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Abstract
Background  Animal brain-tumor models have demonstrated a synergistic interaction between radiation therapy and a 
ketogenic diet (KD). Metformin has in-vitro anti-cancer activity, through AMPK activation and mTOR inhibition. We 
hypothesized that the metabolic stress induced by a KD combined with metformin would enhance radiation’s efficacy. We 
sought to assess the tolerability and feasibility of this approach.
Methods  A single-institution phase I clinical trial. Radiotherapy was either 60 or 35 Gy over 6 or 2 weeks, for newly 
diagnosed and recurrent gliomas, respectively. The dietary intervention consisted of a Modified Atkins Diet (ModAD) 
supplemented with medium chain triglycerides (MCT). There were three cohorts: Dietary intervention alone, and dietary 
intervention combined with low-dose or high-dose metformin; all patients received radiotherapy. Factors associated with 
blood ketone levels were investigated using a mixed-model analysis.
Results  A total of 13 patients were accrued, median age 61 years, of whom six had newly diagnosed and seven with recurrent 
disease. All completed radiation therapy; five patients stopped the metabolic intervention early. Metformin 850 mg three-
times daily was poorly tolerated. There were no serious adverse events. Ketone levels were associated with dietary factors 
(ketogenic ratio, p < 0.001), use of metformin (p = 0. 02) and low insulin levels (p = 0.002). Median progression free survival 
was ten and four months for newly diagnosed and recurrent disease, respectively.
Conclusions  The intervention was well tolerated. Higher serum ketone levels were associated with both dietary intake and 
metformin use. The recommended phase II dose is eight weeks of a ModAD combined with 850 mg metformin twice daily.
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Abbreviations
KD	� Ketogenic diet
ModAD	� Modified Atkins diet
HGG	� High-grade gliomas
AMPK	� AMP-activated protein kinase
LDL	� Low-density lipoprotein
MCT	� Medium chain triglyceride
β-OHB	� β-hydroxybutyrate
VMAT	� Volumetric modulated arc therapy
HbA1C	� hemoglobin A1C
IGF1	� Insulin like growth factor1

TRAM	� Treatment response assessment maps
BMI	� Body mass index

Introduction

High-grade gliomas (HGG) are the most common primary 
adult brain tumor. Despite adjuvant chemoradiation, relapses 
are universal and median survival short [1]. Biochemically, 
the tumors exhibit metabolic reprogramming [2], with 
increased glucose uptake being driven by the PI3K-AKT 
pathway [3]. There is both laboratory and clinical evidence 
that carbohydrate metabolism influences outcomes: glioma 
cells express growth-promoting insulin receptor [4], exog-
enous glucose induces an aggressive in-vitro phenotype [5], 
and multiple observational studies have shown hyperglyce-
mia to be a poor prognostic factor in glioblastoma patients 
[6–8].
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Although increased glucose metabolism is thought to 
contribute to the tumor’s aggressive phenotype [5], it may 
also be the cancer’s Achilles’ heel [9] since tumors may 
become glucose-dependent. When blood glucose levels 
drop, ketone bodies provide an alternative source of energy 
for the normal brain. Preclinical evidence suggests that gli-
oma cells are less able to metabolize ketones [10], hence 
hypoglycemia may selectively starve tumors cells. Further-
more, there is some evidence that ketones themselves, espe-
cially β-hydroxybutyrate(β-OHB), optimize the response to 
radiation therapy through its action as a HDAC inhibitor [11] 
and enhancement of DNA damage G2/M checkpoint cell 
cycle arrest [12, 13]. Ketogenic diets, such as the Modified 
Atkins Diet (ModAD) [14], or a classical strict KD, rely 
on fats as the primary source of energy. The combination 
of a KD with radiation therapy has been shown effective in 
preclinical models [15, 16]. Retrospective studies have sug-
gested a KD to be beneficial to glioblastoma patients [17, 
18], however it is unclear how applicable these studies are 
to the wider population.

Metformin, an oral biguanide anti-diabetic drug, has 
multiple actions including preventing hepatic gluconeogen-
esis [19] and increasing insulin sensitivity. In non-diabetic 
patients metformin decreases post-prandial hyperglycemia 
[20]. Biochemically, metformin activates AMP-activated 
protein kinase (AMPK) [21] and downregulates mTOR sign-
aling [22]. There is current interest in the drug’s potential 
(though clinically unproven) anti-neoplastic activity [23]. 
Recently published work has shown that the combination 
of fasting-induced hypoglycemia with metformin impairs 
tumor growth through modulation of the PP2A-GSK3β-
MCL-1 Axis [24], a tumorigenic pathway in glioblastoma 
[25].

In this trial we examined two metabolic interventions in 
non-diabetic glioma patients being treated with radiation 
therapy: (1) ModAD and (2) concomitant administration of 
metformin. Both metabolic treatments are being expected to 
downregulate the mTOR pathway [22, 26]. We hypothesized 
that metabolic stress (relative hypoglycemia) would enhance 
the anti-tumor efficacy of radiation-induced DNA damage. 
We further hypothesized that metformin would reduce insu-
lin resistance and consequently elevate ketone blood levels. 
We performed a formal prospective phase I dose-escalation 
trial to assess the tolerability and feasibility of this approach.

Methods

Trial design

A prospective single-institution phase I dose-escalation 
clinical trial of combined metabolic and radiotherapy and 
amongst adults with brain gliomas, both newly diagnosed 

and recurrent, was conducted at the Chaim Sheba Medical 
Center, Fig. 1. The trial was approved by the local Insti-
tutional Review Board (IRB) - SMC 0712 − 13, and reg-
istered on Clinicaltrials.gov NCT02149459. All patients 
were required to sign the study informed consent. Adverse 
events were graded using Common Terminology Criteria for 
Adverse Event (CTCAE) version 4.03.

All patients received radiation therapy. There were three 
cohorts of metabolic therapy; (1) dietary intervention alone, 
(2) low-dose metformin combined with dietary interven-
tion and (3) high-dose metformin combined with dietary 
intervention (Suppl Table 1). A cohort “−1” was defined as 
normal diet with very low dose metformin in case cohort 1 
was not tolerated. Dose escalation proceeded according to 
a “3 + 3 design”, there was no intra-patient dose escalation. 
The recommended phase II dose was defined as the maximal 
tolerated dose.

Eligibility criteria

Inclusion criteria were adult patients with histologically 
proven high-grade glioma, (WHO grade III and IV) whether 
newly diagnosed or recurrent, who required radiation ther-
apy. Astrocytic and oligodendroglia supratentorial tumors, 
grades 3 or 4 according to the WHO 2007 classification were 
eligible. Patients were required to have a performance status 
ECOG of two or less, and life expectancy of at least two 
months. For patients with recurrent disease, there was no 
limit regarding the number/type of previous systemic treat-
ments or surgeries, however at least a 2-week break between 
prior treatment and enrollment was required, and patients 
were required to have recovered from the toxic effects of 
prior therapies. Regarding previous irradiation in patients 
with recurrent glioma - all were required to have received a 
course of fractionated radiation therapy, and subjects were 
permitted to have received up to one prior radiosurgical pro-
cedure within the treatment field. Exclusion criteria included 
patients with diabetes mellitus, known inborn errors of 
metabolism, hyperlipidemia (defined as total cholesterol 
over 400  mg/dL, low-density lipoprotein (LDL) above 
300 mg/dL, and/or triglycerides over 500 mg/dl.), and con-
traindications to metformin use (drug allergy, renal failure: 
creatinine levels over 150 µmol/l (1.7 mg/dL), liver disease, 
ongoing alcohol abuse).

Concurrent anti‑tumor medications

Concurrent anti-tumor medications were allowed, including 
temozolomide, bevacizumab and medical cannabis. The use 
of steroids was allowed, but discouraged.
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Dietary intervention

Subjects were instructed to conform to the ModAD based 
upon a low carbohydrate, high-fat intake [14], (details 
in supplementary material) for eight weeks. The target 
‘ketogenic ratio’, calculated as total fat intake (gram) 
divided by the sum of total protein intake (gram) and total 
carbohydrate intake (gram), was between 1:1 and 3:1. 
The diet was supplemented with coconut-extracted MCT 
oil, known to stimulate hepatic ketogenesis [27], at the 
dietician’s discretion. No calorie restriction was applied, 
patients were instructed to eat to satiety. Dieticians kept 
close contact with the patients through weekly meetings 
and daily telephone calls. Dietary nutritional intake was 
calculated using the Tzameret program (Maymone Soft-
ware, Jerusalem) [28] based upon detailed food diaries. 
At the conclusion of the eight-week period, subjects were 
gradually returned to a normal diet.

Metformin

Participants in cohort #2 and #3 received metformin ther-
apy in addition to the diet. Cohort #2 received #850 mg 
twice daily, cohort #3 received #850 mg three times daily. 
Cohort #-1 were to receive #850 mg once daily. In order 
increase tolerability a reduced dose metformin was admin-
istered during the first week (Suppl. Table 1).

Radiation therapy

Radiation therapy for newly diagnosed HGGs was 60 Gy 
over six weeks in 30 fractions planned using 3-dimen-
sional or Volumetric modulated arc therapy (VMAT) tech-
niques. Radiation for recurrence disease was 30-35 Gy in 
ten fractions delivered over two weeks [29]. Image guid-
ance was performed daily.

Correlative studies

Patients underwent a comprehensive metabolic assess-
ment including weight, height and blood tests (electro-
lytes, liver and kidney function, lipid profile, hemoglobin 
A1C(HbA1C), insulin, C peptide, insulin like growth factor1 
(IGF1), leptin, adiponectin, β-OHB) prior to and during the 
metabolic therapy. MRI scans, including treatment response 
assessment maps (TRAM) [30], were performed prior to, 
and 8–12 weeks following treatment.

Determination of Ketone body levels

β-OHB ketone bodies were measured in venous blood using 
the Precision Xtra Ketone Monitoring System (Abbott Lab-
oratories, Lake Bluff, Illinois USA), and in urine using a 
dipstick (Combur10 Test strip, Roche Diagnostics, Basel). 
Patients were instructed to self-monitor urine ketones daily 
for the first two weeks, and subsequently on alternative days 
for six weeks using urine dipsticks.

Fig. 1   Trial Schema
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Amendment

The original protocol recruited only patients with recur-
rent disease scheduled to receive re-irradiation. In Septem-
ber 2017 the protocol was amended to include accrual of 
patients with newly diagnosed disease together with con-
comitant temozolomide.

Statistics

Levels of metabolites, weight and body mass index (BMI) 
before and during the intervention were compared using Stu-
dent’s paired t-test. The relationship between blood ketone 
and HbA1C levels with various covariates was examined 
using a linear mixed model. Survival was estimated by 
Kaplan-Meier analysis. Median follow up time was calcu-
lated using the ‘Reverse Kaplan-Meier’ approach. Statistical 
analysis was performed using Stata version IC 16.1 (Stata, 
College Station, TX).

Results

Thirteen patients were enrolled between November 2014 
and February 2020. Median age 61 years, 62 % male, 77 % 
glioblastoma (Table 1). Six had newly diagnosed disease and 
seven patients had recurrent disease. For those with recur-
rent disease, all had previously received at least two previous 
treatments including radiation therapy. Median follow up 
was 18 months.

Treatment delivery

All patients completed radiation as planned. Five out of 
13 (38 %) discontinued the metabolic intervention after 
a mean of 4 weeks, all from cohort two: one patient with 
pre-existing gout experienced asymptomatic hyperuricemia 
(grade 3), one patient with recurrent glioma and known sei-
zures was hospitalized for seizures and general deteriora-
tion, one patient due to rapid tumor progression within two 
weeks of commencing the trial, two patients requested to 
come off study due to complaints of anorexia, nausea and 
difficulty in meeting dietary goals. Regarding metformin, 
amongst the patients in cohort two 850 mg twice daily 
was well tolerated. Of the three patients in cohort three, 
two decreased their daily dose to 850 mg twice daily due 

Table 1   Baseline demographics of trial participants

AA anaplastic astrocytoma grade 3, Bev bevacizumab, CCNU lomustine, diag diagnosis, GBM glioblastoma, Rec recurrence, re-op re-operation, 
RT radiotherapy, re-TMZ reintroduction Temozolomide, Tmz Temozolomide

Patient # Age Sex Original 
histol-
ogy

Time since 
first diag 
(months)

Clinical setting Previous treat-
ments

RT dose (Gy) Concomitant 
therapy

Metabolic inter-
vention therapy

1 62 m GBM 28 Rec RT + Tem, Bev 30 Bev + steroids Cohort 1:
Diet alone2 61 m GBM 12 Rec RT + Tem, 

Bev + CCNU
30 Bev

3 66 f GBM 44 Rec RT + Tem, re-Tmz 35 -
4 61 f AA 13 Rec RT + Tem, 

Bev + CCNU
30 - Cohort 2:

Diet + Metformin 
850 mg twice-
daily

5 58 m GBM 43 Rec RT + Tem, re-Tmz, 
re-op, Bev

30 Rindopepimut

6 57 f AA 24 Rec RT, re-op, Tem, 
bev

30 Steroids

7 58 m GBM 36 Rec RT + Tem, 
Bev + CCNU

30 Bev

8 62 m GBM 2 New diag 60 Tmz
9 58 m GBM 2 New diag 60 Tmz
10 74 f GBM 0 New diag 60 Tmz + steroids
11 52 f AA 5 New diag 60 Tmz Cohort 3:

Diet + Metformin 
850 mg three-
times daily

12 66 m GBM 1 New diag 60 Tmz
13 63 m GBM 1 New diag 60 Tmz + steroids
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to nausea. One patient stopped concomitant temozolomide 
due to thrombocytopenia.

Toxicity and tolerability

There were two grade 3 adverse events: nausea and asymp-
tomatic hyperuricemia; there were no grade 4/5 events 
(Table 2). Amongst some patients, ketone levels dropped 
slightly towards the end of the eight weeks, suggesting 
decreased compliance. Conversely, two patients requested 
to maintain the diet beyond the prescribed eight weeks.

Metabolic outcomes

Ketones were detected in all patients’ blood at least once, 
with the mean blood ketone level during the intervention 
(weeks 1–8 inclusive) ranging from 0.17 to 1.3 mmol/l, and 
maximal recorded values ranging from 0.2 to 2.5 mmol/l; 
likewise, ketones were consistently found in urine specimens 
ranging from −/+ to +++ (median ++). The only other con-
sistent finding was an asymptomatic increase in blood uric 
acid levels. Numerical, but non-significant, decreases were 
noted in blood glucose and HbA1c and increases in blood 
lipid values (Suppl Table 2).

Associations with blood ketone levels

On mixed-model univariate analysis, high dietary fat intake, 
low dietary carbohydrate intake, low dietary protein intake 
(borderline significance), MCT intake, ketogenic ratio, met-
formin dose, and lower serum insulin levels were associated 
with higher blood ketone levels (Fig. 2, Suppl. Table 3). In 
the final mixed-model multivariant analysis, the only sig-
nificant covariates were ketogenic ratio and metformin use 
(Suppl. Table 4).

Associations with HbA1C level

On mixed-model univariate analysis, total daily caloric 
intake, weight and BMI were associated with higher HbA1C 
levels (Suppl. Table 5). On mixed-model multivariate anal-
ysis the only significant covariate was total daily caloric 
intake (Suppl. Table 6).

Clinical outcomes

Representative examples of radiological responses are pre-
sented (Fig. 3). Median progression free survival was 10 
months for newly diagnosed disease and 4 months for recur-
rent disease; median overall survival was 21 months and 8 
months respectively (Suppl. Figure 1a,1b).

Discussion

We report a prospective phase I dose-escalation trial of met-
abolic therapy combined with radiotherapy in patients with 
high-grade glioma. The recommended phase II dose is eight 
weeks ModAD combined with metformin 850 mg twice 
daily. The purpose of the study was not to assess efficacy, 
nonetheless, the patients performed favorably compared to 
historical controls [1, 31, 32].

The metabolic impact of the intervention was modest: 
only low levels of ketones in peripheral blood were obtained, 
and the decreases in blood glucose, insulin and HbA1c levels 
were non-significant. Possible reasons for this small meta-
bolic impact include: (1) The serum concentration of metab-
olites, such as insulin, are highly labile making measurement 
challenging. (2) We originally planned to administer a strict 
ModAD to patients in which carbohydrate intake is tightly 
controlled, at the request of the local IRB this was replaced 
with a more relaxed ModAD. Even very small quantities 
of dietary carbohydrates severely impair ketone production. 
(3) The short duration of the metabolic intervention (eight 
weeks), this is especially relevant for HbA1c that has a half-
life of approximately five weeks. (4) Possible poor patient 
dietary compliance, nutritional intake was calculated based 
upon patients’ food diaries. (5) The small size of the trial. 
(6) Clinical trials of low-carbohydrate diets in adult cancer 
patients have shown difficulty in generating even moderate 
levels of ketones [33–35]. (7) Lack of caloric restriction. 
Interestingly we noted that HbA1c levels correlated with 
caloric intake (Suppl. Tables 4, 5). Hence, we speculate that 
caloric restriction would be usefully combined with a KD. 
This has indeed been demonstrated in rodents [16, 36], how-
ever the ability to tolerate such a diet clinically is uncertain. 
(8) Several patients received steroid treatment during the 
trial (Table 1), known to induce hyperglycemia.

Table 2   Adverse events during the trial, as classified by CTCAE 5.0

Adverse event (CTCAE) Grade 1–2 (n) Grade 3 (n)

Anorexia 6
Nausea 5 1
Weight loss 1
Vomiting 3
Constipation 3
Diarrhea 1
Hiccups 1
Hypercholesterolemia 8
Hyperuricemia 1
Seizures 1
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A limitation of our study is the inclusion of two distinct 
patient populations: those with recurrent disease and those 
with newly diagnosed disease. For the purposes of deter-
mining the phase II dose we did not differentiate between 
the populations, however this may be an over simplification. 
Inadvertently, these populations were distributed unevenly 
across the trial: all subjects in cohort #1 had recurrent dis-
ease, cohort #2 was mixed, whereas all patients in cohort #3 
were newly diagnosed (Table 1). The influence upon treat-
ment tolerability is hard to ascertain – whereas subjects with 
newly diagnosed disease had a tougher concurrent treatment 
regimen (long course radiation therapy combined with temo-
zolomide) they were treatment naïve and consequently had 
better overall wellbeing, with the converse being true for 
subjects with recurrent disease. Potentially, subjects with 
recurrent disease may tolerate the treatment regimen of 
cohort #3, but this was not tested in our trial.

The theoretical basis for this trial is the work of Seyfried 
and others, suggesting addiction to glucose is cancer cells’ 

Achilles’ heel. They have proposed that the combination of 
low blood glucose levels and high blood ketone levels will 
be therapeutic in brain tumors, and perhaps cancer in gen-
eral. Seyfried has proposed a therapeutic window of glucose 
55–65 mg/dl and ketones 2.5–7.0 mM [37]. Despite inten-
sive counselling delivered by a dedicated multi-disciplinary 
team (dieticians, nurses and physicians) and the combina-
tion with an antidiabetic agent, we were far from achieving 
these goals, suggesting that although malignant cell growth 
may be driven by metabolic reprogramming [38], a dietary 
approach combined with metformin is inadequate. More-
over, some recent work suggests that the dietary-induced 
hypoglycemia as a treatment for brain tumors may be sim-
plistic - for instance cancer cells attempt to compensate 
for low glucose levels by upregulating glucose transporter 
GLUT1 [39], and glioma cells may even adapt to utilize 
ketones as an energy source [40, 41]. Furthermore the role of 
AMPK (activated by metformin) appears to be complex and 
context-dependent: whereas in healthy cells AMPK switches 

Fig. 2   Impact of dietary intervention on ketone levels. Grey zone 
represents 95 % confidence interval on line of best fit. a Relationship 
between dietary carbohydrate (as % of total caloric input) and blood 
ketone levels, b Relationship between dietary fat intake (as % of total 

caloric input) and blood ketone levels, and c Relationship between 
Glycated hemoglobin (percentage, HbA1c) and blood ketone levels. 
d Relationship between blood insulin levels and blood ketone levels



493Journal of Neuro-Oncology (2021) 153:487–496	

1 3

off cell growth and proliferation at times of stress, acting as 
a tumor-suppressor, in cancer cells AMPK may actually pro-
mote tumor growth [42] possibly through phosphorylation of 
Phosphoinositide 3-kinase enhancer-activating Akt (PIKE-
A) [43]. Fortunately, a new generation of pharmaceutical 
agents targeting metabolic pathways are in development, 
that may target these weaknesses more effectively [44, 45].

Our trial is unique in combining metformin with a low-
carbohydrate diet in non-diabetic patients, and intrigu-
ing in suggesting that metformin promotes ketogenesis 
(Suppl. Tables 2, 3). Previous investigators have proposed 
and investigated metformin combined with a KD as an 
anti-cancer treatment [46, 47], however there is little data 
regarding the influence of metformin on ketogenesis. In-
vitro metformin stimulates the production of β-OHB in 
isolated hepatocytes [48], cultured neurons and astro-
glia [49]. Mechanistic explanations for metformin’s pro-
ketogenic activity include the drug’s ability to overcome 
insulin resistance, and in particular, metformin’s inhibition 
of liver mitochondrial complex I - favoring fat metabolism 
[50] and ketone body production. If validated, the addition 
of metformin would be beneficial in other disease settings 
in which ketone production is desired.

In conclusion, we have completed a Phase I trial of com-
bined metabolic and radiation therapy in adult patients with 
high-grade gliomas. Clinical efficacy appears promising. 

The recommended phase II dose is 8-weeks ModAD with 
concomitant metformin (850 mg twice daily).

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11060-​021-​03786-8.
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