifferenceEntropy 0.964

original_firstorder_ADC_Entropy 0.963

original_glcm_ADC_SumEntropy 0.958

original_firstorder_ADC_90Percentile 0.925

original_firstorder_ADC_Median 0.924

original_firstorder_ADC_MeanAbsoluteDeviation 0.923

original_firstorder_ADC_RootMeanSquared 0.921

original_firstorder_ADC_Range 0.920

original_firstorder_ADC_Mean 0.914

Note: The best 10 features were selected according to the absolute value

of the projection’s components (reported on the right). PC1 resulted non-

significant for survival stratification (p= 0.181).

Abbreviation: ADC, apparent diffusion coefficient.

tumor recurrence, sometimes distant from the surgical cavity (Fig-

ure 4). For these reasons, many authors extended tumor resection

beyond the borders of the CET, obtaining good correlation with

increased survival.18,37 Recently, a large cohort multicentric study

by Molinaro et al. found that, in younger patients (<65 years), NET

resection correlated with increased OS regardless of other sur-

vival biomarkers, such as molecular data,19 supporting the choice

of extended radicality in this specific population. Alternatively, NET

removal could lead to increased postsurgical deficits,14 as it could be

hindered by increased risk of intrasurgical ischemia38 and removal

of eloquent areas (Figure 5).39,40 The peritumoral area is, in fact,

a site where brain networks, affected by tumor infiltration, tend to

reorganize.41 Identification of survival biomarkers in the NET area



1196 GLIOBLASTOMARADIOMICS TOPREDICT SURVIVAL

TABLE 3 List of the best performing features for principal
component (PC)2

PC2 (p= 0.445)

Features Matrix values

original_gldm_ADC_DependenceNonUniformity

Normalized

0.747

original_gldm_ADC_SmallDependenceHighGray

LevelEmphasis

0.634

original_glcm_ADC_ClusterProminence 0.619

original_glrlm_ADC_LongRunEmphasis 0.602

original_glrlm_ADC_RunVariance 0.596

original_glszm_ADC_SmallAreaHighGray

LevelEmphasis

0.589

original_glrlm_ADC_ShortRunHighGray

LevelEmphasis

0.582

original_ngtdm_ADC_Busyness 0.582

original_glcm_ADC_Autocorrelation 0.578

original_gldm_ADC_HighGrayLevelEmphasis 0.577

Note: The best 10 features were selected according to the absolute value

of the projection’s components (reported on the right). PC2 resulted non-

significant for survival stratification (p= 0.445).

Abbreviation: ADC, apparent diffusion coefficient.

TABLE 4 List of the best performing features for principal
component (PC) 3

PC3 (p= 0.078)

Features Matrix values

original_glcm_ADC_Idn 0.706

original_glcm_ADC_Idmn 0.655

original_glrlm_ADC_RunLengthNonUniformity 0.647

original_glrlm_ADC_GrayLevelNonUniformity 0.583

original_glrlm_ADC_LongRunHighGrayLevel

Emphasis

0.577

original_glcm_ADC_Correlation 0.565

original_glszm_ADC_GrayLevelNonUniformity 0.560

original_gldm_ADC_LargeDependenceHighGray

LevelEmphasis

0.518

original_glrlm_ADC_RunEntropy 0.497

original_glszm_ADC_ZoneEntropy 0.490

Note: The best 10 features were selected according to the absolute value

of the projection’s components (reported on the right). PC3 resulted non-

significant for survival stratification (p= 0.078).

Abbreviation: ADC, apparent diffusion coefficient.

is thus advisable in order to boost patient selection for extensive

resection.

Our study provides a predictive model based on radiomic features

from multiparametric MRI for survival stratification in those patients

who benefit from NET resection per current recommendations.19

Other studies investigated morphological characteristics of peritu-

TABLE 5 List of the best performing features for principal
component (PC) 4

PC4 (p= 0.672)

Features Matrix values

original_glcm_ADC_ClusterShade 0.718

original_firstorder_ADC_Minimum 0.589

original_gldm_ADC_DependenceNonUniformity 0.540

original_gldm_ADC_GrayLevelNonUniformity 0.511

original_gldm_ADC_Dependence

NonUniformityNormalized

0.485

original_glszm_ADC_ZoneVariance 0.475

original_glszm_ADC_LargeAreaEmphasis 0.474

original_glrlm_ADC_GrayLevelNonUniformity 0.443

original_glszm_ADC_LargeAreaHighGray

LevelEmphasis

0.433

original_firstorder_ADC_10Percentile 0.394

Note: The best 10 features were selected according to the absolute value

of the projection’s components (reported on the right). PC4 resulted non-

significant for survival stratification (p= 0.672).

Abbreviation: ADC, apparent diffusion coefficient.

moral area to differentiate NET from vasogenic edema, mostly on

T2/FLAIR images, finding a significant correlation with survival.35,42

Some studies obtained good results in detecting viable tumor within

the peritumoral region using quantitative analysis and machine-

learning techniques.22,43 A study by Choi et al. added prognostic value

to GBM survival through radiomic analysis of NET on T2 images.44

The same group developed a radiomic model using machine-learning

techniques which showed better performances on survival prediction

than a nonradiomic-based model.27 Prasanna et al. found NET textu-

ral radiomic features on T1 and FLAIR images to be predictive of sur-

vival intended as less than 7 months and more than 18 months.45 Sim-

ilarly to our research, Rathore et al. analyzed multiparametric MRI to

better capture NET heterogeneity; they found that recurrent GBM

areas showed increased vascularity and cellularity on preoperative

MRI.7

Our best performing features were obtained from ADC maps

(Table 1), reflecting the correlation between diffusion parameters

and cellularity, which may suggest cancer invasion in the peritu-

moral region.24 ADC radiomic features were found predictive of GBM

recurrence.7 Also, previous research demonstrated that a periph-

eral habitat characterized by restricted ADC and low perfusion is

more resistant to antitumoral therapies, hence could lead to shorter

survival.46 Textural features demonstrated high relevance in our anal-

ysis. These are known to express tissue heterogeneity.47 A previous

study found NET textural features to be predictive of survival on rou-

tineMRI sequences (including T2 and FLAIR).45 In contrast, we did not

find statistically significant predictive features on these sequences in

our cohort. Thedissimilarity could reside in adifferent definitionof sur-

vival. Prasanna et al. opted for detecting short- (<7 months) and long-

term (>18 months) survival, while we decided to evaluate prediction



GLIOBLASTOMARADIOMICS TOPREDICT SURVIVAL 1197

F IGURE 2 Box plots show the difference in
fifth component in principal component
analysis in our cohort of patients as grouped by
the 12months survival (SURV) threshold. The
t-test analysis revealed significant difference

F IGURE 3 Examples of two patients
evaluated in the study. Top row:MRI of a
62-year-old male with isocitrate
dehydrogenase 1 (IDH1)-wild-type
glioblastoma and>12months survival. Axial
apparent diffusion coefficient (ADC) (A); axial
fluid attenuated inversion recovery (FLAIR)
(B); and axial magnetization prepared rapid
gradient echo (MPRAGE) with contrast (C).
Bottom row:MRI of a 58-year-old male with
IDH1-wild-type glioblastoma and<12months
survival. Axial ADC (D); axial FLAIR (E); axial
MPRAGEwith contrast (F)

F IGURE 4 MRI of a 68-year-old male. Top
row: diffuse hyperintensity on axial fluid
attenuated inversion recovery (FLAIR) images
(A and C) in the left superior frontal gyrus and
insula (arrows) diagnosed as isocitrate
dehydrogenase 1-wild-type glioblastoma; axial
postcontrast images (B andD) show ring-like
enhancement only in the frontal portion of the
tumor. Bottom row shows a follow-up
examination 6months after surgery. Axial
FLAIR images (E and G) show little
hyperintensity posterior to the surgical cavity
and increased hyperintensity in the insula
(arrow head). Axial postcontrast images (F and
H) show nodular enhancement in the insula
(curved arrow) indicating tumor progression
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F IGURE 5 MRI of a 78-year-old
right-handedmale with high-grade glioma.
Above: postcontrast T1-weightedMR images
(A–D) show rim-enhancing tumor in the left
frontal lobe invading the inferior frontal gyrus.
Below: T2-weighted fluid attenuated inversion
recovery images with functionalMRI (fMRI)
overlay displaying a semantic fluency language
task. Eloquent language areas are shown as
active clusters from the fMRI overlay: Broca’s
area is located anteriorly to the enhancing
component of the tumor (arrowhead in E and
F) andWernicke’s area is located posteriorly
(arrow in E and F). Although the enhancing
tumor does not directly infiltrate such areas, an
extended resection including the
nonenhancing portion (peritumoral edema)
may lead to postsurgical aphasia

at 12 months, which is closer to the median survival in GBM.8 Shape

features also demonstrated high predictive performance in our analy-

sis. In fact, such features reflect GBM irregular anisotropic growth in

cluster of cells along white matter bundles.48 In line with this and our

results, shape features were already found predictive of survival in a

previous study that analyzed GBM necrosis.49 Another interesting

result is the predicting value of FD. Fractal analysis is considered

a reliable method to quantify tumor heterogeneity, being fractal

structures that display a repeating pattern on different scales.50 FD

has been used to evaluate brain gliomas in previous studies,51 includ-

ing to differentiate GBM from lymphomas.52 For example, FD mea-

sured on susceptibility-weighted images has been used for glioma

grading.53 On the other hand, microvascular FD showed prognostic

value inGBM, including the correlationwith treatment response.54 We

did not find rCBV features to be predictive of survival, differently from

other studies.55,56 As previously discussed, information from diffusion

imaging, such as ADC-based features, may reflect glioma cell prolifera-

tion inside the brain tissue surrounding the enhancing tumor compo-

nent. Since tumor infiltration precedes angiogenesis,57 this may par-

tially explain a less significant role of DSC-based information. Tumoral

cell clusters in the NET region may represent proliferating habitats,

which are better detected by ADC than perfusion imaging due to poor

neovascularization.

Finally, following the conclusions of the large multicentric study

by Molinaro et al.,19 molecular status was not included in our analy-

sis. However, some uncertainties still exist about the accurate molec-

ular profiling of GBM patients, with open debate about therapeutic

options.58 Since molecular profiling of GBM is advancing at a very fast

pace, the discovery of new biomarkersmay lead to reconsider the rele-

vance of molecular data for patient survival. Future studies may evalu-

ate the correlationbetween radiomicdata fromNETregions,molecular

features, and survival outcomes.

This study presents some limitations. We decided to focus only on

younger patients (<65 years old) who underwent GBM extensive CET

resection, due to the intent of addressing recent recommendations.19

Our analysis required preoperative scans with multiparametric MRI

and postoperative scans obtained within 72 h after surgery (see

Method section). These criteria limited the possibility of using pub-

lic datasets to increase our sample size. Consequently, the number of

patients included in our study is somewhat narrow, yet still comparable

to previous similar researches.7,22,45,49 The retrospective nature of our

study led to some imbalance in the dataset. As previously stated, not

every patient had DSC perfusion imaging and this could have affected

our results. Future larger, possibly multicentric, studies are needed to

confirm the impact ofNET-derived biomarkers on survival and validate

their use in the clinical practice of patients with GBM.

To conclude, our study demonstrates that ADC radiomic features

from the NET can boost survival stratification of GBM patients, possi-

bly reflecting cell proliferation in the area surrounding the tumormass.

Textural, shape, and fractal features demonstratedhigh performance in

our analysis, which may improve the selection of patients who benefit

frommore extensive surgery based on expected survival.
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