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A b s t r a c t

The genetic alterations related to many kinases are responsible for the formation of glial tumours. In addition it is 
the cell kinases that keep the cancerous signalling machinery in motion, thus enabling tumour cell growth, motility 
and invasion. Kinase inhibitors may have a potential to surpass the classical oncolytic treatment for gliomas. How-
ever, overcoming drug resistance mechanisms and limited blood-brain barrier (BBB) permeability are the remaining 
daunting issues. Latest research explores novel kinase inhibitors, yielding several promising results, including those 
from CK2 inhibition studies, as well as the possibility of relabelling the inhibitors previously approved for tumours 
other than glial tumours. 
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Introduction 

Tumours of glial origin constitute the largest group 
of primary neoplasms of the central nervous system 
(CNS). Consistently with up-to-date classification of 
the nervous system tumours, elaborated by the World 
Health Organization (WHO) in 2016, four grades of 
histological malignancy have been distinguished for 
astroglial tumours (grade I-IV) [63,66]. Astrocytomas 
of grade I  malignancy are usually well demarcat-
ed from the surrounding tissues and show a  slow 
growth and good prognosis. This group includes sub-
ependymal giant cell astrocytoma (SEGA), which is 
a  rare, benign childhood neoplasm of grade I histo-
logical malignancy according to the WHO classifica-
tion (WHO GI). SEGA tumours occur in approximately 
10-20% of patients with tuberous sclerosis complex 
(TSC), which is a rare genetic condition [15,82]. 

While astroglial and oligodendroglial tumours, 
characterized by infiltrative growth and a tendency 
towards rapid progression, are classed as neoplasms 
of grade II-IV malignancy. Gliomas of high degree of 
malignancy show a  large resistance to radio- and 
chemotherapy. For a few recent decades no substan-
tial progress for their treatment has been noted [53]. 

Primary glioblastoma (GBM) can be charac-
terized by mutations within the genes coding for 
growth factors activating MAPK and PI3K signal-
ling pathways as well as the mutations inactivating 
the signalling pathways controlled by RB and TP53 
suppressor genes. Here we have the mutation and 
amplification of the epidermal growth factor recep-
tor (EGFR) gene, homozygous deletion of cyclin-de-
pendent kinase inhibitor 2A (CDKN2A), amplifica-
tion of the cyclin-dependent kinase 4 (CDK4), or 
ubiquitin-protein ligase MDM2/E3 or MDM4, the 
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inhibitor of p53 transcriptional activation, as well as 
the mutation/homozygous deletion in RB1 or PTEN 
mutation [10,73]. 

Malignant gliomas show the overexpression of 
growth factors and proteins associated with pro-
cesses of migration and angiogenesis. It has been 
revealed that glioblastoma is the tumour of high 
molecular heterogeneity, which determines the 
classification system, prognosis and therapeutic 
decisions [2]. The molecular progression of gliomas 
is associated with the accumulation of genetic and 
epigenetic alterations [3], including the above men-
tioned loss of suppressor gene function (PTEN, TP53, 
CDKN2A, RB) or the activation of oncogenic sig-
nalling pathways [19]. The most recent WHO 2016 
classification introduces molecular parameters for 
the diagnostics and prognosis of malignant gliomas. 
The mutation within the genes coding for isocitrate 
dehydrogenases IDH1 or IDH2 is of basic relevance 
in this regard. Diffuse gliomas, showing IDH1/2 
mutation, have a better prognosis than that for gli-
al tumours without such mutation. In about 90% of 
cases, GBM occurs de novo, as a primary malignant 
glioma without IDH1/2 mutation, so called IDH-wild-
type primary glioblastoma. The determination of the 
molecular signatures may be applicable in clinical 
diagnostics and prognosis [72]. 

Secondary glioblastomas develop from astrocy-
toma of grade II or III malignancy [2,79]. IDH-mu-
tant secondary glioblastomas are characterized by 
a mutation of IDH1/2 genes, mutations within PTEN, 
EGFR, and TP53 genes, and the loss of heterozygosi-
ty on chromosome 10, hypermethylation of RB1 gene 
promoter as well as the amplification or overexpres-
sion of PDGF [4]. 

The issue of gliomas resistant to therapy, similar 
to other types of tumours, should be analysed at the 
molecular level. Currently used treatment, including 
surgery, radiotherapy and temozolomide chemother-
apy, increased the median survival merely by a few 
months. In addition, these treatment options have 
significant limitations. It is known that diffuse glio-
mas are not curable by surgical resection. Moreover, 
radiotherapy and anticancer agents oftentimes are 
lethal to normal cells as well. Therefore, it is man-
datory to search for more novel tumour cell-specif-
ic anticancer agents, with different mechanisms of 
action and higher therapeutic efficacy. Kinase inhi-
bition appears as one of the increasingly studied 
approach in this regard [50]. There is a  reliance of 

cancer cells on the oncogenic kinases which hence 
should be considered as a target for treatment.

We reviewed past and current developments in 
the kinase inhibition as a therapeutic approach for 
tumours of glial origin. Searched databases included 
PubMed and ISI Web of Knowledge for the last twen-
ty years. Search terms included “kinase inhibitor”, 
“glioblastoma”, “glioma”, “SEGA” and those denot-
ing particular kinases and molecular pathways. 

Eight major groups of human kinases were tak-
en into account and those the inhibition of which 
has been successfully attempted are subject of this 
review [37,50]. However, the subdivisions of this 
review reflect rather the oncogenic pathways with 
crucial involvement of kinases as well as their inhibi-
tion as a therapeutic strategy for gliomas. 

Results and discussion

PI3K/Akt/mTOR pathway 

The mTOR pathway is frequently activated in 
subependymal giant cell astrocytoma (SEGA; sub-
ependymal and cortical tubers) that, together with 
neoplasms of internal organs, belongs to the tuber-
ous sclerosis complex [93]. TSC is associated with 
a mutation of one of the two suppressor genes: TSC1 
or TSC2 [58]. The TSC1 gene is coding for the pro-
tein called hamartin, while the TSC2 gene codes for 
tuberin. Both proteins form the TSC1/TSC2 complex, 
which activates GTP-ase and inhibits the activity of 
mTOR signalling pathway [31]. The cessation of the 
activity of tuberin-hamartin complex stimulates the 
activation of the mTOR pathway and the phosphor-
ylation of protein kinase S6K. The mTOR kinase is 
a serine-threonine kinase that integrates the signals 
regulating a  multitude of cellular processes such 
as growth and cell cycle regulation, as well as the 
process of translation through the aforementioned 
ribosomal protein S6 kinases (S6Ks) [77]. Both surgi-
cal methods and pharmacological therapy, including 
mTOR inhibitors, are being used for SEGA treatment 
[43,48,82]. The inhibitors of the mTOR pathway 
(rapamycin and its derivatives – temsirolimus and 
everolimus) have a proven clinical efficacy in oncol-
ogy and are indicated for the treatment of patients 
with SEGA, who do not qualify for surgical treatment 
[38,96]. 

Due to the fact that both surgical treatment 
and therapies aimed at the inhibition of the mTOR 
pathway are not free of risk of tumour regrowth, 
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the search for alternative therapeutic solutions is 
reasonable. The inhibitors of casein kinase 2 (CK2), 
which can participate in the modulation of can-
cer signalling pathways, including mTOR-related 
ones, appears to be an interesting group of agents 
in this regard [81]. Recent studies have shown that 
CK2 inhibitor 4,5,6,7-tetrabromo-1H-benzimidazole 
(TBI) reduced the number and viability of SEGA cells 
derived from a paediatric case of TSC [87]. 

In turn, glioblastoma can be characterized by 
a  high proliferating activity of neoplastic cells as 
well as the remarkable invasiveness and enhanced 
angiogenesis, due to dysregulation of numerous sig-
nalling pathways. These disturbances most often 
involve the two most important signalling cascades 
of the PI3K/Akt/mTOR and Ras/MEK/MAPK path-
ways, which play a key role in cell proliferation [1,76]. 

The first component of the intracellular com-
plex of the PI3K-PTEN-Akt-mTOR signalling path-
way is phosphatidyl-inositol 3-kinase (PI3K), which 
belongs to the intracellular lipid kinase family, regu-
lating the proliferation, differentiation, metabolism 
and survivability of cells [40]. Hyperactivity of PI3K/
AKT/mTOR pathway in GBM is caused by numerous 
genetic abnormalities including overexpression of 
receptor tyrosine kinase (RTK) such as EGFR, ErbB2, 
PDGFRA or MET [18]. The amplification of the EGFR 
gene causes the excessive activation of PI3K in 
approximately 45% of GBM cases [83]. The active 
PI3K catalyses the conversion of phospatidyl-ino-
sitol-4,5-diphosphate (PIP2) to phospatidyl-inosi-
tol-3,4,5-triphosphate (PIP3) [22], what can be neg-
atively regulated by PTEN (phosphatase and tensin 
homolog on chromosome ten). Unfortunately, the 
PTEN mutation is a genetic trait in 50% of patients 
with GBM and the loss of PTEN function highly cor-
relates with the activation of AKT. In addition, the 
increased PIP3 production stimulates the translo-
cation of AKT and the phosphoinositide-dependent 
protein kinase-1 (PDK1) to the cell membrane. The 
active AKT activates mTORC1 though phosphoryla-
tion that inhibits the action of TSC2, which together 
with TSC1 negatively regulate mTORC1. As a conse-
quence, TSC1/TSC2 stops inhibiting the activity of 
Rheb protein (Ras homolog enriched in the brain) 
that binds GTP [45]. The mTORC1 kinase is an 
important effector of PI3K and possesses two sub-
strates: p70S6K1 kinase (later called S6K1), which 
plays a substantial role in the formation of malig-
nant glioma, and the 4E-BP1 protein, which together 

with S6K1 kinase participates in protein synthesis 
[65]. The mTORC2 is activated by PI3K, to contribute 
to the Akt kinase phosphorylation as well as SGK1 
and PKCα activation. All mTORC2 activated kinases 
play an important role in the regulation of cell pro-
liferation and growth [1]. It seems that inhibiting the 
above kinases might provide the effective antitumor 
strategy. However, the first generation of PI3K inhib-
itors, represented by wortmannin and LY294002, 
with a documented antitumor effect in the in vivo 
and in vitro studies, turned out to be highly toxic 
[76]. In turn, perifosine appears to be a promising 
inhibitor of AKT kinase, by disrupting the transloca-
tion of AKT to the cell membrane, thus resulting in 
the inhibition of kinase phosphorylation and acti-
vation [42]. Unfortunately, in case of gliomas this 
inhibitor can occur hardly effective due to limited 
capabilities of crossing the blood-brain barrier. The 
further step of the PI3K/AKT pathway is the activa-
tion of mTOR kinase, however its inhibitors, mostly 
rapamycin (sirolimus) and the analogues everolimus 
and temsirolimus showed a limited effectiveness in 
the clinical studies of malignant glioma, which can 
result from feedback loops and the involvement of 
other signalling pathways [9]. Interestingly, it has 
been revealed that a  common anti-diabetic agent 
metformin may reduce tumour expansion via inhib-
iting mTOR [61]. 

The inhibition of protein (and lipid) kinase path-
ways may occur necessary in order to overcome 
the resistance to molecular targeted therapies [46]. 
Epidermal growth factor receptor with tyrosine 
kinase activity is one of therapeutic targets that 
may have significance in the treatment of patients 
with GBM. Overexpression or amplification of the 
EGFR gene occurs in about 40-50% of patients with 
gliomas. However, the EGFR tyrosine kinase inhibi-
tion studies (erlotinib and gefitinib) brought clini-
cally a failure regarding their anticancer effect [113]. 
Supposedly the therapeutic failures associated with 
EGFR inhibition can be linked to the activation of 
the PI3K/AKT/mTOR pathway in the cells escaping 
the therapy [27]. Preclinical research has howev-
er shown that EGFR inhibition combined with the 
inhibition of other pathways including PI3K, CK2, 
and JAK2 may potentially prevent drug resistance 
[25,101,122]. More new studies emerge that investi-
gate combined therapies as a remedy to overcome 
resistance to kinase inhibitors within multiple tum-
origenic pathways [11,64]. 
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Ras/MEK/MAPK pathway

In patients with malignant glioma, the mitogen-
ic signalling pathway of mitogen-activated protein 
kinases (MAPKs) becomes activated due to the loss 
of fibromin and Ras protein activation [83]. Ras/
Raf/MEK1/2/ERK1/2 signalling pathways are being 
put into effect as a  result of RTK action. Ras pro-
tein activates serine/threonine Raf kinase, which in 
turn activates MEK1/2, leading to the activation of 
ERK1/2, which may phosphorylate TSC2. As a result 
it leads to the activation of mTOR and the enhance-
ment of translation of proteins involved in cell pro-
liferation, especially transcription factors. According 
to “The Cancer Genome Atlas”, in 86% of gliomas, at 
least one genetic alteration affects Ras/Raf/ERK1/2 
[22]. Highly selective inhibitors (vemurafenib, dab-
rafenib) of serine/threonine-protein kinase B-Raf 
(BRAF) have been already approved by the FDA for 
melanoma treatment [52,70]. It has been also pos-
tulated that RAF inhibitors and/or MEK inhibitors 
(trametinib) can be considered for the treatment of 
BRAF-altered glioma, especially regarding paediatric 
and adult astrocytomas [100]. Kinases of the MAPK 
family, ERK, p38 and JNK, play a  well-documented 
tumorigenic role in GBM. ERK1/2 participates in the 
migration and invasion of U87MG cells, as deter-
mined with the use of ERK1/2 inhibitor PD98059 [59]. 
This kinase has been also demonstrated to mediate 
the adhesion of glioma cells to the components of 
ECM, while this effect was opposed when PD98059 
or U0126 were administered [90]. ERK1/2 signalling 
also participates in the invasion and stemness of 
GBM cells derived from human surgical specimens; 
these effects were verified by using SCH772984, the 
specific inhibitor of ERK1/2 [129]. On the other hand, 
the sulphoraphane-induced, sustained ERK1/2 acti-
vation may induce apoptosis in malignant glioma 
cells, which point towards the involvement of ERK 
in a stimulus- and time-dependent manner [123]. As 
for p38 MAPK, it has been postulated to drive glioma 
invasion, hence the role of p38 inhibition in height-
ening the vulnerability of glioma to chemotherapy 
[34]. On the other hand, p38 inhibition can be asso-
ciated with a decrease in cell death, thus counter-
balancing putative anti-tumour effects [105]. In turn, 
the inhibition of c-Jun N-terminal kinase (JNK) with 
SP600125 has been revealed to increase the cyto-
toxic effect of TMZ via suppression of Akt phos-
phorylation in U87MG cell line and subsequently 

suppressed phosphorylation of GSK3-β and Bad 
[118]. In addition, the activity of JNK is required for 
the maintenance of stem-like glioblastoma cells and 
their tumour-initiating potential, and the JNK inhib-
itors (SP600125) have a  potential to reduce these 
properties as well as to deplete these cells popula-
tion in vivo [67]. 

Cyclin-dependent kinases 

Cyclin-dependent kinases (CDKs) are involved 
in the cell cycle and oncogenesis, controlling the G1 
restriction point. The CDK4/CDK6-cyclin D1-Rb-p16/
ink4a pathway is frequently dysregulated in glio-
blastoma [92]. As determined in preclinical research, 
the CDK4 and CDK6 kinase inhibitor abemaciclib has 
a potential for treating primary central nervous system 
tumours including glioblastoma. Administered alone 
or in the combination with Temozolomide, abemaci-
clib increased the survival time of intracranial U87MG 
tumour-bearing rats [91]. Apart from inhibiting CDK4 
and CDK6, abemaciclib affects GSK3β and CaMKII, 
and potently inhibits Rb-wild type GBM cell lines 
U87MG, DBTRG-05MG, A172, and T98G [16]. Abemac-
iclib has been approved as a single agent therapy for 
metastatic breast cancer. Its relatively improved per-
meability across blood-brain barrier (BBB), and hence 
capability of targeting glial tumours, still remains to 
be verified in ongoing clinical studies (NCT02981940) 
[99]. However, clinical trials with CDK inhibitors palbo-
ciclib and ribociclib for gliomas were early terminated 
due to lack of efficacy [71,112]. Besides, CDK4/6 inhi-
bition may also confer therapeutic resistance of GBM 
with a crucial involvement of c-Met/TrkA-B pathway, 
as revealed recently [80].

Casein kinase 2

Casein kinase 2 (CK2) participates in the regula-
tion of several complex cell processes including the 
activation of numerous signalling pathways such 
as JAK/STAT, NF-κB, PI3K/Akt, HSP90 as well as it 
regulates suppressor proteins PTEN, P53 and proto- 
oncogenes c-Myc and c-Myb. CK2 overexpression 
has been documented in neoplasms of the kidneys, 
head and neck, and the colon. This kinase has thus 
become a potential therapeutic target and its inhibi-
tors alone or in combination with other compounds, 
have been proposed as promising pharmaceuti-
cal agents for the treatment of different neoplastic 
growth processes [28-30,55,60,75,108,125]. In addi-
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tion, the compounds 2-dimethylamino-4,5,6,7-tetra-
bromo-1H-benzimidazole (DMAT) and TBI proved to 
be not only strong inhibitors of CK2, but also of oth-
er kinases such as PIM, DYRKs, HIPK2 and ERK8 [84]. 
Although CK2 inhibitors show different effectiveness 
and specificity, nearly all can inhibit cell proliferation 
and induce caspase-dependent apoptosis in estab-
lished tumour cell lines [49]. 

Studies have shown that the compound CX-4945, 
which is an inhibitor of CK2, suppresses the activa-
tion of JAK/STAT, NF-κB and AKT signalling pathways 
in the glioma cells. Azonaphthalene derivatives, 
which are selective CK2 inhibitors, cause the cell 
cycle arrest in the U373 human glioma cell line [74]. 
Moreover, a decrease in the activity of CK2, induced 
the cell death via a modulation of mTOR and MAPK 
signalling pathways in the human glioma cells, thus 
overcoming their resistance to the routine antican-
cer drugs.

In the recent years novel inhibitors of protein 
kinases have come under study. Here we have deriva-
tives of the pentabromobenzyl-isothiourea (under the 
abbreviated name ZKKs), which show some structur-
al similarity to CK2 inhibitors, such as polybrominat-
ed benzimidazoles TBI and DMAT. However, it turned 
out that despite structural similarity these agents are 
not specific towards CK2 as the studies with the use 
of 130 protein kinases panel showed that N,N’-di-
methyl-S-(2,3,4,5,6-pentabromobenzyl)-isothiouroni-
um bromide (ZKK-3) at the concentration of 10 μM 
shows over 70% inhibition of the activity of protein 
kinases PIM1, PIM3, IGF-1R and IR, taking part in the 
metabolic pathways of normal and neoplastic cells, 
including those of glioma [54,55]. The cytotoxic effect 
of selected isothiourea derivatives has been demon-
strated in the cell line of the rat C6 glioma and highly 
malignant human glioma [49]. 

Isothioureas act also as inhibitors of the CXCR4 
receptor, which, after CXCL12 chemokine bind-
ing, may activate PKC and PI3K/AKT pathways. As 
a result of this event, the activation of mitogen-ac-
tivated protein kinase (MEK/MAPKK) takes place, 
which increases the expression of the genes pro-
moting cell proliferation and survival [39]. Brain 
tumours of low malignancy (grade I  and II malig-
nancy according to the WHO classification) show 
a  moderate level of chemokine SDF-1 expression 
and CXCR4 receptor, while the malignant glioma 
of grade IV malignancy presents with a  high level 
of expression, predominantly in the perivascular 

and necrotic regions [13,39]. Based on the clinical 
data, the patients with CXCR4-positive glioblastoma 
showed worse post-surgery prognosis as compared 
to CXCR4-negative ones [13]. It has been also deter-
mined that CXCR4 positivity correlates with the size 
of glioma while it does not correlate with patients’ 
age and gender [13,97].

PIM kinases

PIM1 and PIM3 belong to the serine-threonine 
kinases, involved in the cell survival, proliferation 
and the cell cycle regulation. PIM induces the release 
of antiapoptotic proteins BCL-XL/BCL-2, which in 
turn may contribute to tumour development. 

Overexpression of the kinases of the PIM family 
takes place in many neoplastic processes including 
glioma, leukaemia, lymphoma, and colon cancer 
[78,88,102,111]. The studies of Quan and collabo-
rators proved that a  decrease in the PIM3 activity 
causes a  reduction in the glioma cell proliferation 
and an increase in the extent of apoptosis [88]. In 
addition, the interaction between PIM1 and the Myc 
oncogene may enhance tumour proliferation and 
aggressiveness. Moreover, it has been shown that 
this kinase significantly decreases the sensitivity of 
neoplastic cells to the applied chemotherapy, among 
others through the activation of membrane trans-
porters expelling drugs outside the cell, and through 
the blockade of binding sites for apoptosis activa-
tors (e.g. p53-Etk) [114]. As PIM1 is regulated by inter-
leukins, there is a possibility of blocking its activity 
by means of immunotherapy with specific antibod-
ies, e.g. monoclonal P9 antibody [114]. Also, studies 
of PIM1 selective inhibitors for anti-cancer action, 
including AZD1208 or SGI-1776 compounds, are at 
the stage of preclinical research [128]. 

Receptor tyrosine kinases
IGR-1R and IR

IGR-1R and IR are transmembrane receptors with 
tyrosine kinase activity, and highly homologous 
structure. They are heterotetramers built of pairs of 
extracellular α subunits and transmembrane β sub-
units, connected with disulfide bonds. Binding of 
ligands to α subunits results in the autophosphor-
ylation of β subunits and receptor activation [35].  
It has been observed that in many types of neoplas-
tic cells including GBM cells, the overexpression of 
IGF-1R takes place, which is in favour of proliferation, 
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differentiation, invasiveness and survivability of 
tumour cells [14].

A decrease in the activity of IGF-1R leads to the 
apoptosis of tumour cells. Moreover, the increase in 
its expression is associated with the enhancement 
of resistance of tumour cells, including those of gli-
omas, to radio- and chemotherapy (e.g. temozolo-
mide). For this reason IGF-1R has been considered as 
an attractive target for developing anti-cancer ther-
apies, while determining its expression level could 
allow to select patients susceptible to such treat-
ment [109]. The therapy targeting IGF-1R is based 
on the use of monoclonal neutralizing antibodies 
and small molecule inhibitors of its tyrosine kinase 
activity [5]. IGF-1R tyrosine kinase inhibitors PQ401, 
GSK1838705A, AXL1717 and NVP-AEW541 have all 
shown pre-clinically promising results as to their 
anti-glioma activity [85].

Insulin receptor (IR), similarly to IGF-1R, belongs 
to receptor tyrosine kinases and may play a  key 
role in the processes of neoplastic transformation 
[8,17,55]. Two isoforms of the insulin receptor can be 
distinguished: shorter IR-A  and longer IR-B, which 
are distinct in regard to the α subunit structure and 
capability of ligand binding [117]. Both isoforms may 
bind insulin and thereby regulate cell metabolism 
via the PI3K/AKT pathway. In addition, IR-A  shows 
a high affinity to IGF-2, what is in favour of tumour 
development and metastasis formation. The mito-
genic pathway leads through the RAS/RAF/MEK/ERK 
signalling cascade. It has been demonstrated that 
the inhibition of the IR action results in a decrease in 
tumour cell proliferation, and alleviates disturbanc-
es in the formation of blood and lymphatic vessels 
[127]. Equally important, a decrease in IR expression 
also results in the increase of the of sensitivity of 
tumours to therapies directed against IGF-1R [115]. 

Other receptor tyrosine kinases

Quite recently a new light has been shed on the 
tumorigenic role of anaplastic lymphoma kinase 
(ALK) for brain tumours. ALK is a  receptor tyrosine 
kinase in the insulin receptor superfamily [121]. ALK 
is highly expressed among others in glioblastomas 
and WNT-activated medulloblastomas in paediat-
ric populations, where it has been recommended 
as a valuable marker in routine investigations [56]. 
Hence, ALK inhibitors (alectinib) might be consid-
ered for treatment of selected brain tumours [11]. 

Platelet-derived growth factor (PDGF) and the 
fibroblast growth factor receptors (FGFRs) have been 
also implicated in glioma progression. PDGF expres-
sion correlates with poor glioblastoma prognosis and 
can be involved in the conversion of low- to high-
grade gliomas [20]. Imatinib inhibits PDGF and other 
selected tyrosine kinases, however, it has very limit-
ed therapeutic efficacy towards glioblastoma [36,98]. 
Although trials using PDGFR kinase inhibitors have 
been largely disappointing [62], new attempts of the 
improved targeting PDGFRα signalling upon pre-clin-
ical studies are still awaited. In turn, FGFR genomic 
alterations are rare in glioblastoma, however FGFR 
signalling may also have an impact on malignant 
glioma progression through activation of mitogenic, 
migratory, and antiapoptotic responses. Moreover, 
FGFR signalling inhibition may target tumour vascu-
larization [51]. Studies of small-molecule inhibitors 
of FGFR tyrosine kinases are underway, which hope-
fully will boost the research of FGFR inhibition for 
glioblastoma treatment as well [47]. 

Likewise, dysregulated receptor tyrosine kinase 
MET – mesenchymal-epithelial transition factor, and 
its ligand hepatocyte growth factor (HGF) may have 
pivotal roles in the progression of gliomas [24]. Down-
stream mediators of MET signalling include Ras/
MAPK, PI3K/Akt, STAT, Cox-2/PGE2 and Wnt/β-caten-
in pathways that regulate a variety of glioblastoma 
cell responses. The inhibitors of MET (Crizotinib, Voli-
tinib, SGX523, INCB28060, Cabozantinib, Altiratinib, 
CM-118, Brefelamide and PLB-1001), although prom-
ising in preclinical anti-glioma research brought very 
modest clinical benefits or have not been clinically 
tested. It has been postulated that only selected 
groups of patients might benefit from this thera-
peutic approach, possibly in combination with oth-
er anticancer agents [24]. Inadequate response of 
GBM cells to MET (and EGFR) inhibition may result 
from bypass signalling e.g. via FGFR-SPRY2 that also 
needs to be blocked for the therapeutic effect to 
overcome the drug resistance [32]. 

Non-receptor tyrosine kinases
Non-receptor tyrosine kinases (nRTKs) are cyto-

solic enzymes classically involved in the signal 
transduction within the immune system. Their role 
in glial tumours may rely on regulating cell survival, 
division/propagation and adhesion, gene expres-
sion, immune response and tumorigenesis, especial-
ly considering their oncogenic variants [104]. New 
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developments include the use of inhibition of Janus 
kinase 2 (JAK2) of the Janus kinase family for the 
treatment of glioma. JAK is associated with cytokine 
receptors and activates signal transducers and acti-
vators of transcription (STATs). JAK2 inhibitor ruxoli-
tinib (Jakavi) has been approved for the treatment of 
myelofibrosis and polycythaemia vera [89]. Currently 
ruxolitinib combined with temozolomide and radia-
tion therapy is investigated for Grade III gliomas and 
glioblastoma (NCT03514069). Preclinical research 
showed that treatment with ruxolitinib decreased 
the U87 malignant glioma cells invasiveness and 
tumorigenesis [33].

Noteworthy, another non-receptor tyrosine 
kinase SRC actively sustains tumour growth, hence 
SRC inhibition has become subject to scrupulous 
research lately. Many RTKs downstream signalling 
pathways converge on SRC, involved in cell surviv-
al, adhesion, proliferation, motility, and angiogene-
sis [26]. Unfortunately, small molecule SRC tyrosine 
kinase inhibitors such as dasatinib, bosutinib, sara-
catinib, and ponatinib brought no promising effect 
for GBM. However, it has been suggested that other 
inhibitors of SRC kinase (PP2, SI221, SU6656) can be 
considered for GBM treatment, though mostly based 
on preclinical research. In this regard the poor per-
meability of the BBB of SRC-targeting drugs remains 
an open concern [26]. 

Protein kinase D 
Protein kinase D1, initially described as the atyp-

ical PKCμ and regarded as a member of the protein 
kinase C (PKC) family, later was classed amongst 
a  new subgroup of PKD family belonging to the 
group of calcium/calmodulin-dependent kinases 
[94]. The PKD family comprises three kinases that 
are homologous regarding their structure and func-
tion: PKD1, PKD2 and PKD3, which are responsible 
for cell proliferation and differentiation [94,95]. The 
gene for PKD1, also known as PRKD1, is localized on 
chromosome 14q11. PKD1 is widely distributed in 
many human organs, including thyroid, brain, heart 
and lungs. Amongst the PKD family, PKD1 has the 
greatest molecular weight of 115 kDa and is involved 
in many biological functions in normal and patho-
logical conditions [57,94].

PKD1 is mainly localized in the cytoplasm and, in 
a small portion, in the Golgi apparatus and mitochon-
dria. This kinase regulates the processes associated 
with cell survival, proliferation, mobility and apopto-

sis, and is responsible for angiogenesis and oncogen-
esis [44,106,116]. The activity of PKD1 may increase 
and be a subject to modulation by a variety of fac-
tors, including neuropeptides, tumour necrosis factor 
(TNF) or PDGF. Furthermore, studies have shown that 
G-protein coupled receptors (GPCR) also may medi-
ate the PKD1 activation [23]. The regulation of the 
PKD1 is mediated by different mechanisms, among 
others with the involvement of PKC signalling. At the 
first step, the activation of surface receptor takes 
place due to different stimuli, while the last step 
is the activation of PKD1 by PKC [94,110]. PKD1 as 
a downstream component of the PKC pathway takes 
part in the activation of mitogen-activated protein 
kinase kinase/extracellular signal-regulated kinase 
(MEK/ERK) signalling pathways [23]. ERK1/2 and Akt/
protein kinase B signalling pathways play a  domi-
nant role in the regulation of gene expression and 
inhibition of apoptosis [68,69]. PKD is widely involved 
in molecular biological processes that regulate the 
proliferation and invasion of neoplastic cells, howev-
er the knowledge on PKD expression and function in 
primary glial brain tumours is still limited [103]. Its 
isoforms, PKD2 and PKD3, enhance the invasiveness 
of tumour cells. It has been demonstrated that the 
silencing of the PKD2 activity decreases the migra-
tion of glioblastoma cells in vitro [12]. In the tumours 
of glial origin, including glioblastoma, the expression 
of kinases from the PKD family (PKD1, PKD2, PKD3) is 
enhanced and depends upon the degree of tumour 
malignancy, while their inhibition decreases GBM cell 
proliferation [7]. Recent studies have shown that iso-
thiourea derivatives were found to inhibit the signal-
ling activity of PKD1 in glial cell lines [86], associated 
with the increased extent of tumour cell death.

Interestingly, it has been demonstrated that 
isoforms of PKD are being further activated in the 
hypoxic conditions, which may relate to the resis-
tance of tumour cells to the investigated PKD1 inhib-
itors upon tumour hypoxia [6]. In such scenario the 
modulation of tumour oxygenation appears to be 
a justified approach for increasing the effectiveness 
of investigated anticancer agents [107,126].

Nek2A
Serine/threonine-protein kinase NEK2A is an 

abbreviated name for A isoform of the never in mito-
sis (NIMA) related kinase 2 A, playing an important 
role in the regulation of cell division, including the 
duplication of centrosome, the organization and 
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stabilization of microtubules, kinetochore assembly, 
the organization of mitotic spindle, chromatin con-
densation, alignment of chromosomes and mRNA 
splicing [41,124]. NEK2A also enhances the immuno-
logic responses through the stimulation of B lympho-
cytes production. NEK2A is built of the N-terminal 
catalytic domain and C-terminal regulatory domain, 
within which after dimerization several transauto-
phosphorylations take place, regulating the activity 
of this kinase. The level of NEK2A changes depend-
ing on the cell cycle phase: it is low in G1, next it 
rises in S and G2 phases, only to abruptly decrease 
as a  result of ubiquitination and proteasomal deg-
radation at the beginning of the cell division phase 
[41]. NEK2A activity can be inhibited also by p53 or 
protein phosphatase-1 (PP1) that dephosphorylates 
NEK2A while the latter can be activated as a result 
of the action of FoxM1 transcription factor, as well as 
PLK1 and CDK4. In turn, NEK2A by itself regulates the 
action of mitotic proteins (e.g. Hec1, MAD1, MAD2), 
TRG-1, β-catenin and SRSF1, and thereby a large por-
tion of processes upon cell divisions. In many tumour 
types, including glioblastoma, the increased level of 
NEK2A was noted, what constitutes a negative prog-
nostic factor [41,120]. NEK2A overexpression may 
cause chromosomal instability, thereby it promotes 
the origin and progression of tumours, cell prolifer-
ation and metastasis formation [21,124]. In addition, 
it contributes to the attenuation of apoptosis and 
the formation of resistance towards chemotherapy, 
mostly via the activation of cell membrane pumps 
participating in driving anticancer drugs out of the 
cell and their clearance from the system [130]. Due 
to this, the inhibition of NEK2A activity appears to 
be an attractive goal for new therapeutic strategies. 
One of the isothiourea derivatives has been found to 
inhibit NEK2A, as determined with the kinase activi-
ty panel investigations [54]. Interestingly, NEK2A has 
been suggested to be responsible for glioma stem 
cells (GSC) maintenance, whereas NEK2A inhibitor 
CMP3a attenuated GBM growth in a  mouse model 
[119]. Although these data clearly suggest the role of 
NEK2 in GCS clonogenicity, further research is need-
ed to establish NEK2 as a clinically relevant molecular 
target in GBM.

Future directions and conclusions
In the cells of primary CNS tumours of glial ori-

gin, altered expression and signalling activity of 
many kinases have been revealed. Therefore, kinase 

inhibition, including new pentabromobenzyl-iso-
thiourea derivatives for CK2 inhibition, appears to 
be a  justified and promising research direction for 
novel anti-glioma therapies. Cancer stem cells can 
be also targeted with this approach, although fur-
ther research is needed to explore this opportunity. 
Apart from researching inhibitors of angiogenic sig-
nals, DNA repair and modulators of tumour immune 
responses, the efforts should continue to develop 
novel small molecule inhibitors of oncogenic protein 
kinases for anti-glioma therapy.
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