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Abstract
Objectives: To evaluate the diagnostic performance of multiple machine learning classifier models derived from first-order

histogram texture parameters extracted from T1-weighted contrast-enhanced images in differentiating glioblastoma and

primary central nervous system lymphoma.

Methods: Retrospective study with 97 glioblastoma and 46 primary central nervous system lymphoma patients. Thirty-six

different combinations of classifier models and feature selection techniques were evaluated. Five-fold nested cross-

validation was performed. Model performance was assessed for whole tumour and largest single slice using receiver

operating characteristic curve.

Results: The cross-validated model performance was relatively similar for the top performing models for both whole

tumour and largest single slice (area under the curve 0.909–0.924). However, there was a considerable difference between

the worst performing model (logistic regression with full feature set, area under the curve 0.737) and the highest perform-

ing model for whole tumour (least absolute shrinkage and selection operator model with correlation filter, area under the

curve 0.924). For single slice, the multilayer perceptron model with correlation filter had the highest performance (area

under the curve 0.914). No significant difference was seen between the diagnostic performance of the top performing model

for both whole tumour and largest single slice.

Conclusions: T1 contrast-enhanced derived first-order texture analysis can differentiate between glioblastoma and primary

central nervous system lymphoma with good diagnostic performance. The machine learning performance can vary signif-

icantly depending on the model and feature selection methods. Largest single slice and whole tumour analysis show

comparable diagnostic performance.
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Introduction

Glioblastoma is the most aggressive primary malignant

brain tumour in adults. Primary central nervous system

lymphoma (PCNSL) has a reported incidence of 3–4%

among newly diagnosed brain tumours.1 Typically,

glioblastoma manifests on imaging as an enhancing

mass with variable necrosis, while the appearance of

PCNSL is variable, depending on the underlying

immune status of the patient. However, the imaging

features may overlap, making it challenging to differ-

entiate the two entities.2 The distinction is, however,

critical because the therapeutic options are entirely dif-

ferent. Glioblastoma is managed by maximum safe sur-

gical resection and chemoradiation, whereas

methotrexate-based chemotherapy with or without

radiation is the mainstay for PCNSL.3

Multiple prior studies aimed to distinguish between

glioblastoma and PCNSL by utilising advanced mag-

netic resonance imaging (MRI) (arterial spin labelling,

diffusion tensor imaging (DTI) and perfusion
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imaging).3–7 However, these advanced sequences
require additional expertise and expense, are time-
consuming and as such are not performed routinely.
Thus, conventional MRI sequences are still the main-
stay in brain tumour imaging in routine clinical prac-
tice. More recently, magnetic resonance texture
analysis (MRTA) is being increasingly utilised in
neuro-oncology for tumour classification, assessing
treatment response and prognostication.8,9 MRTA
includes extraction of first, second or higher order tex-
ture, and shape features from medical images. These
are thought to reflect underlying tumour micro-
environment and heterogeneity.10

Filtration-based MRTA is a technique that involves
the initial application of a Laplacian of Gaussian
(LoG) filter to remove image noise followed by extrac-
tion and enhancement of image features at different
sizes based on the applied filter. A total of six
histogram-based first-order texture parameters are
subsequently derived from each filter level. As there
is a total of six filtration levels, this yields a total of
36 texture features for evaluation.

Prior studies have previously utilised filtration-
based first-order histogram features for evaluating
tumour grade, genotyping, treatment response and sur-
vival.11–14 However, the effectiveness of this technique
to differentiate between glioblastoma and PCNSL has
not been studied before. We aimed to determine the
diagnostic performance of texture features extracted
from T1 contrast-enhanced (CE) sequence in differen-
tiating glioblastoma from PCNSL. For this, we inves-
tigated multiple machine learning classifier models and
feature reduction strategies for texture-based glioblas-
toma and PCNSL classification. A secondary aim was
to determine if the texture analysis of a largest single
tumour slice can provide comparable diagnostic accu-
racy compared with the texture features derived from
the entire tumour.

Materials and methods

Data collection

The retrospective study was approved by the institu-
tional review board (IRB) of the University of Iowa
Hospital and the requirement for informed consent
was waived. Between 2005 and 2016, patients with
pathologically confirmed glioblastoma (n¼ 135) or
PCNSL (n¼ 67) were identified. Eligibility criteria
included untreated patients and the availability of
artifact-free preoperative T1-weighted CE MRI
images with slice thickness 3–5 mm and the presence
of a CE tumour greater than 10 mm. Patients with
motion artefacts or absence of preoperative CE imag-
ing, and a history of treatment (surgery or chemora-
diation) prior to initial imaging or recurrent tumours
were excluded. This yielded a total of 97 patients with
glioblastoma and 46 with PCNSL (Figure 1). All
patients with PCNSL were immunocompetent.

Image acquisition

All patients had preoperative imaging on a 1.5 T MRI
system (Siemens, Erlangen, Germany). The acquisition
protocol for brain tumour evaluation at our hospital
includes pre-contrast axial T1-weighted, T2-weighted,
fluid-attenuated inversion recovery (FLAIR),
diffusion-weighted imaging (DWI) with ADC maps,
gradient echo and T1-weighted CE images. The typical
imaging parameters were: T1-weighted (TR/TE/TI:
1950/10/840; NEX: 2; slice thickness: 5mm; matrix:
320� 256; field of view (FOV) 240mm; pixel size
0.75mm); T2-weighted (TR/TE: 4000/90; NEX: 2;
slice thickness: 5mm; matrix: 512� 408; FOV
240mm; pixel size 0.5mm); and FLAIR (TR/TE/TI:
9000/105/2500; NEX: 1; slice thickness: 5mm; matrix:
384� 308; FOV 240mm; pixel size 0.6mm). T1-
weighted CE images were acquired after administra-
tion of gadobenate dimeglumine (Multihance; Bayer
Healthcare Pharma, Berlin, Germany) or gadobutrol
(Gadovist; Bayer Healthcare Pharma, Berlin,
Germany) injected at the rate of 0.1 ml/kg body weight.

Tumour segmentation/region of interest delineation

Tumour segmentation was performed on axial T1 CE
images by a medical researcher under supervision of a
fellowship-trained neuroradiologist. Manual segmenta-
tion was performed using a commercial research soft-
ware (TexRAD version 3.3, TexRAD Ltd., part of
Feedback Plc, Cambridge, UK) by employing a poly-
gon drawing tool. Total tumour volume segmentation
was performed by contouring all axial two-dimensional
(2D) slices containing the tumour. The region of inter-
est (ROI) encompassed both the necrotic and solid
enhancing regions of the tumour with the exclusion
of oedema (Figure 2). The averaged sum of all texture
features from all tumour slices was used for the whole
tumour subgroup while the ROI with the largest pixel
count was selected for single slice analysis.

Texture analysis

MRTA was performed using the same software. The
software employs a filtration histogram technique with
application of LoG band-pass filter. The filtration step
extracts and enhances image features of variable size
and intensity corresponding to spatial scaling filter
(SSF) values. Different SSF values extract information
for different filter sizes, ranging from fine filter (SSF 2),
medium (SSF 3–5) and coarse filter (SSF 6) (Figure 2).
SSF 0 corresponds to an unfiltered image. In the filtra-
tion approach, image noise was reduced by the
Gaussian component of the filter, while feature
enhancement (image heterogeneity) was performed by
the Laplacian component. Additional details regarding
post-processing have previously been described in
detail.15,16 Image texture of the filtered and unfiltered
pixels was further quantified by measurement of the
histogram, and six statistical parameters for each SSF
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were calculated in both groups of patients followed by
mathematical interpolation of slice data. Thus, a total
of 36 statistical parameters are obtained for each
tumour (six parameters for each SSF). These included
mean (average value of the grey-level intensities); stan-
dard deviation (SD; dispersion from the mean); entro-
py (irregularity or randomness of the grey-level
distribution); skewness (asymmetry of histogram); kur-
tosis (pointedness of histogram) and mean of positive
pixels (MPP) for each filtration level, giving a total of
36 texture features.13,16

Feature selection and reduction

Two feature sets were considered for the model fitting.
The first included features extracted from the whole
tumour and the second included features extracted
from the single largest slice. Each feature set consisted
of 36 features.

Three different feature selection strategies were
used. In the ‘full feature’ strategy, the optimal features
were determined by the model itself, based on penalised
or non-penalised inbuilt classifier. The other two

Figure 1. Patient selection.

Figure 2. Overall study workflow showing segmentation, feature selection, model building and validation.
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feature selection methods involved a high correlation

filter and principal components analysis (PCA). The
high correlation filter removes variables from the fea-

ture set which have a large absolute correlation. A
user-specified threshold was given to determine the

largest allowable absolute correlation. This threshold
was set at 0.95 to remove highly correlated variables.

The PCA transformation calculates new variables from

orthogonal linear combinations of the observed fea-
tures. The number of components retained in the

PCA transformation was determined by specifying
the fraction of the total variance that should be cov-

ered by the components. This cut-off was set to 95% to
allow for much of the information in the features to be

retained while still addressing the multicollinearity.

Model building

Twelve different machine learning classifiers were con-

sidered. These models can be categorised into three

broad groups: linear classifiers, non-linear classifiers
and ensemble classifiers. The linear classifiers used

were linear, multinomial logistic, ridge, elastic net
and least absolute shrinkage and selection operator

(LASSO) regression. The non-linear classifiers used
were neural network, support vector machine (SVM)

with a polynomial kernel, SVM with a radial kernel
and the multilayer perceptron (MLP). Finally, the

ensemble classifiers used were random forest, general-
ised boosted regression model (GBRM) and boosting

of classification trees with AdaBoost. The penalised

regression approaches of the LASSO and elastic net,
as well as the tree-based approaches used in the

GBRM, AdaBoost and random forest models all
allow for additional embedded feature selection. For

approaches that do not allow for embedded feature
selection, they simply use the number of features

remaining after the filter. For each feature set, all 12
classifiers were fit using all features as well as with the

two filtering methods. This led to 36 possible model/
feature selection combinations on each of the two fea-

ture sets (whole tumour and largest single slice, respec-

tively) (Figure 2). All variables were standardised prior
to filtering and model fitting. Optimal feature subset

and variable (feature) importance was also evaluated.

Statistical analysis

The predictive performance of each model was evalu-

ated using five-fold repeated cross-validation with five
repeats. For models with tuning parameters, important

parameters were tuned using nested cross-validation to
avoid bias. The feature selection techniques were car-

ried out within each cross-validated split of the data, so

as not to bias the estimate of predictive performance.
Feature selection methods were implemented using the

recipes package in R version 4.0.2. Model fitting and
cross-validated predictive performance was imple-

mented using the MachineShop package and RSNNS

package in R version 4.0.2. Predictive performance was

measured with the area under the receiver operating

characteristic curve (AUC). As models were formulat-

ed to predict lymphoma, AUC estimates the probabil-

ity that a randomly selected subject with PCNSL will

have a greater predicted value than a randomly selected

subject that had glioblastoma.
The two-sample t-test was used to test for a signif-

icant difference in the mean age between the groups

and the chi-square test was used to test for a significant

association between sex and group.

Results

Patient characteristics

Table 1 provides summary statistics of the clinical

characteristics age and sex by group and for the

entire sample. There were no significant differences in

the age and gender distribution between the two

tumour classes (P> 0.05).

Comparison of model performance

The combination of the LASSO model with high cor-

relation filter selection strategy had highest diagnostic

performance for whole tumour (cross-validated mean

AUC of 0.924, accuracy 88%). For single slice analysis,

the combination of the MLP (multilayer perceptron

network) model with high correlation filter achieved

highest performance (AUC 0.914, accuracy 86%).

Table 2 displays the diagnostic performance of the

top five models based on feature numbers with the

highest average cross-validated AUC on both feature

sets. Figure 3 displays the mean AUC for all model/

feature selection combinations. The LASSO model fit

using high correlation filter was the best model for

whole tumour and was built using eight optimal fea-

tures. For the single slice, MLP was the highest per-

forming model again fit using high correlation filter

and was built using 20 optimal features. For whole

tumour, the random forest model utilised a minimum

of seven features whereas for single slice, the LASSO

model utilised a minimum of six features with both

showing comparable performance to top performing

models (Table 2). Detailed summaries of the perfor-

mance metrics for the best performing model for the

whole tumour and single slice are given in Table 3 and

Table 4, respectively.

Single slice versus whole tumour analysis

The paired t-test was used to test for significant differ-

ences in AUC for the top model on each feature set.

Comparing the mean AUC between the top models fit

using features from the whole tumour (LASSO_Cor)

and the single largest slice (MLP_Corr) the P value was

0.1112, indicating no significant different in their pre-

dictive performance.
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Feature importance. The list of the total number of fea-

tures used in the modelling process when fit to the full

dataset is provided in Supplementary Table 1. As var-

iable importance is not defined for the MLP and SVM

models, the next high performing model (LASSO) was

used to define variable importance for single slice.

Skewness was the most important feature for both

whole tumour (at SSF 6) and for single slice (at SSF

0). Table 5 provides the details of the optimal features

used to build the best model on the whole tumour and

single slice.

Discussion

Our study evaluated the diagnostic performance of

multiple classifier models and feature selection meth-

ods to differentiate glioblastoma from PCNSL using

filtration-based first-order texture features derived

from T1 CE images. We found highest diagnostic per-

formance for the combined LASSO model and high

correlation filter method. High correlation filter was

the best feature reduction method with high perfor-

mance in the majority of the classifier models. In addi-

tion, the diagnostic performance for tumour

classification was comparable for both the whole

tumour and largest single slice derived texture features,

more so among the top performing models.
Our study also showed that the model performance is

variable and depends on the selected machine learning

technique and feature selection combination. Although

the top five models in our study had high performance

with AUC of 0.909–0.924, there was still a minor differ-

ence in their performance. Models also varied according

to the number of optimal features utilised for model

building (Table 2). Both the LASSO (whole tumour)
and MLP model (single slice) resulted in higher perfor-
mance than other classifiers. LASSO regression works
by finding the most relevant features and turns all the
irrelevant feature coefficients to zero and tunes the
model by user-specified k-fold cross-validation. LASSO
is commonly used to reduce data collinearity when the
number of features exceed the sample size.17 Correlation
filter is a type of feature selection method in which fea-
ture selection is independent of the model construction
process. The filter removes highly correlated features
that may only provide redundant information. In addi-
tion, by applying five-fold nested cross-validation, the
process of data overfitting can be avoided as in our
case.18 Similarly, the MLP model is a type of feed-
forward artificial neural network model that has an
input and output layer connected by a hidden layer.
MLP evaluates non-linear relationships and helps in
classification when linear separation of data is not pos-
sible.19 Yun et al. also found high performance of the
MLP model in their study of glioblastoma and PCNSL
classification, with MLP performing even better than
unsupervised deep-learning-based convolutional neural
network. They also proposed that MLP-based feature
selection may avoid data overfitting, especially if
models are trained and tested from the same institute.20

While some of the non-linear classifiers were among the
best models (MLP, SVM), we also observed similar or
better performance using linear classifiers, indicating
that these simpler approaches may be sufficient for this
classification problem. In addition, linear classifiers are
less computationally extensive.21

We found comparable diagnostic performance for
models built using limited or a slightly higher number

Figure 3. Mean cross-validated area under the curve for each model and feature selection method on each feature set.
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of features for both whole tumour and single slice.

However, presuming that a model using fewer features

is a good strategy against overfitting may be an over-

simplification. It is theoretically possible that the

model using many fewer variables will be prone to

poor performance if the feature used is not robust to

repeat measurements or shows variation in the external

dataset.
Only a few prior studies have evaluated the perfor-

mance of multiple classifier models as in our study to

differentiate glioblastoma and PCNSL. The majority

of studies only included single or a few classifier

models. Kang et al.22 evaluated eight classifier models

and found the random forest model with recursive fea-

ture elimination feature selection as the highest per-

former (AUC 0.944) on radiomics extracted from

ADC maps. Kim et al.23 evaluated three classifier

models, random forest, logistic regression and SVM

with minimum redundancy maximum relevance feature

selection algorithm. They found logistic regression as

the highest performer (AUC 0.956) classifier model. Of

note, both random forest and ridge regression models

were among the top five models in our study as well,

albeit with different feature selection techniques. A per-

tinent methodological difference between our study

and the afore-mentioned studies is that we only used

first-order texture features unlike prior studies which

also included higher order texture features. Our find-

ings overall support that the performance of classifier

models is dependent on the available data and can be

influenced by the selected combination of feature

reduction and classifier model. As such, the diagnostic

role of multiple machine learning models and feature

selection strategies in classifying glioblastoma and

PCNSL should be evaluated in future studies.
The other important observation from our study

was that both the largest single slice and whole

tumour texture analysis had comparable diagnostic

performance in tumour classification. This is critical

as performing texture analysis on the largest single

slice is less resource intensive, time-efficient and may

be relatively easy to incorporate in the clinical work-

flow. Wang et al.24 also evaluated single slice analysis

Table 1. Summary statistics for clinical characteristics and P values for comparisons between tumour classes.

Glioblastoma (n¼ 97) Lymph (n¼ 46) Overall P value

Age, mean (SD) 61.38 (12.35) 63.87 (12.47) 62.18 (12.40) 0.2668

Sex, male, n (%) 53 (54.6%) 25 (54.3%) 78 (54.5%) 0.9739

Necrosis

Yes 92 10 102 –

No 5 36 41

SD: standard deviation.

Table 2. Top five models on each feature set and mean (SD) of AUC.

Rank

Whole tumour Single largest slice

Model AUC Optimal feature subset Model AUC Optimal feature subset

1 lasso_corr 0.924 (0.049) 8 mlp_corr 0.914 (0.059) 20

2 svmRad_pca 0.922 (0.046) 8 svmPoly_corr 0.912 (0.065) 20

3 rf_pca 0.922 (0.044) 7 mlp_full 0.910 (0.053) 36

4 ridge_corr 0.921 (0.051) 19 lasso_corr 0.910 (0.065) 6

5 mlp_corr 0.919 (0.053) 19 ridge_corr 0.909 (0.068) 20

lasso: least absolute shrinkage and selection operator; svmRad: support vector machine with a radial kernel; rf: random forest; ridge: ridge regression;

mlp: multilayer perceptron; svmpoly: support vector machine with a polynomial kernel; corr: high correlation filter; PCA: principal components analysis;

SD: standard deviation; AUC: area under the curve.

Table 3. Performance metrics for the best overall model, LASSO
with the high correlation filter fit using features from the whole
tumour.

Metric Mean SD Min Max

Accuracy 0.884 0.055 0.786 0.967

AUC 0.924 0.049 0.836 0.994

Sensitivity 0.804 0.130 0.556 1.000

Specificity 0.921 0.048 0.842 1.000

AUC: area under the curve; LASSO: least absolute shrinkage and selection

operator; SD: standard deviation.

Table 4. Performance metrics for the best model using the single
largest slice, MLP with the high correlation filter.

Metric Mean SD Min Max

Accuracy 0.858 0.061 0.733 0.964

AUC 0.914 0.059 0.785 0.989

Sensitivity 0.780 0.111 0.500 1.000

Specificity 0.895 0.066 0.737 1.000

AUC: area under the curve; MLP: multilayer perceptron; SD: standard

deviation.
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performance on T2-weighted imaging in 81 patients
with glioblastoma and 28 patients with PCNSL but
reported modest performance (AUC 0.752). The low
performance in their study was likely tpo be due to
the inclusion of only enhancing regions in the analysis.
We, however, included both the necrotic and enhanc-
ing components with higher performance. Necrosis is a
key component of glioblastoma and its inclusion may
lead to an improvement in texture performance. In
contrast, Nakagawa et al.25 reported higher diagnostic
performance using a multivariate (xGBoost) regression
model with an AUC of 0.980. They, however, extracted
features from multiple sequences (T2-weighted, ADC,
T1 CE) and perfusion MRI sequence. Our results were
also comparable to other prior studies that also evalu-
ated the utility of texture analysis to differentiate glio-
blastoma from PCNSL (Supplementary Table
2).2,20,22–31

The higher performance of Kim et al.23 (AUC 0.956)
and Nakagawa et al.25 (AUC 0.980) may be secondary
to texture feature extraction from multiparametric
images including three-dimensional (3D) T1 CE
sequence, T2-weighted and diffusion-weighted images.
In contrast, we performed texture analysis on a rou-
tinely acquired 2D T1 CE sequence which is performed
universally. Advanced sequences such as perfusion
MRI are also not widely available. Although 3D T1
CE have high spatial resolution that can affect texture
features;10 3D T1 CE are more time consuming and as
such are not performed routinely. The extraction of
radiomics features from multiple sequences may pro-
vide additional information; however, this needs to be
further investigated. This is pertinent because unlike
these studies, our technique requires minimal pre-
processing and would therefore be easier to implement
in a busy clinical setting.

Besides the retrospective nature, our study is also
limited by the absence of an external validation set.
We also did not evaluate the performance of MRTA
on other routinely performed sequences such as
FLAIR and ADC, which could have potentially
improved model performance further.32 Our rationale
for utilising T1-weighted CE images was based on the

observation from prior studies that found T1 CE as the

single best sequence and comparable in performance to

multiparametric imaging in predicting glioma grading

and survival.10 The other limitation includes unclear

knowledge of biological correlates of these texture fea-

tures. In addition, due to the inherent limitation of the

software, we could not compare the diagnostic perfor-

mance of first-order and higher order texture features

(software used in the current study only provides first-

order parameters).
Despite these limitations, our study had many

strengths as well. We showed that using only first-

order features for differentiating between PCNSL

and glioblastoma can achieve excellent model perfor-

mance comparable to multiple other studies using

higher order texture features. Secondly, our findings

suggest that using texture features derived only from

a single slice can provide comparable diagnostic per-

formance to whole tumour texture analysis. Finally,

our extensive evaluation of different machine learning

models provides a benchmark of the variable perform-

ances of different machine learning models for this

problem. Unlike multiple prior studies in which differ-

ent models were used on different imaging data,

making the assessment of best machine learning

models difficult, we provide a metric of variable

model performance on the same data.

Conclusion

Our findings suggest that first-order texture-based

machine learning models built from T1 CE imaging

can discriminate between glioblastoma and PCNSL

non-invasively and with excellent diagnostic accuracy.

In addition, the diagnostic performance of whole

tumour versus single largest slice derived features is

comparable.
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