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A B S T R A C T

Diffuse midline glioma (DMG) is an incurable malignancy with the highest mortality rate among pediatric
brain tumors. While radiotherapy and chemotherapy are the most common treatments, these modalities
have limited promise. Due to their diffuse nature in critical areas of the brain, the prognosis of DMG remains
dismal. DMGs are characterized by unique phenotypic heterogeneity and histological features. Mutations of
H3K27M, TP53, and ACVR1 drive DMG tumorigenesis. Histological artifacts include pseudopalisading necro-
sis and vascular endothelial proliferation. Mouse models that recapitulate human DMG have been used to
study key driver mutations and the tumor microenvironment. DMG consists of a largely immunologically
cold tumor microenvironment that lacks immune cell infiltration, immunosuppressive factors, and immune
surveillance. While tumor-associated macrophages are the most abundant immune cell population, there is
reduced T lymphocyte infiltration. Immunotherapies can stimulate the immune system to find, attack, and
eliminate cancer cells. However, it is critical to understand the immune microenvironment of DMG before
designing immunotherapies since differences in the microenvironment influence treatment efficacy. To this
end, our review aims to overview the immune microenvironment of DMG, discuss emerging insights about
the immune landscape that drives disease pathophysiology, and present recent findings and new opportuni-
ties for therapeutic discovery.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Diffuse midline glioma (DMG) is a devastating pediatric brainstem
tumor accounting for 10�15% of brain tumors and 80% of brain stem
tumors in children and adolescents [1,2]. A DMG diagnosis is made in
approximately 300 children per year in the United States with the
median age at diagnosis between 6 and 7 [3]. Children with DMG sur-
vive 9 to 11 months after diagnosis and have a 99% 5-year mortality
[4�6]. To date, there is no effective treatment for DMG. Chemother-
apy and targeted molecular agents have proved to be minimally
effective treatments, and surgical resection of the tumor is difficult
due its location in the pons, thalamus, and spinal cord [7]. DMGs are
infiltrative in nature, predominantly involving the pons but can be
thalamic in location invading into surrounding brain and spinal cord.
Fractionated external beam radiotherapy (RT), the standard of care
for DMG, has only been successful in providing limited disease
control or improving symptoms and confers a survival benefit of
approximately 3 months. In the absence of standard RT, the median
survival is 6 months [8].

Like many other central nervous system (CNS) tumors, DMGs have
several intrinsic mechanisms to inhibit host antitumor responses.
DMGs have a unique immune landscape characterized by nonpolar-
ized resident immune cells and immune-induced secretions (Fig. 1).
This landscape impacts DMG pathophysiology, prognosis, treatment
options, and outcomes. In this review, we will explore the heteroge-
neity of the DMG immune microenvironment and contributions of
specific immune subpopulations to DMG pathology.

1.1. Cellular origin

Because DMG has spatial-temporal homogeneity and tends to
arise during middle childhood, aberrant neurodevelopmental pro-
cesses trigger tumor cell development and proliferation [9]. Both cel-
lular origin and microenvironmental signaling is necessary for tumor
growth [10]. DMG originates from oligodendrocyte progenitor or
neural stem cells [3]. Oligodendrocytes play a role in myelin
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Fig. 1. Summary of DMG-immune system interactions. DMG is an immunologically
cold tumor with very limited T cell and NK cell infiltration. Glioma associated macro-
phages consisting of bone marrow-derived macrophages and microglia are the pri-
mary immune cells that reside in the tumor microenvironment. Select chemokines
and cytokines are also expressed in DMG.
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development during childhood and are responsible for supporting
and insulating axons in the CNS [4]. The DMG cell of origin was iden-
tified via histological staining which revealed that oligodendrocyte
precursor cells were enriched at the location of DMG origination and
around the median age of DMG diagnosis [3]. To further validate oli-
godendrocytes as the cell of origin for DMG, transcriptional and chro-
matin landscape studies conveyed that oligodendrocyte genes are
transcriptionally and epigenetically upregulated in DMG [11�13].
Furthermore, single cell RNA sequencing has shown that proliferative
stem-like cells of primary DMG tumors are phenotypically similar to
oligodendrocyte precursor cells [14]. Most notably, DMG proliferative
stem-like cells express nestin and vimentin, markers found in neural
stem or precursor cells, and olig2, a transcription factor commonly
associated with oligodendrocyte precursors [3].

1.2. Molecular alterations

The understanding of DMG’s biological underpinnings has been
used to identify genetic and epigenetic signatures that are present in
patient subpopulations [7]. Mutations in genes encoding for histones
prevent histone methylation and have been identified in a plethora
of cancers. Approximately 80% of DMG tumors exhibit a characteristic
substitution of lysine-to-methionine at position 27 of histones 3.1
and 3.3 [15�17]. Deregulation of such histone proteins impedes poly-
comb repressive complex-2 (PRC2) methyltransferase complex func-
tioning, causes systemic hypomethylation of the lysine at position 27
of the H3 protein (H3K27), and hinders gene expression [15,18�20].
The H3.1K27M and H3.3K27M DMG subgroups are characteristically
associated with unique genetic alterations. In addition to direct
mutations in H3.1-K27M and H3.3-K27M, DMGs harbor indirect
mutations in H3.3G34RV that alter post-translationally modified resi-
dues [6]. H3.3K27M tumors are associated with mutations in tumor
protein p53 (TP53), while H3.1K27M tumors often harbor mutations
in activin A receptor type 1 (ACVR1) or have phosphoinositide
3-kinase (PI3K) pathway dysregulation [21].

Secondary associated mutations that contribute to cancer forma-
tion are seen in addition to histone mutations and lead to unique
oncogenic outcomes [6]. Forty-two percent of DMG tumors harbor
mutations in TP53, the gene encoding the tumor suppressor protein
p53 [22]. P53 modulates cell survival and apoptosis in the developing
nervous system. The preferential expression of p53 in neural progeni-
tor cells (NPCs) is critical for regulating cell cycle progression and
apoptosis [22]. Together, platelet-derived growth factor beta (PDGFB)
signaling and TP53 loss frequently promotes tumor formation. Mech-
anisms underlying p53 mutations in DMG cells include disruption
of p53 protein stability and gene expression and an increased rate of
neural stem cell proliferation [23].

ACVR1 is a developmental regulator that is mutated in approxi-
mately 24% of patients with DMG and has been reported at a younger
age of diagnosis [22]. ACVR1 encodes for the ALK2 (activin receptor-
like kinase-2) receptor in the bone morphogenetic protein (BMP) sig-
naling pathway. ACVR1 is also responsible for patterning during late
gastrulation in embryogenesis and regulating craniofacial and cardiac
development [24]. Six mutations have been described in two
domains (glycine�serine rich domain and kinase domain) of ACVR1.
The G328V mutation is the most common ACVR1 mutation in DMG,
however, all mutations commonly segregate with H3.1K27M muta-
tions [22].

Recurrent truncating mutations in the gene encoding protein
phosphatase Mg2+/Mn2+dependent 1D (PPM1D) has been identified
in 9�23% of DMG cases [25]. PPM1Dmutations are often present con-
currently with Histone H3 mutations (H3K27M) and are mutually
exclusive with tumor suppressor protein 53 (TP53)-inactivating
mutations [26]. PPM1D is critical for neurodevelopment and plays a
role in dephosphorylating checkpoint kinases ATM (atax-
ia�telangiectasia mutated), ATR (ataxia telangiectasia and Rad3-
related protein), and Chk1/2 to achieve homeostatic regulation of
DNA damage response [27]. However, the phosphatase PPM1D is
considered an oncogenic phosphatase because of its role in inactivat-
ing p53. In addition to DMG, PPM1D amplification or overexpression
has been found in many carcinomas, including medulloblastoma,
neuroblastoma, ovarian cancer, and breast cancer [27].

DMGs also harbor amplifications in genes involved in cell cycle
regulation, specifically cyclin dependent kinase inhibitors CDK4 and
CDK6 and cyclin D family members CCND1, CCND2, and CCMD3 [28].
Cyclin dependent kinases and cyclins form complexes that are critical
for neurogenesis and phosphorylates the retinoblastoma (Rb) protein
[29]. Specifically, overexpression of Cyclin D and CDK4 in NPCs inhib-
its neurogenesis and shortens the G1 phase of the cell cycle suggest-
ing Cyclin D and CDK4 are involved in the G1-mediated switch from
proliferation to neurogenesis [30]. Moreover, inhibition of CDK4 and
CDK6 can trigger cell cycle arrest at the G1 checkpoint and has been
explored as a potential therapeutic option for DMG [31].

Funato et al. and Larson et al. have revealed that increased
PDGFRA expression is associated with DMG tumor formation. Studies
found that the combination of PDGFRA activation and p53 loss was
sufficient to induce neoplastic transformation in human embryonic
stem cells and form genetically engineered mouse model (GEMM)
brainstem gliomas [21,32].

As noted above, DMG harbors many genetic alterations that com-
prise unique molecular subgroups (eg, isocitrate dehydrogenase 1
(IDH1), H3.1/3.3, pleomorphic xanthoastrocytoma (PXA-like)) and
drive tumorigenesis (Fig. 2). While heterogeneity of DMG subgroups
has previously been relegated to histone mutations, a seminal large-
scale integrated analysis identified comprehensive risk subgroups of
DMG [6].

1.3. Immune landscape of DMG

1.3.1. Natural killer cells
Natural killer (NK) cells, phenotypically marked by CD3�, CD56+,

and CD16+, are effective cytotoxic lymphocytes that contain per-
forin-rich and granzyme-rich granules and can kill cancer cells and
virally infected cells. NK cells classically have limited existence and
function in the brain tumor microenvironment because of the immu-
nosuppressive factors released by tumor cells [33]. Similar levels of
NK cells are seen across all DMG subtypes. While a recent study
reported that NK cells are low and defective in patients with DMG,
induction of NK cells in the brain has the potential to kill brain tumor



Fig. 2. Schematic representation of different biological subgroups exhibiting unique
mutational profiles and transcriptional states in DMG. Molecular subgroups include
IDH1, LGG-like, H3.1K27M, H3.3G34RV, H3.3K27M, HM (hypermutator phenotype),
PXA-like, and H3/IDH1 wild type. These subgroups are associated with variable expres-
sion changes. Abbreviations: 2 gain: chromosome 2 gains; ATRX: a thalassemia/mental
retardation syndrome X-linked; ACVR1: Activin A receptor, type I; BRAF: v-raf murine
sarcoma viral oncogene homolog B1; CCND2: Cyclin D2; CDK6: Cyclin Dependent
Kinase 6; CDKN2A: Cyclin Dependent Kinase Inhibitor 2A; EGFR: epidermal growth
factor receptor; FBXW7: F-box/WD repeat-containing protein 7; FGFR1: Fibroblast
growth factor receptor 1; Hh: Hedgehog; HM: Hypermutator phenotype; IDH1: Isoci-
trate dehydrogenase 1; NF1: Neurofibromatosis Type 1 ; NTRK: Neurotrophic Tyrosine
Kinase; PAX3: Paired box gene 3; PDGFRA: Platelet Derived Growth Factor Receptor
Alpha; PI3K: Phosphoinositide 3-kinase; POLE: DNA Polymerase Epsilon Catalytic Sub-
unit; PPM1D: Protein phosphatase 1D; PXA: Pleomorphic xanthoastrocytoma ; TOP3A:
DNA topoisomerase 3-alpha; TP53: Tumor protein P53.
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cells [34]. A recent study has shown that transformed or virally
infected brain tumor cells can recruit NK cells leading to subsequent
tumor cell killing [35]. A DMG-specific study noted that expression of
one or more activating ligands for NKG2D (natural-killer group 2,
member D) causes a chain reaction of cytokine production, targeted
cytotoxic granule release, and NK cell activation. Combining DMG
and NK cells resulted in effective killing of DMG cells in vitro [36]. NK
cells also have the potential to serve as a prognostic marker for DMG.
A clinical study revealed that tumors wild-type for H3.3K27M with
NK cell infiltration are positively prognostic for DMG [37].

1.3.2. Microglia and macrophages
Microglia are myeloid cells accounting for 10�20% of the non-

neuronal cell population that support and protect neuronal function
[38]. Microglia and CNS-border associated macrophages, such as peri-
vascular, choroid plexus-associated, and meningeal macrophages,
have similar ontogeny and are commonly referred to as resident
macrophages (or tumor-associated macrophages (TAMs)) residing in
the CNS [39]. Of the CNS-border associated macrophages, choroid
plexus-associated macrophages are extrastriatal bone marrow-
derived macrophages (BMDMs). These immune cells are responsible
for maintaining brain homeostasis and immunological responses
[38].

TAMs display pro-tumorigenic effects in DMG [40]. Infiltration of
TAMs is partially mediated through PDGFB signaling [40]. In a DMG
GEMM, it has been demonstrated that bone marrow-derived macro-
phages are the predominant TAM sub-population in the tumor
microenvironment [40]. TAMs are a large part of the DMG immune
environment as indicated by the high expression of CD45, CD68, and
CD163, markers commonly expressed in microglia and peripheral
BMDMs. Furthermore, knockout of CC chemokine ligand 3 (CCL3), an
important driver of TAM recruitment and accumulation, in DMG
GEMMs resulted in fewer BMDMs and consequently conferred sur-
vival benefit [40]. TAMs in DMG differ from TAMs in adult CNS
tumors since they display a lower expression of IL6, IL1A, IL1B,
CCL3, CCL4 [41]. Moreover, immunohistochemistry has revealed
that DMG has decreased myeloid infiltration compared to adult
CNS tumors [36].

Once BMDMs in DMG are activated, they undergo morphological
changes and alterations in gene expression profile [42]. DMG tumor
BMDMs and microglia in the tumor parenchyma have unique molec-
ular characteristics distinct from normal brain microglia and macro-
phages. Moreover, DMG tumor microglia have unique morphology
since these microglia have shorter processes and enlarged cell bodies
in the tumor micronevironment [42].

The functionality of DMG TAMs differ from BMDMs seen in glio-
blastoma (GBM). Gene ontology analysis of the top 50 genes enriched
in GBM and DMG myeloid cells revealed that genes enriched in DMG
are involved in cell adhesion, angiogenesis, and extracellular matrix
organization [42]. Genes enriched in GBM are involved in processes
such as monocyte chemotaxis, neutrophil chemotaxis, and chemo-
kine-mediated signaling pathway [42]. These findings suggest that
DMG consists of distinctive inflammatory mechanisms. Additional
gene ontology analysis identified genes differentially expressed in
DMG-associated BMDMs compared to cortical microglia [42]. This
analysis revealed that DMG-associated BMDMs have undergone an
activation process consistent with their morphological changes.

1.3.3. Lymphocytes
The DMG immune environment is largely non-inflammatory and

does not consist of an adaptive immune component. The lack of
tumor infiltrating lymphocytes (TILs) in the tumor microenvironment
has been indicated by decreased expression of CD3+ lymphocytes
[42]. The few T cells that are present within the tumor microenvi-
ronment are found in perivascular spaces and around areas of
necrosis [43].

Furthermore, the brain’s inability to initiate an antitumor immune
response to DMG has been attributed to the absence of myeloid anti-
gen presenting cells that are essential for recruiting effector lympho-
cytes [36]. In addition to the lack of lymphocyte recruitment, studies
have shown that DMGmay have an undefined mechanism of evading
T lymphocyte recognition. The evasion process was demonstrated
when allogeneic T cells were unable to mediate DMG cell killing
when both were combined in culture [36].

1.3.4. Pre-clinical in vivomodels of DMG
The generation of diverse DMG modeling systems that recapitu-

late tumor growth and invasion is imperative to pre-clinically evalu-
ating potential treatments and advancing research on DMG biology.
While in vitro experiments provide critical findings about the cellular
and molecular characterization of DMG, they have limitations such as
the inability to model invasion, angiogenesis, metastasis, and the
response of the tumor microenvironment to treatments [44]. As a
result, in vivo models, such as patient derived xenografts (PDXs) and
GEMMs, have been designed to better understand tumor biology and
develop optimal treatment modalities for DMG that can be easily
translated to patients.

1.3.5. Xenograft models
PDX models are commonly used as DMG tumor models in which

DMG cells from patient samples are implanted into immunocompro-
mised mice [45]. Patient samples can be freshly harvested via biopsy
or obtained from postmortem tissue. While fresh tissue is preferred
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for orthotopic implantation, the diffuse nature and location of DMG
can preclude a safe biopsy [46,47]. However, within the last ten years,
efforts have been made to improve the feasibility and safety of DMG
stereotactic biopsies [48].

The first attempts to generate a PDX DMG model involved
implanting human adult cerebral cortex GBM cells into the brainstem
of mice and rats [49,50]. These cells were derived from serially trans-
planted xenografts or expanded patient cell lines. These models were
designed to evaluate therapeutic response rates of DMG given the
brainstem’s specialized microenvironment and blood brain barrier
(BBB) [49]. Although these tumors mimicked DMG anatomy and his-
tology, they were not capable of fully recapitulating molecular and
cellular characteristics [49].

Before DMG PDX models were established, DMG xenograft cell
lines were derived from autopsy tissue [3]. These cells grew into neu-
rospheres and were expanded and stabilized before transplantation
[3]. In vitro culturing methods involved propagating cells in culture
medium conducive to neural stem cell tissue growth containing fac-
tors that promote the expression of Nestin, glial fibrillary acidic pro-
tein (GFAP), Vimentin, Sox2, Olig2, and CD1333. Consequently, the
cultured neurospheres resembled primitive neural precursor cell
types. Once sufficiently expanded, neurospheres were dissociated
and stereotactically injected into the fourth ventricle of immunode-
ficient neonatal mice [3]. These mice developed hindbrain tumors
diffusely infiltrating the brainstem, cerebellum, and cerebrum, with
histopathology replicating DMG [3].

Isolation of fresh tissue can be difficult, however, there are a num-
ber of groups that have cultured and established xenograft cell lines
from tumor biopsies [51�53]. These cultures were mainly used to
test the efficacy of targeted agents and combination treatments of RT
and small molecule inhibitors. Cultures have also been used to study
DMG biology [53]. Chan et al. used biopsy-implanted PDX models to
study the role of H3K27M mutations in regulating methylation and
gene expression pattern changes in DMG.

While most PDX modeling methods involve culturing patient-
derived cells before implantation, there have been direct xenograft
transplantations where cells are directly transplanted into immuno-
compromised mice [49]. This method produced tumors that resem-
bled DMG but comprised of cells with mouse rather than human
origin. The mechanism for this cellular transformation is unknown. A
Table 1
GEMMs of DMG.

Model Technical approach Incidence Genotype

GEMM
RCAS/tv-a

80% by 3 months PDGF-B, p16 loss
77% in 1 month PDGF-B, p53 loss
72% by 3 months H3.3K27M, p53 loss
95% by 3 months H3.3K27M, p53 loss
43% by 3 months H3.3K27M, p53 loss
100% by 1�1.5 months H3.3K27M, p53 loss

In utero electroporation
100% by 4 months H3.3K27M, p53 loss
100% by 6�8 months H3.3K27M, p53 loss
100% by 4 months H3.3K27M, p53 loss
>90% by 1.5�2 months H3.3K27M, DNp53,
100% by 1 month H3.3K27M, p53 loss
100% by 1 month H3.3WT, p53 loss, P
100% by 1 month H3.3WT, p53 loss, P
100% by 1 month H3.3K27M, p53 loss

Transgenic
100% by 4 months H3.3K27M, p53 loss
100% by 4 months H3.3K27M, p53 loss
86% by 3 months H3.3K27M, p53 loss
96% by 3 months p53 loss, PDGFRAV54

80% by 3 months H3.1K27M, ACVR1G

80% by 3 months H3.1K27M, ACVR1G
more recent study concurrently generated two DMG models: one
where DMG cells were directly transplanted into the brainstem of
mice upon biopsy and another where cells were expanded before
implantation. While neither of these models formed tumor masses,
models mimicked the epigenetic variability observed in the patients
with DMG [54]. Overall, direct transplantation of patient-derived
cells is less favorable for developing PDX models because there is a
greater possibility of losing cells during the transplantation process
[55].

The site of injection and the preparation of cells before xenograft
implantation has varied. One group has implanted DMG cells into the
striatum rather than brainstem [56] and another infected cells with
human telomerase reverse transcriptase (hTERT) and a luciferase
reporter before implantation [57]. The hTERT-Luc mouse model gen-
erated by Hashizume et al. expressed key genes for human DMG
including GFAP, Nestin, Olig2, and PDGFA. Upon gene expression and
copy number analysis, this model was compared to previous analyses
of human DMG samples and used to evaluate a preclinical efficacy of
RT and inhibitor MK-1775 in vivo [52,57].

Larger studies have used both autopsy and biopsy specimens to
generate DMG PDX models. Grasso et al. used biopsy and patient
derived DMG cells to generate in vitro and in vivo model systems and
run a large-scale drug screen including 83 drugs. It was found that
panobinostat, a histone deacytelase (HDAC) inhibitor, has a synergis-
tic effect with GSK-J4, a histone de-methylase inhibitor, and is cyto-
toxic to DMG cells in vitro and can be used to effectively treat
orthotopic DMG tumors in vivo [58].

1.3.6. Genetically engineered mouse models
In addition to PDXs, GEMMs have become important in vivo tools

for DMG research (Table 1). It was first suspected that GEMM could
be used to model DMG because previous findings have indicated that
the RCAS (replication-competent avian sarcoma-leucosis virus long-
terminal repeat with splice acceptor system) could be used to gener-
ate gliomas outside of the subventricular zone. GEMMs involve the
introduction of genetic alterations to a specific cell-of-origin. Because
immunocompetent mice are used, primordial growth and develop-
ment of tumors in a functional tumor microenvironment can be
observed. Concerted efforts towards generating GEMMs have con-
tributed to further investigate DMG cells-of-origin and molecular
Cell of Origin Reference

nestin-expressing NPCs (hindbrain) [59]
nestin-expressing NPCs (hindbrain) [61]
nestin-expressing NPCs (hindbrain) [19]

, PDGF-B nestin-expressing NPCs (hindbrain) [111]
, PDGF-B Pax3-expressing NPCs (hindbrain) [64]
, PDGF-B nestin-expressing NPCs (hindbrain) [112]

, PDGFRA, ATRX loss periventricular NPCs (forebrain/hindbrain) [113]
periventricular NPCs (forebrain/hindbrain) [113]

, ATRX loss periventricular NPCs (forebrain/hindbrain) [113]
PDGFRAD842V periventricular NPCs (forebrain) [114]
, PDGF-B periventricular NPCs (hindbrain) [115]
DGF-B periventricular NPCs (hindbrain) [115]
DGFRAD842V hindbrain periventricular NPCs (hindbrain) [115]
, PDGFRAWT hindbrain periventricular NPCs (hindbrain) [115]

nestin-expressing NPCs [113]
GFAP-expressing NPCs [113]
nestin-expressing NPCs [21]

4ins nestin-expressing NPCs [21]
328V, PIK3CAH1047R Olig2-expressing OPCs [116]
328V Olig2-expressing OPCs [116]



Fig. 3. DMG is a heterogeneous tumor with diverse treatment modalities. The main-
stay of treatment for DMG is fractionated RT with intermittent chemotherapy. Emerg-
ing immunotherapies, such as vaccines, oncolytic viruses, checkpoint inhibitors, and
pharmacologic inhibitors, have been met with preclinical success and are undergoing
clinical trials.
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underpinnings associated with tumor initiation, growth, histology,
and treatment response.

GEMMs are generally designed using the RCAS/tumor virus A
(TVA) modeling system and genetic aberrations associated with the
human disease of interest. The RCAS�TVA system uses the retroviral
avian leucosis and sarcoma virus family as a vector to deliver the
gene of interest. Subsequently, the virus selectively infects cells
expressing the corresponding surface receptor TVA.

Because Nestin-expressing cells are suspected to be the cells-of-
origin for DMG, one of the first GEMM for DMG involved using germ-
line Ink4a-ARF loss and PDGFB overexpression targeted to Nestin-
expressing cells in the pons of neonatal mice [3,59]. While these
GEMMs tumors grew in the brainstem and were similar in histology
to human DMG, they were not formed exclusively in the pons, so this
model was considered to be a brain stem glioma (BSG) GEMM rather
than a DMG model. Although tumors were generated in the brain-
stem, this model is one of the few GEMMs that closely mimics human
DMG.

GEMMs have been used as a preclinical tool to test potential ther-
apeutics and study tumor biology. The BSG GEMM has been further
characterized by comparing it to other glioma GEMMs. Specifically,
Hambardzumyan et al. compared the BSG GEMM to gliomas of the
cerebral cortex to define subsets of DMG and understand mecha-
nisms driving tumor growth [60]. This study found that found that
the BSG GEMM had a high expression of transcription factor Pax3
that is essential for gliomagenesis [60].

The BSG GEMM has also been used to test tumor response to
treatments. Becher et al. used this model to test the therapeutic effi-
cacy of RT and AKT signaling inhibitor perifosine, while Barton et al.
studied the therapeutic effect of cyclin-dependent kinase (CDK) 4/6
inhibitor PD0332991 alone and in combination with RT [59,61]. A
survival benefit was found when combining perofisine and RT Becher
et al.’s study; however, the study conducted by Barton et al. was the
first to report that a treatment other than RT alone resulted in sur-
vival benefit. Most recently this model has been used to detect the
effects of systemic administration and convection enhanced delivery
(CED) of HDAC inhibitor panobinostat in treating DMG [62,63].

In addition to the BSG GEMM, a GEMM that resembled DMG was
generated by initiation in the pons and PDGF signaling overexpres-
sion, p53 loss, and H3.3K27M mutation [19]. This model has many
advantages because of its location in the pons and harbors a global
knockout of H3K27me3 that mimics patient DMGs characterized by
H3K27me3 mutations [19].

In 2016, DMG GEMMwas established by injecting Pax3-Tv-a;Trp53fl/
fl mice with RCAS-PDGFB and RCASCre, with or without RCAS-
H3.3K27M [64]. The RCAS plasmid-produced avian retroviruses express-
ing Cre and PDGFB infect mouse cells expressing Pax3 and RCAS virus
receptor Tv-a. The generation of this model was used to further investi-
gate the cell-of-origin and possible cancer stem cells in DMG.

Another unique DMG GEMM involves the use of human embry-
onic stem cells to create neural precursor-like cells (NPCs) that are
altered with activated PDGFRA, H3.3K27M, and p53 knockdowns
[32]. The addition of these genes to NPCs induced tumorigenesis. This
study provided valuable information on NPC response to oncogenes
in vitro and in vivo [32].

Recently, Larson et al. developed a neuro-specific, promoter-
driven conditional H3f3aK27M knock-in DMG GEMM and demon-
strated that H3.3K27M cooperates with PDGFRA mutations and loss
of p53 to induce brainstem gliomas molecularly resembling human
DMG [21]. The K27M mutation, and the subsequent H3K27me3 loss,
led to discrete transcriptional changes with selective regulation of
bivalent promoters in tumors. Upregulated genes were enriched for
association with neural development, while genes that encoded
homeodomain transcription factors were downregulated, thus
suggesting that H3.3K27M acclimatizes a more undifferentiated phe-
notype21L.
1.4. Existing and upcoming therapies for DMG
1.4.1. Standard-of-care treatments
Conventional fractionated external beam RT is the principal treat-

ment modality for DMG (Fig. 3). RT minimally extends patient sur-
vival and temporarily relieves symptoms [65]. The standard RT dose
administered for DMG is 54 Gy that is delivered as 30 fractions of 1.8
Gy [66]. The rationale for RT being used as a treatment is based on
studies reporting that DMG spreads congruously and tumor recur-
rence is most often local and within the fields of RT [67�69].

RT damages proliferating cancer cells and induces hypoxia [70].
Within the tumor microenvironment, hypoxia induces a cascade of
events that lead to an increase in chemokine CXCL12 and subsequent
recruitment of bone marrow-derived monocytes and hematopoietic
progenitor cells that co-express CXCR4 and CXCR7 [70]. These stro-
mal cells undergo differentiation to become tumor-promoting mac-
rophages that mediate angiogenesis and tumor recurrence [71�73].
Accordingly, preclinical studies have found that blocking CXCL12 [74]
and CXCR7 [75] impedes tumor recurrence upon irradiation. In addi-
tion to inhibiting cell proliferation and inducing tumor hypoxia, RT
also upregulates PD-L1 at the surface of tumor-infiltrating myeloid
cells [76]. Programmed death-ligand 1 (PD-L1) is a coinhibitory
ligand expressed in many types of tumor cells. Inhibition of the PD-
L1 and programmed cell death protein 1 (PD-1) checkpoint can serve
as a potential immunotherapy [77]. The addition of immunotherapies
and novel therapeutic inhibitors can have a concomitant effect when
combined with RT to treat DMG.

Chemotherapy is also a primary mode of treatment for DMG
despite having minimal impact on prognoses. Chemotherapy has the
potential to mitigate RT-induced damage and improve neuro-cogni-
tive outcomes when combined with RT [78]. However, chemotherapy
damages the bone marrow and eventually impacts the number and
activation state of resident immune cells [79]. The most common
chemotherapy used to treat brain cancer is temozolomide (TMZ).
TMZ directly targets cancer cells and has immunomodulatory effects
[80]. TMZ induces lymphopenia, which interestingly can be har-
nessed to improve immunotherapy. This was confirmed by findings
indicating that lymphoablative doses of TMZ increase tumor antigen-
specific immune responses in GBM patients [81,82] and GBM-bearing
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mice [83]. The mechanism underpinning this synergistic effect is that
upon administration of TMZ, there are compensatory homeostatic
cytokines reducing the T-cell activation threshold and induction of
proliferation which in turn heightens immune responses [83]. While
TMZ has shown improved survival in GBM characterized by a O6-
methylguanine-DNA methyl-transferase (MGMT) promoter methyla-
tion, this drug has not been successful in patients with DMG. In addi-
tion to TMZ, many clinical trials for DMG treatment have involved
myelosuppressive chemotherapy, including a high-dose chemother-
apy trial with stem-cell rescue [84,85]. These trials have not shown
improvement in overall survival.

Although chemotherapy has proven to be ineffective in the treat-
ment of DMG, there are diverse perspectives about whether or not to
use chemotherapy [86,87]. A recent survey found that 44% of physi-
cians suggested that patients undergo adjuvant chemotherapy after
RT [88]. Overall, the efficacy of chemotherapy is limited because
DMG tumors characteristically have an intact BBB which makes CNS
penetration difficult [89]. The administration of therapeutics that
increase BBB permeability along with chemotherapy could enhance
the efficacy of chemotherapy for DMG.
1.4.2. Immune factors involved in DMG tumor growth and development
Malignant brain cancers commonly undergo infiltration of

immune cells. In the tumor, immune cells become polarized, acquire
new properties that support tumor growth, and facilitate the secre-
tion of a variety of growth factors and pro-angiogenic cytokines [90].
While interactions between brain tumor and immune cells tend to be
diverse, secretory immune cells are not a part of the DMG milieu
[91]. Hierarchical clustering analysis has demonstrated that DMG cul-
tures resemble human neural precursor cells and secrete substan-
tially fewer cytokines and chemokines than GBM cells [42]. On a
transcriptional level, DMG cell cultures do not express cytokine genes
and only express a limited number of chemokines and growth factors
that may contribute to the immune infiltration in the tumor [42].
Interleukin-2 (IL2) is an example of a key cytokine that has decreased
expression in DMG. Reduced IL2-mediated signaling is indicative of
low levels of T lymphocytes that may have antitumorigenic proper-
ties. The immunosuppressive growth factor transforming growth fac-
tor beta (TGF-b) and the neutrophil chemotactic factor IL8 are two of
the few factors readily expressed in DMG [40]. TGF-b contributes to
the tumor's non-inflammatory nature, while IL2 strongly induces
CXC chemokine receptor 2 (CXCR2).

Recently, it has been reported that DMGs have higher expressions
of leukocyte-attracting chemokines CXCL1, CXCL2, CXCL5, and CXCL6
compared to other pediatric high-grade gliomas (pHGGs) [40]. These
chemokines exert their biological effects by interacting with the
CXCR2 receptor which is also overexpressed in DMGs [40]. Interest-
ingly, although DMGs have been universally considered “immune
Table 2
Recent and current immunotherapy clinical trials for DMG.

Intervention Administration Clinical T

C7R-GD2 CAR T cells IV NCT0409
GD2 CAR T cells IV NCT0419
B7-H3 CAR T cells Intratumoral; intraventricular NCT0418
Autologous dendritic cell vaccines (ADCV) Intradermal NCT0284
DNX-2401 Intratumoral NCT0317
DC vaccine/TMZ IV NCT0339
cemiplimab (REGN2810) + RT IV NCT0369
H3K27M vaccine + nivolumab IV NCT0296
Pembrolizumab IV NCT0235
APX005M [CD40 agonistic Ab] IV NCT0338
indoximod + RT/TMZ PO NCT0404
IL12 adenovirus Intratumoral NCT0333

Abbreviations: IV (intravenous); PO (oral).
cold,” DMG tumors express a subset of chemokines and growth fac-
tors. RNA sequencing and gene expression analysis has shown that
patient-derived DMG cell cultures express high levels of CCL2, CCL5,
CSF1, CXCL12, and PDGFA [42].

CCL2 and CCL5 are both chemoattractant proteins critical for
monocyte and lymphocyte chemotaxis. CCL2 plays a key role in regu-
lating the migration of TAMs, myeloid derived suppressor cells
(MDSCs), and regulatory T cells (Tregs) to tumor sites [92]. Despite
the ability for CCL2-expressing DMG cells to regulate migration,
MDSCs and Tregs have not been reported to infiltrate DMG tumors
which may be attributed to underlying tumor cell-intrinsic factors.
Similarly, CCL5 has been associated with CD8+ T cell infiltration in
various carcinomas; however, DMG tumors contain very few infiltrat-
ing T-cells [42].

CSF1 is a cytokine associated with M2 TAMs. M2 TAMs are charac-
terized by a pro-tumorigenic phenotype that is immune regulatory
and anti-inflammatory [42]. Despite DMG tumor cells producing
CSF1, TAMs in DMG tumors cannot be distinguished by the M1 (clas-
sically activated) or M2 (alternatively activated) macrophage pheno-
type [93].

PDGFRA is a genetic alteration that is common in DMG. The con-
tributions of PDGFRA to DMG tumor development has been described
in preclinical models. PDGFRA activation induces multiple cellular
activities including cell proliferation, migration, transformation, and
survival [94]. PDGFRA activation and p53 loss have been found to
induce neoplastic transformation in human embryonic stem cells and
induce GEMMs of brainstem gliomas [21,43].

CXCL12 is a chemoattractant expressed in various tumors and its
receptor, CXCR4, is overexpressed in at least 20 different cancers
types, including breast cancer, ovarian cancer, and melanoma [95].
The CXCL12/CXCR4 interaction contributes to tumor cell growth, sur-
vival and angiogenesis in cancers and is critical for homing and meta-
static mediation of secondary growth in organs [96]. However, the
role of CXCL12/CXCR4 axis in tumor growth and organ development
has often been debated [97,98].
1.4.3. Recent immunotherapeutic discoveries
Immunotherapy has become an emerging therapeutic option for

DMG and several of these approaches have been implemented in
clinical trials (Table 2). However, this specific treatment poses a num-
ber of challenges since the DMG tumor microenvironment is immu-
nosuppressive and has impaired immune surveillance. When
combined with additional therapeutic interventions, immunothera-
pies can enhance the endogenous immune response and activate the
intrinsic antitumor response.

Peptide vaccines involving the injection of tumor-specific anti-
gens stimulate immune response and have the potential to provide
clinical benefit for tumors and produce an antitumor effect [99]. Ochs
rial Tumor Eligibility Phase Recruitment Status

9797 Newly diagnosed; recurrent/refractory I Recruiting
6413 Newly diagnosed I Recruiting
5038 Newly diagnosed I Recruiting
0123 Newly diagnosed I Unknown
8032 Newly diagnosed I Active, not recruiting
6575 Newly diagnosed I Recruiting
0869 Newly diagnosed; recurrent/refractory I Recruiting
0230 Newly diagnosed I Recruiting
9565 Recurrent/refractory I Recruiting
9802 Newly diagnosed; recurrent/refractory I Recruiting
9669 Newly diagnosed II Recruiting
0197 Newly diagnosed I/II Recruiting
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et al. designed a peptide vaccine (27-mer peptide) targeting the
H3.3K27M mutation in a major histocompatibility complex-human-
ized DMGmouse model [100]. Administration of this vaccine resulted
in a cytotoxic T cell and T helper (Th) cell-mediated immune response
that was induced by interferon-gamma (IFNg).

Dendritic cell (DC) vaccines have also been studied as a potential
immunotherapy for DMG. Because DCs are robust antigen-presenting
cells (APCs) situated at the interface between the innate and adaptive
immune system, they are capable of inducing antigen-specific T cell
responses and functioning as cellular adjuvants [101]. DC vaccines
are made by leukapheresis of monocytic cells, exposing these cells to
tumor-cell antigens, and administering the cells as a vaccine. DC vac-
cines have been reported as a potential therapy for DMG and have
been shown to recruit tumor-specific T cells in several studies
[101,102].

The effectiveness of peptide and DC vaccines may be countered by
the lack of immune cell infiltration that is characteristic of DMG. As a
result, the potential for DMG to stimulate T lymphocyte expansion
and recruitment must be explored since very few T lymphocytes exist
around the tumor site.

Recent studies have shown that oncolytic virus modification can
be used to destroy tumorigenic cells. Martínez-V�elez et al. has
reported that the administration of Delta-24-RGD (DNX-2401 in the
clinic), a replicative oncolytic adenovirus, in the pons has a good
safety profile and results in a significant increase in the survival of
DMG mouse models [103]. Specifically, DNX-2401 administration
induces T lymphocyte infiltration in the delineated tumor mass, lead-
ing to immune recognition of the tumor site. A preclinical study has
explored the antitumor efficacy of DNX-2401 viral infection and rep-
lication in vitro. Intratumoral administration of DNX-2401 was non-
toxic in both immunodeficient and immunocompetent mouse
models of DMG and led to a significant increase in animal survival
[102]. Additionally, DMG tumor cells have shown sensitivity to New-
castle disease virus (NDV) and infecting DMG cell lines with NDV
decreases cell viability. Clinical studies where NDV was administered
to patients with DMG showed an increase of IFNg secreting T cells in
the tumor microenvironment indicating that NDV could be used as a
potential immunotherapy [104].

Delivery of CD40L-expressing adenovirus (Ad-CD40L) has been
found to induce immune-mediated antitumor response [105]. Con-
ventionally, CD40/CD40L interactions stimulate an immune response
through Th cells, provide proliferation and differentiation signals to B
cells, and facilitate APC maturation leading to the induction of cyto-
toxic T lymphocytes. Studies reported that Ad-CD40L induces both
adaptive and humoral antitumor immune responses [106]. As a part
of the adaptive immune response, Ad-CD40L induced infiltration of
CD45+ cells composed of CD4+ and CD8+ T cells, CD19+ B cells, and
NK cells. Increased IgG levels was indicative of an active humoral
immune response upon AD-CD40L delivery. Ad-CD40L administra-
tion also upregulated genes involved in signaling pathways of neuro-
inflammation, T and B cell signaling, Th activation, and DC saturation
[105]. The study also explored the effects of replication competent
adenovirus since the use of standard adenoviral vectors can be
associated with proinflammatory off-target effects. The replication
competent adenovirus proved to be a more effective cancer treat-
ment and mitigated proinflammatory cytokine and chemokine
production. Upon delivery, cure rates in patient-derived DMG
xenograft mouse models were up to 50% and weight loss in these
mice was minimal [105].

Identification of DMG neoantigens has spurred the development
of adoptive T cell therapies and immune checkpoint inhibitors. A
recent study found that DMGs express B7-H3, a checkpoint molecule,
which can be targeted using chimeric antigen receptor (CAR) T cell
therapy. CAR T cells directed at B7-H3 produce IFNg , IL2, and tumor
necrosis factor-alpha (TNF-a) to induce tumor cell killing [106]. CAR
T cell therapy has also been developed for DMG tumors with mutated
H3K27M and high expression of GD2 (disialoganglioside-glycolipid
antigen) devoid of neurotoxicity and deleterious side effects [107].
Similar to the B7-H3 CAR T cell therapy, CAR T cells directed at GD2
produce IFNg , IL2, and TNF-a to induce tumor cell killing and cause
inflammation in neuronal tissue [107]. This therapy has been
approached with hesitance because of its adverse effects such as ven-
triculomegaly in vivo which is consistent with hydrocephalus in
patients.

Pharmacologic inhibition of lysine specific demethylase (LSD1) is
a potential immunotherapy for DMG because it is selectively cyto-
toxic and promotes an immune gene signature associated with NK
cell killing [37]. LSD1 is a potential target in DMG because LSD1 regu-
lates the histone mark H3K4me1 which is known to be enriched in
intergenic regions of DMG and LSD1 may control access to enhancers
of genes important in DMG pathology [37].

While checkpoint inhibitors against PD-L1 and PD1 have shown
great promise as a cancer immunotherapy, minimal efficacy has been
demonstrated when using PD-L1 for DMG therapy since DMG is
immunologically cold with low endogenous expression of PD-L1
[36]. In order for PD-L1 to be an effective treatment for DMG, it must
be combined with adjuvant therapies to enhance systemic immune
response. Previous retrospective studies involving children diag-
nosed with DMG who received a combination of RT and nivolumab
(PD-1 inhibitor) showed that these patients experienced slightly
improved prognoses with no off-targeting or mitigating factors com-
pared to those patients only received RT [108].

Immune modulating monoclonal antibodies (mAbs) have become
novel oncologic therapies. The efficacy of immune modulating anti-
body MDV9300 (pidilizumab) in pediatric hematological malignan-
cies has prompted its effects to be evaluated on DMG [108].
Pidilizumab augments endogenous antitumor response by acting as
an immune modulator for humanized IgG1 mAb and having second-
ary inhibitory effects on PD-1. A clinical study involving the adminis-
tration of pidilizumab to nine DMG patients observed an
improvement in survival by 6.3 months compared to patients who
underwent RT alone [109]. It is important to note that additional clin-
ical trials involving the safety, tolerability, and benefit of pidilizumab
must be conducted in order to confirm the aforementioned findings.

1.4.4. Outstanding questions
While this review comprehensively highlights the immune micro-

environment of DMG, advanced knowledge about immune cell sub-
populations that modulate DMG progression is imperative. This
knowledge can be acquired from studies exploring the interplay
between immune cell subpopulations and the tumor microenviron-
ment.

Given the intratumoral heterogeneity of DMG, there is a paucity of
information on the immune microenvironment associated with dif-
ferent DMG subgroups. This lack of information raises the question:
how does tumor location and molecular identity of DMG impact the
immune landscape? The recent characterization of DMG subgroups is
the tip of the iceberg and more work must be done to explore how
DMG’s epigenetic and genetic expression attunes the immune micro-
environment [6]. These findings are critical since the development of
novel immunotherapies hinges on understanding the ways in which
tumor heterogeneity influences the immune landscape.

2. Conclusion

Despite our knowledge on cell intrinsic mechanisms driving
tumor growth, there is a paucity of information on the immune land-
scape of pHGGs, let alone DMG [110]. To date, there is insufficient
research on the tumor immune microenvironment of DMG, yet this
scope of research is imperative to developing effective therapeutic
strategies. Current research has revealed that aggressive brain tumor
subtypes, such as DMG, have high myeloid signatures, low expression
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of immune modulatory factors, and minimal infiltration of lympho-
cytes and NK cells responsible for tumor elimination. The lack of
inflammatory cells in the DMG tumor microenvironment has made
immune surveillance nonexistent. Currently, immunotherapy
approaches for DMG have limited success because DMG has a low
mutation burden and immunosuppressive microenvironment. The
absence of antigen presenting cells, downregulation of the major his-
tocompatibility complex, and presence of BBB have dampened anti-
tumor immune responses, rendering most DMG tumors
immunologically ‘cold’ and unresponsive to the use of existing immu-
notherapies alone [35]. However, when combined with adjuvant
therapies, immunotherapies have the potential to elicit an antitumor
response. Immunotherapy in combination with a neoadjuvant ther-
apy can potentially eliminate cancer cells while sparing critical struc-
tures within the brain. Continued research endeavors involving the
immune microenvironment and the emergence of innovative immu-
notherapies provide a critical background on future studies related to
DMG.

Search strategy and selection criteria

Data for this review were identified by searches of PubMed and
Scopus, and references from relevant articles using the search terms
“diffuse midline glioma”, “diffuse intrinsic pontine glioma”,
“H3K27M”, “immune microenvironment”, “immunotherapies”,
“DIPG/DMG mouse models” and related terms. Searches were also
formed based on investigator names. Abstracts and reports from
meetings were excluded. Only articles published in English were
included. Articles published in English between 1993 and 2021 were
included. Articles were chosen according to their relevance to the
theme as perceived by the authors.
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