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Abstract

Glioblastoma (GBM) is a common malignant brain tumor which often presents as a comorbidity with central nervous
system (CNS) disorders. Both CNS disorders and GBM cells release glutamate and show an abnormality, but differ in cellular
behavior. So, their etiology is not well understood, nor is it clear how CNS disorders influence GBM behavior or growth. This
led us to employ a quantitative analytical framework to unravel shared differentially expressed genes (DEGs) and cell
signaling pathways that could link CNS disorders and GBM using datasets acquired from the Gene Expression Omnibus
database (GEO) and The Cancer Genome Atlas (TCGA) datasets where normal tissue and disease-affected tissue were
examined. After identifying DEGs, we identified disease-gene association networks and signaling pathways and performed
gene ontology (GO) analyses as well as hub protein identifications to predict the roles of these DEGs. We expanded our study
to determine the significant genes that may play a role in GBM progression and the survival of the GBM patients by
exploiting clinical and genetic factors using the Cox Proportional Hazard Model and the Kaplan–Meier estimator. In this
study, 177 DEGs with 129 upregulated and 48 downregulated genes were identified. Our findings indicate new ways that CNS
disorders may influence the incidence of GBM progression, growth or establishment and may also function as biomarkers
for GBM prognosis and potential targets for therapies. Our comparison with gold standard databases also provides further
proof to support the connection of our identified biomarkers in the pathology underlying the GBM progression.
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INTRODUCTION
There is an increasing need to facilitate the management of
individuals affected by multiple coexisting diseases, i.e. comor-
bidities that may interact and complicate clinical care [1]. Thus,
the coexistence of two or more diseases in an individual raises
important questions about their underlying linking etiological
pathway and their impact on health care [2]. The interactions of
comorbidities are relatively unexplored by biomedical and clin-
ical bioinformatics analyses compared to that of the pathology
of single diseases [3]. Comorbidity interactions of brain cancers
with central nervous system (CNS) disorders have been noted by
a series of epidemiological and clinical studies [4–10], although
there is also some evidence of an inverse association between
them [11, 12]. Indeed, among the CNS disorders, Alzheimer’s
disease (AD), epilepsy disease (ED), Huntington’s disease (HD),
multiple sclerosis (MS) and Parkinson’s disease (PD) are neu-
rodegenerative diseases (NDs) that are most often and heavily
associated with the progression of brain cancer, particularly with
glioblastoma (GBM) [4–10].

AD is a neurological disease characterized by its extracellular
deposition of amyloid-β peptides which leads to the death of
brain cells and loss of memory [13, 14]. Epidemiological investi-
gations show that patients experiencing AD have a higher risk of
developing GBM [15]. Despite AD and GBM are related to the alter-
ation of the same molecular pathways, different studies have
demonstrated an inverse association between AD and GBM both
from a genetic and epigenetic point of view. Different compo-
nents have also been proposed to be associated with immediate
and converse comorbidities, for example, the climate, way of life
or medications and genetic and molecular elements that could
at least in part mediate these relationships [16]. Specifically, it
has been exhibited that although GBM and AD share similar
molecular pathways, substantial contrasts exist in their adjust-
ment. Indeed, while quick cell proliferation and apoptotic cell
capture are normal features of GBM, cell harm, and resulting in
cell demise are basic consequences in AD [17]. ED [18] is a neu-
rological disease associated with excitatory glutamatergic sig-
naling and γ aminobutyric acid (GABA) [19] mediated impaired
inhibitory signaling which leads to the incidence of GBM [20].
Little is known about the relationship and progression of ED and
GBM. Glutamine synthetase (GS) inadequacy and high articula-
tion of Lyn and Fyn kinases in the CNS may contribute to both
ED and GBM. Greater levels of Fe3+ ions in intra-or peri-tumoral
regions, because of small hemorrhages from pathological blood
vessels, may likewise contribute to the progression of ED and
GBM. Epidemiological examination indicates that this connec-
tion might be due to molecular-biological changes and isocitrate
dehydrogenase (IDH) transformations [21]. Our insight about
this relationship, however, is limited and current treatment is
a long way from being fully effective [3]. Pathogenic variants of
Huntingtin protein (mHTT) encoded by the HTT gene underlies
HD development which involves neuronal loss and excitotox-
icity in the brain [23] and contributes to the development of
GBM [24]. Earlier investigations have indicated some risk factors
are shared by HD and GBM, for example, both environmental
and intrinsic biological factors, aging, patients with psychiatric

symptoms (insomnia, depression), motor symptoms (chorea,
ataxia) and apraxia are at risk of developing GBM [25, 26]. MS
is a chronic ND with multifactorial pathogenesis that includes
genetic and environmental factors [27, 28]. Although the etiology
of MS is not clear, CD4+ T helper cells (Th1 and Th17) seem to
play a role to cause GBM [29]. A recent epidemiological study
reported that MS patients have an increased occurrence of GBM
[30]. Consequently, the chance of common underlying molecu-
lar mechanisms in both MS and GBM is possible. Interestingly,
recently identified genes associated with MS have functions (or
putative functions) in the immune system, and alterations in
innate immunity-related genetic regions have been related to
the development of GBM. However, so far there is no adequate
evidence to confirm this. It might be additionally speculated that
variant epigenetic components, for example, DNA methylation
and histone protein modifications could be associated with the
pathogenesis of both MS and GBM. The molecular evidence of
the relationship of human polyomavirus JC virus (JCV) of the
Papova virus family is additionally revealed in the pathogen-
esis of these illnesses. PD [31] results in dopaminergic neu-
rons loss that leads to the resting tremor, rigidity, hypokinesia
and postural instability of PD [32] and is associated with the
co-occurrence of GBM [33]. While PD and GBM are character-
ized by very different cellular pathologies, there is evidence of
common pathogenic mechanisms affecting PD and GBM. This
includes contrarily deregulated pro-survival and immune sig-
naling, mitochondrial dysfunction and metabolic changes. There
are inversely regulated common genes that are associated with
the two diseases and these suggest some key pathways involving
dysregulated cell proliferation and metabolism that PD and GBM
have in common. Because of the complex nature of both PD
and GBM etiology and pathogenesis, further investigations are
needed to reveal to better understand and to compare both
diseases and to clarify why similar inverse dysregulated cell
pathways can prompt such different diseases. Inevitably, a better
comprehension of the pathological mechanisms underlying PD
and GBM will help to identify potentially shared medication that
could be modulated to treat these diseases [34, 35].

Primary brain tumors are neoplasms developing CNS cells
and gliomas are the most common such tumors. These are
mainly thought to derive from glial cells or glial progenitors,
although this is not always the case [36]. According to their
level of malignancy, gliomas have been ranked the scale from
grade I to grade IV by World Health Organization (WHO) [37].
Grade IV glioma has more advanced features of malignancy
among all grades of glioma. The most common and aggressively
malignant tumors, WHO grade IV glioma known as GBM is an
extremely heterogeneous cancer whose pathology is charac-
terized by uncontrolled cellular proliferation and its abnormal
growth makes it one of the major causes of cancer-related
mortality and morbidity [38]. Patients suffering from GBM have
a poor prognosis, short medial survival and low response to
therapies [39]. GBM tissue samples can usually be clearly char-
acterized by tumor-related protein, lipid, genetic or metabolic
markers for diagnosis or treatment [40–42]. A range of molecular
techniques has been employed to identify genetic biomarkers
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Effects of CNS disorders on GBM progression 3

and finding proof of mutations involves deep sequencing, high-
resolution melting (HRM), immunohistochemistry, droplet digi-
tal PCR (ddPCR) in attempts to identify GBM variants that cannot
be identified by histology or other current methods.

Algorithm: Pseodocode for Algorithm
Input: Microarray, RNA-Seq and TCGA datasets containing
two different conditions; case samples, control samples. So,
notionally we have X (dataset with S samples) =Xcase ∪ Xcontrol

Output: Differentially expressed genes, Diseasome Network
using Differentially Expressed Genes, Enriched Signaling
Pathways, Enriched Ontological Pathways, Protein-Protein
Interactions (PPIs), Biomarkers genes associated with survival
and Survival Curve

1. Searching datasets from public repository with certain cri-
teria

2. For each dataset i = 1, 2, . . . , N:

1. Load dataset
2. Normalize datasets
3. Design matrix model
4. Convert datasets into expression set class
5. Create design matrix: case vs control
6. Fit LIMMA or DESeq2 model based on datasets for filtering

the design model
7. Calculate DEGs

1. Adjust P-value and logFC
2. Apply False discovery rate (FDR)
3. List significant genes
4. Create and save statistical table

3. Compare gene sets of two different diseases to identify
common up and downregulated genes

– Common upregulated gene set
– Common downregulated gene set

4. For upregulated and downregulated genes between disease
pair

– Construct diseasome network for upregulated and down-
regulated DEGs

– Construct PPIs network for identifying hub genes
– Perform enrichment analysis for signaling pathways
– Perform enrichment analysis for Ontological pathways
– List enriched signaling pathways
– List enrich ontological pathways
– Plot signaling pathways
– Tabulate ontological pathways

5. Preprocessing clinical and gene expression data for same
patient from TCGA datasets

6. Regression analysis

– Fit Cox Proportional Hazard Model for Univariate and Mul-
tivariate analysis

– List biomarkers geens associated with survival

7. Fit PL estimator for Survival Curve
8. Results

– List of DEGs
– Gene-Disease association (diseasome) networks
– PPIs network for hub proteins
– Signaling pathways

– Ontological pathways
– Biomarkers genes associated with survival
– Survival Curve for biomarkers genes

9. Result comparison with Gold Standard Databases and Liter-
ature

– Consistent result with Gold standard databases and
literature

Proteomic analysis by mass spectrometry techniques
offers some promise of identifying tumor-associated proteins
and post-translational alterations that may have pathogenic
importance and may find new CNS malignant tumor markers
[43, 44]. Proteomic mass spectrometry permits the proteomic
profiling of healthy and pathological samples, with the potential
to relate protein alterations to a specific disease state [45] to
develop new clinical diagnostic methods. A promising approach
for GBM diagnosis involves the investigation of biological fluids
using liquid biopsies that may characterize particular neoplasms
[46].

GBM is very hard to analyze and often untreatable. Existing
clinical methodologies for the detection of GBM are insuffi-
cient and strictly subject to results acquired utilizing proteomic,
lipid biopsy and molecular techniques. The progression of brain
tumors, particularly in the beginning phases, might not give any
clear and early clinical manifestations. In addition, the utiliza-
tion of neuroimaging strategies is not possible to be used for
mass screening and often does not generally permit adequate
identification of the presence and the malignancy of a brain
tumor.

One of the principal issues of GBM management is the lack
of effective analytic methodologies. In the absence of effective
pharmacological and surgical treatments, the identification of
early indicative and prognostic biomarkers is of key significance
to improve the survival rate of patients and to develop new
personalized treatments. To achieve early identification and
characterization of a GBM, further study of genetic, proteomic
and metabolic changes that are typical of GBM progression is
needed to improve early diagnostic methods. However, a sin-
gle ‘omic data analysis alone does not appear to be adequate
to successfully characterize the features of tumor progression.
We thus utilized our systematic methodologies of genetic, and
multi-omics datasets could identify new factors that improve
the identification and characterization of GBM tumors and their
progression.

Although the causal links between NDs and GBM cancer
comorbidity have not yet been elucidated, there are some genet-
ics and environmental stressors as risk factors common to both
NDs and GBM [47]. Increasing cellular oxidative stress [48] and
inflammation [49] have been reported as potential common
etiologies in both disorders. The release of glutamate is one type
of causal link between these diseases [50]. Studies suggested
that glutamate excitotoxicity is involved in numerous NDs such
as AD, ED, HD, MS and PD, which results in the long-term pro-
gressive neuronal loss [51]. Although the etiology of NDs and
GBM remains unclear and both cells release glutamate and are
characterized by abnormal behavior, it remains a challenge to
identify and understand the effect of NDs on the progression of
GBM and factors that affect the survival of GBM cancer patients.
To address these problems, the main objectives of this study
were to develop an integrated framework based on the bioin-
formatics and machine learning model to examine the role of
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Fig. 1. Overview of the proposed bioinformatics and machine learning approach.

NDs on brain cancer and how they cause the incidence and
progression of GBM by affecting molecular pathways and genes
altered in GBM.

Firstly, our bioinformatics frameworks examine gene expres-
sion profiles to unravel shared differentially expressed genes
(DEGs) that are altered in NDs and GBM and then filtering shared
DEGs through disease-gene association (diseasome) networks,
signaling pathway, ontological pathway, hub protein identifica-
tion from protein–protein interactions to predict the function
of these DEGs. However, there are few effective and efficient
machine learning methods to identify cancer biomarker genes
that are dysregulated in both NDs disorder and GBM and affect
cancer patient survival. We employed the Cox Proportional Haz-
ard model [52] and product limit (PL) estimator [53] to investigate
the effect of clinical and genetic factors utilizing The Cancer
Genome Atlas (TCGA) data that play a significant role in the

survival of cancer patients by survival analysis. Finally, we have
also compared our findings that our network analysis has identi-
fied through the use of gold benchmark databases dbGaP, OMIM,
OMIM Expanded, and literature review which provide further
proof to support the connection of our identified genes in the
pathology underlying the GBM progression.

MATERIALS AND METHODS
Literature search and datasets

We systematically surveyed research of epidemiological and
clinical studies reported on the progression of brain cancer in
patients with NDs published until October 2019. We originally
studied epidemiological, clinical and neuroimaging studies to
identify brain cancer linked to NDs, i.e. brain cancers that are
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Effects of CNS disorders on GBM progression 5

Fig. 2. Diseasome network for upregulated and downregulated DEGs shared between CNS disorders and GBM. The node legends are: red color nodes for diseases and

round-shaped blue color nodes for genes.

Table 1. Statistics of the DEGs for selected CNS disorders and GBM cancer.

Disease GEO Number Tissues Platform Control Case Sigt. UP Reg. Down Reg.
Name with reference Samples Samples Genes Genes Genes

AD GSE28146 [56] Hippocampal CA1
gray matter

Affymetrix Human Genome
U133 Plus 2.0 Array

8 22 451 307 144

ED GSE32534 [57] Brain Affymetrix Human Genome
U133 Plus 2.0 Array

5 5 635 351 284

HD GSE64810 [58] Post mortem brain Illumina HiSeq 2000 49 20 1211 684 527
MS GSE52139 [59] Brain Affymetrix Human Genome

U133 Plus 2.0 Array
8 8 820 342 478

PD GSE19587 [60] Post mortem brain Affymetrix Human Genome
U133A 2.0 Array

10 12 1052 794 258

GBM GSE59612 [61] Brain Tumor Illumina HiSeq 2000 17 75 2577 1578 999

affected by the presence of NDs. Brain cancer is linked to various
neurological diseases, among which we selected for study are
AD, ED, HD, MS and PD. We first obtained some datasets that are
freely available in [54] and the European Bioinformatics Institute
(EBI) [55]. In this work, we searched datasets based on particular

criteria (as indicated) for each disease. We thus retrieved a num-
ber of datasets from public repositories, among them some are
RNA-seq and some are microarray data. We examined datasets
from public resources and we collected RNA-seq and microarray
datasets but most were discarded as they did not conform to our
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6 Rahman et al.

Fig. 2. continued

study criteria. The datasets that include a very low sample size
(cutoff sample size of at least 10), missing control and case con-
ditions, datasets of replicated samples, unexpected formatting
and datasets that are not from human organisms were discarded
by checking. We found that the selected datasets are suitable
comparing to the other available datasets and appropriate for
our study. We filtered the datasets to choose for this work those
that show minimal bias and noise. DEGs that were found in
more than one disease are termed here ‘common’ DEGs for
those diseases. Further filtering was applied in the pipeline to
the processed data (i.e. o common DEGs identified) which also
reduces bias and noise.

We filtered six different microarray and RNA-seq datasets
with accession numbers GSE28146, GSE32534, GSE64810,
GSE52139, GSE19587 and GSE59612 [56–61]. The AD dataset
(GSE28146) is a microarray dataset which consists of only CA1
hippocampal gray matter extracted by laser capture methods
from snap-frozen brain tissue [56] with 8 control and 22 disease-
affected samples. The ED dataset (GSE32534) is a microarray
dataset derived from peritumoral neocortex tissue samples,
which consists of five ED subjects and five control subjects
[57]. The HD dataset (GSE64810) is an mRNA expression dataset
from human prefrontal cortex tissue with 20 HD subjects and 49
neuropathologically normal controls samples extracted by next-
generation high-throughput sequencing [58]. The MS dataset
(GSE52139) is derived from RNA extraction and hybridization
on Affymetrix microarrays derived from the spinal cord, which
consists of eight MS subjects and eight control subjects [59]. The
PD dataset (GSE19587) is a microarray dataset collected from the
human postmortem brain having 12 PD subjects and 10 control

samples extracted by Affymetrix U133A Plus 2.0 arrays [60].
The GBM dataset (GSE59612) is an RNA-seq dataset, obtained
from radiographically localized biopsies during glioma resection
surgeries, which is a study of 75 GBM and 17 control brain tissue
samples [61].

To evaluate the patient’s survival for the dysregulated sig-
nificant genes overlapped between NDs and GBM, we acquired
clinical and RNA-seq data for GBM from the cBioPortal [62, 63].
GBM clinical datasets have 592 samples with 70 features, RNA-
seq gene expression data samples have 397 gene mutation for
575 cases [64]. We used clinical and genetic factors to evaluate
the survival of brain cancers (GBM) patients.

Data preprocessing and identification of DEG

Microarray and RNA-seq datasets based gene expression analy-
sis are sensitive methods to study global gene expression and
to identify possible molecular pathways that are activated in
human tissues affected by disorders [65]. We can mine such
data to identify biomarker genes that are associated with GBM
cancer progression and cancer patient survival. It is a challenge
to achieve this in complex disease prognostic studies but it
can result in a method for making more accurate prognoses
[66]. All these microarrays and RNA-seq-based datasets were
generated by comparing the transcriptome profile of a diseased
tissue against control (non-diseased) tissues. As the generated
data are from different sources and cell types, we performed
the preprocessing of our data using the quintile normalization
and Z-score transformation [67] to keep away from complica-
tions. We then applied Linear Models for Microarray (limma)
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Effects of CNS disorders on GBM progression 7

[68] and DESeq [69] implemented in programming language R
to identify the dysregulated DEGs for each dataset. To alleviate
the effect of outliers, we employed log2 transformation, and then
the shared dysregulated DEGs between the two diseased were
identified. We then filtered the statistically significant dysreg-
ulated DEGs that fulfilled the criteria of an adj. P-value < 0.01
and the absolute value of a log2 fold change of 1.0. We used the
Benjamini–Hochberg (BH) and Bonferroni correction methods to
adjust P-values. Gene expression dysregulation can be expressed
mathematically as follows:

DEGi =
⎧⎪⎨
⎪⎩

UP − regulated if adj. P-value < 0.01 & logFC ≥ 1.0,
DOWN − regulated if adj. P-value < 0.01 & logFC ≤ −1.0.

(1)

Here, DEGi is the ith DEG which has either upregulated or
downregulated value based on the criteria stated in the above
equation. We employed the multilayer topological and neighbor-
hood-based benchmark approach to represent the disease-gene
association. We built up disease-gene association (diseasome)
network where the network node is either a gene or disease
node. In the diseasome network, a disease is connected with
other diseases if the disease shares at least one or more than
one dysregulated DEGs. We consider that D is disease sets and
G is DEGs sets, then diseasome networks attempt to represent
gene g ∈ G is associated with disease d ∈ D. If Gi and Gj are
dysregulated genes sets associated with diseases Di and Dj,
respectively, then the number of overlapping dysregulated DEGs
(ng

ij) linked with both diseases Di and Dj are computed by the
following equation [70–72]:

ng
ij = N(Gi ∩ Gj) (2)

Following [65], the common neighbors are identified and the
edge score for the neighboring node pair is calculated as follows:

E(i, j) = N(Gi ∩ Gj)
N(Gi ∪ Gj)

(3)

where G indicates the set of network nodes, E indicates the set
of all edges between nodes.

Pathway and functional enrichment analysis

To provide additional insights into the new molecular signaling
mechanisms and biological significance and look over how the
factor that contributes to the generation of a trait from the NDs
tissues and relates with expression alterations of the GBM gene,
we performed gene set enrichment analysis via Enrichr [73]. For
pathway enrichment analyses, we employed KEGG [74], Reac-
tome [75], Wiki [76] and Biocarta databases [77] to identify molec-
ular pathways revealed by the DEGs common between CNS
disorders and GBM. The enrichment analyses of the DEGs com-
mon between the CNS disorders and GBM revealed Gene ontol-
ogy (GO) terms considering the GO domain; biological process
(BP) by ontological enrichment analysis [78]. Statistical parame-
ter, adjusted P-value < 0.01 was selected for enrichment analysis.

Protein–protein interaction analysis

For the study of the protein–protein interaction (PPI), we utilized
the STRING database [79] for upregulated and downregulated
DEGs via a visualization software, Network Analyst [80]. The
highest confidence score of 900 was used as a cutoff value for
interaction. The hubs proteins [81] were selected by setting the
topological parameter, a degree greater than 15. The distance
Ds between a pair of protein (i, j) in the PPI is computed by the
following equations:

Ds(i, j) = 2|Ni ∩ Nj|
|Ni| ∪ |Nj| (4)

where Ni indicates the set of neighbors i and Nj indicates the set
of neighbor set j.

Survival analysis

GBM is a complex cancer disease that is caused by abnormalities
and affects the expression patterns of genes. As we aim to
predict the survival of GBM cancer patients using clinical and
gene expression data [62], we acquired clinical and RNA-seq
data for GBM cancer (Glioblastoma (TCGA, PanCancer Atlas) from
the cBioPortal [62] where both clinical and RNA-seq data are
available for 585 GBM patients.

In the RNA-seq data, we identified the normal tissue sam-
ples and tumor tissue samples by checking the TCGA barcode.
We performed the transformation of the RNA-seq data using
Z-scores transformation for each gene expression value. We
calculated the Z-score value for RNA-seq data as follows:

Z = Value for gene X in brain cancer - Mean value for gene X in Normal

Standard deviation of the value for gene X in reference
(5)

We applied this transformation to determine the altered and
normal (unaltered) expression value. Differentially expressed
altered samples are divided into overexpress and underex-
pressed. We, therefore, determined the altered and normal
samples by setting the threshold value as follows:

Z ≥ 2 � Overexpress (6)

Z ≤ −2 � Underexpress (7)

2 < Z > −2 � Normal (Unaltered) (8)

To predict the effect of clinical and genetic factors that affect
the relative risk of patient’s survival for biomarker genes that
are common to NDs and the GBM, we applied the standard
Cox Proportional Hazards Model for univariate and multivariate
analysis [52].

The Cox Proportional Hazards Model is written as follows:

hCox(t|Xi) = ho(t) exp(βTXi) (9)

Here hCox(t|Xi) is the expected conditional hazard function at
time t for a subject i with covariate information given that
vector Xi, ho(t) is the covariate information independent baseline
hazard function and β indicates the corresponding regression
coefficients vector for the covariates. The estimated regression
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8 Rahman et al.

coefficient from the fitted model is used to calculate the hazard
ratio (HR) to identify which covariates affect cancer patient
survival. If xr is a covariate, then it s hazard ratio is calculated by
exponentiating the corresponding regression coefficient, βr such
as exp(βr). To determine survival status, PL estimator known as
Kaplan–Meier estimator is defined as follows [53]:

Ŝf (tj) =
j∏

i=1

(
1 − dj

nj

)
(10)

Here Ŝf (tj) indicates estimated survival function at time tj and
dj indicates the number of events at time tj, and nj indicates
subjects number at time tj. After estimating the survival func-
tion, we use the Log-rank test for the comparisons of altered
versus normal group of genes associated with patient’s sur-
vival. The expressions of the null hypothesis are written as
follows:

Ho : Saltered(t) = Sunaltered(t) (11)

HA : Saltered(t) �= Sunaltered(t) (12)

Here the function Ho is the same for altered (overexpress or
underexpressed) and unaltered (normal) groups of genes and HA

is not the same for altered and unaltered groups of genes.

Statistical analyses

The chosen gene expression datasets and their matric infor-
mation was firstly downloaded and converted into a class
for differential gene expression analysis. After reviewing the
sample records (GSM) manually for sample classification, we
constructed design models (patients, controls). This created a
design model which was then filtered using LIMMA/DESeq2.
Using a threshold of adjusted P-value and absolute log Fold
Change (logFC) values of at most 0.01 and at least 1.0,
respectively, we identified DEGs. After the comparison between
the datasets from the two diseases, we obtained all the
upregulated and downregulated DEGs. We then constructed
upregulated and downregulated diseasome networks as well as
upregulated and downregulated PPI networks and we performed
enrichment analysis to identify the signaling pathway and
ontological pathway. Then, we prepare clinical and genetic
factors for the same patients. Subsequently, we fitted a Cox
Proportional Hazard Model for univariate and multivariate
analysis to identify cancer biomarkers genes associated with
cancer patient survival. Finally, we fitted a PL estimator to
construct a survival curve for biomarker DEGs and compared
our results with those from gold standard databases and
literature.

Overview of proposed integrated bioinformatics and
machine learning approach

We designed and developed a multistage quantitative frame-
work as an integrated pipeline based on bioinformatics and
machine learning methodologies as shown in Figure 1 and we
also provided a representative picture of the algorithm used for
the selection of studies and datasets here analyzed which is
shown in Pseudocode for Algorithm.

RESULTS
Gene expression analysis

To look over the effects of NDs that influence the progression of
brain cancer, we used the gene expression microarray and RNA-
seq data collected from NCBI and EBI. By using our proposed
method, the top significant DEGs was identified by choosing <

0.01 and the absolute logFC of 1 which is summarized in Table 1.
We identified overlapping DEGs between NDs and GBM,

termed as biomarker genes by matching upregulated DEGs of
NDs with the upregulated genes of GBM and downregulated
DEGs of NDs with the downregulated genes of GBM. In this
way, 49 biomarker genes were identified between AD and GBM,
11 biomarker genes were identified between ED and GBM, 22
biomarker genes were identified between HD and GBM, 47
biomarker genes were identified between MS and GBM and
48 biomarker genes were identified between PD and GBM.
We performed hypergeometric test and Jaccard index tests for
the DEG’s genes in order to establish their role as predictive
diagnostic biomarkers for brain tumors, or other CNS disorders
which are included in Table A in the supplementary file (S1). To
reveal the significant associations between GBM and NDs, we
built up two separated diseasome networks for upregulated and
downregulated genes that are common between GBM and NDs
as shown in Figure 2.

Pathway and functional association analysis

The relation between complex diseases through underlying
molecular mechanisms are understood by signaling pathways
[83]. The pathway enrichment analysis is a technique to
determine what pathways are activated in common between
diseases [84]. After identifying biomarker genes overlapping
between NDs and GBM, we performed pathway enrichment
analysis using EnrichR [73]. Signaling pathways enrichment
analysis of the commonly dysregulated gene between NDs
and GBM were performed using KEGG, Reactome, Wiki and
BioCarta pathway databases. We emphasized more on pathways
by considering four pathways datasets and by manually curation
we identified a number of 9, 8, 7, 6 and 10 enriched significant
signaling pathways common between AD and GBM, ED and GBM,
HD and GBM, MS and GBM and PD and GBM, respectively, having
an adjusted P-value of below 0.01 as shown in Figure 3.

Gene ontological analysis

GO is a comprehensive conceptual model to represent gene
and gene product functions [85]. For the identified biomarker
genes seen in NDs cells and GBM, we performed GO terms
enrichment analysis to identify the most significant ontological
pathways common between NDs and GBM employing a compre-
hensive gene set enrichment analyzing tool, Enrichr [73] using
GO; BP. Notably, we performed functional annotation through GO
enrichment analysis and by manually curation we found 13, 14,
13, 15 and 15 ontological pathways between AD and GBM, ED and
GBM, HD and GBM, MS and GBM and PD and GBM, respectively,
considering adjusted P-value of below 0.01 as shown in Table 2.

PPI analysis

A PPI is the physical interactions of proteins in the cell. To
understand interactions in the cell physiology, we performed the
analysis of the protein–protein interaction of DEGs using STRING
via Network Analyst [79]. We built up the PPI network using
upregulated and downregulated DEGs to reveal the hub proteins
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Effects of CNS disorders on GBM progression 9

Table 2. Enriched ontological pathways common between GBM and each NDs/CNS disorder (a) AD (b) ED (c) HD (d) MS and (e) PD.

GO ID Ontological Pathway
Genes in the
pathway Adj. P-value

(a) Ontological pathways common between GBM and AD.

GO:2000045 regulation of G1/S transition of mitotic cell cycle KANK2;RBL1 5.68E-03
GO:2001242 regulation of intrinsic apoptotic signaling pathway CAV1;PLAUR 5.92E-03
GO:0019221 cytokine-mediated signaling pathway SOCS3;CD44 1.89E-02
GO:0043011 myeloid dendritic cell differentiation CAMK4 2.42E-02
GO:0042098 T cell proliferation BTN3A1 2.66E-02
GO:0043067 regulation of programmed cell death KANK2;BIRC5 2.79E-02
GO:1903900 regulation of viral life cycle MVB12A 2.90E-02
GO:1902165 regulation of intrinsic apoptotic signaling pathway CD44 2.90E-02
GO:0070102 interleukin-6-mediated signaling pathway SOCS3 3.38E-02
GO:0042127 regulation of cell proliferation KANK2;TGFB1I1 3.42E-02
GO:0030856 regulation of epithelial cell differentiation CAV1 4.32E-02
GO:0034114 regulation of heterotypic cell-cell adhesion CD44 4.56E-02
GO:0000188 inactivation of MAPK activity CAV1 4.79E-02

(b) Ontological pathways common between GBM and ED.

GO:0050767 regulation of neurogenesis SOX11;ASCL1 4.32E-04
GO:0045664 regulation of neuron differentiation SOX11;ASCL1 9.35E-04
GO:0033674 positive regulation of kinase activity PDGFRA;ADCYAP1 1.68E-03
GO:0060253 negative regulation of glial cell proliferation SOX11 3.30E-03
GO:0060563 neuroepithelial cell differentiation SOX11 5.49E-03
GO:0014033 neural crest cell differentiation SOX11 8.22E-03
GO:0030858 positive regulation of epithelial cell differentiation TMEM100 1.04E-02
GO:0043410 positive regulation of MAPK cascade PDGFRA;ADCYAP1 1.05E-02
GO:0021782 glial cell development SOX11 1.09E-02
GO:0051960 regulation of nervous system development ASCL1 1.37E-02
GO:0010001 glial cell differentiation SOX11 1.37E-02
GO:0048145 regulation of fibroblast proliferation PDGFRA 2.50E-02

(c) Ontological pathways common between GBM and HD.

GO:0019221 cytokine-mediated signaling pathway MT2A;MMP9 2.58E-04
GO:2001235 positive regulation of apoptotic signaling pathway MMP9;S100A9 3.77E-03
GO:0030198 extracellular matrix organization COL1A2;MMP9 1.46E-02
GO:0070098 chemokine-mediated signaling pathway CCL2;PPBP 1.93E-02
GO:0030182 neuron differentiation HAND2;ID3 1.95E-02
GO:0034350 regulation of glial cell apoptotic process CCL2 2.44E-02
GO:0043067 regulation of programmed cell death KANK2;GAS1 2.44E-02
GO:0034351 negative regulation of glial cell apoptotic process CCL2 2.84E-02
GO:0045687 positive regulation of glial cell differentiation CXCR4 4.03E-02
GO:0032874 positive regulation of stress-activated MAPK cascade HAND2;FCGR2B 4.27E-02
GO:1901215 negative regulation of neuron death SIX1;CCL2 4.56E-02
GO:0048713 regulation of oligodendrocyte differentiation CXCR4 4.81E-02
GO:0001558 regulation of cell growth MSX1;S100A9 4.97E-02

(d) Ontological pathways common between GBM and MS.

GO:0051966 regulation of synaptic transmission, glutamatergic UNC13A;NRXN1 5.02E-03
GO:0021955 central nervous system neuron axonogenesis PTEN 1.63E-02
GO:0001774 microglial cell activation MAPT 1.63E-02
GO:0070302 regulation of stress-activated protein kinase signaling cascade FAS 1.86E-02
GO:0030307 positive regulation of cell growth UNC13A;MAPT 2.23E-02
GO:0043068 positive regulation of programmed cell death FAS;KALRN 2.24E-02
GO:0002858 regulation of natural killer cell mediated cytotoxicity directed against

tumor cell target
NECTIN2 2.33E-02

GO:0014002 astrocyte development MAPT 2.33E-02
GO:0048854 brain morphogenesis PTEN 2.56E-02
GO:0016055 Wnt signaling pathway PTEN;WLS 2.71E-02
GO:0051895 negative regulation of focal adhesion assembly PTEN 3.24E-02
GO:0030334 regulation of cell migration ANXA1;PTEN 3.80E-02

(Continued)
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10 Rahman et al.

Table 2. Continued

GO ID Ontological Pathway
Genes in the
pathway Adj. P-value

GO:0030856 regulation of epithelial cell differentiation PRKX 4.15E-02
GO:0042981 regulation of apoptotic process GLS2;FAS;KALRN 4.16E-02
GO:0006536 glutamate metabolic process GLS2 4.82E-02

(e) Ontological pathways common between GBM and PD.

GO:0030198 extracellular matrix organization ITGB3; ADAM12 2.63E-06
GO:0045664 regulation of neuron differentiation SOX2; HEYL 4.47E-06
GO:0043523 regulation of neuron apoptotic process TFAP2B; TGFB2 9.24E-05
GO:0045666 positive regulation of neuron differentiation TCF3; NBL1 1.46E-04
GO:0051726 regulation of cell cycle CCNB2; TGFB2 8.22E-04
GO:0043406 positive regulation of MAP kinase activity MAPK11; CDK1 2.14E-03
GO:0042127 regulation of cell proliferation TFAP2B; BTG3; 4.51E-03
GO:0050678 regulation of epithelial cell proliferation SOX2; TGFB2 5.95E-03
GO:1901215 negative regulation of neuron death KIF14; SIX1 8.81E-03
GO:0007346 regulation of mitotic cell cycle BTG3; CDK1 1.02E-02
GO:0046578 regulation of Ras protein signal transduction TGFB2; KIF14 1.10E-02
GO:0045597 positive regulation of cell differentiation MSR1; MAPK11 1.75E-02
GO:0001558 regulation of cell growth TGFB2;

CCDC85B
1.96E-02

GO:0007399 nervous system development SHOX2; CELSR1 2.90E-02
GO:0045685 regulation of glial cell differentiation CDK1 3.02E-02

considering the topological parameters, degree greater than 15
and the interaction level 900 as confidence score as shown in
Figure 4.

The PPI network of upregulated DEGs had 980 nodes and 1454
edges with a topological parameter, a degree greater than 15,
while the PPI network of downregulated DEGs had 287 nodes
and 317 edges with a degree greater than 15. More interac-
tions than expected were observed for PPI networks of both
upregulated and downregulated DEGs due to medium stringency
score (900). We performed the topological analysis and detected
hub genes using degree matrices (degree greater than 15) for
both the upregulated and downregulated DEGs networks using
visualization software: Network Analyst. A total of 30 hub pro-
teins ( CDK1, CCNB1, CAV1, CENPA, YBX1, BUB1, SOCS3, WNT5A,
RBL1, CCNB2, CDC45, NDC80, EFNB1, GATA4, BIRC5, ESPL1, UBC,
TCF3, CXCR4, GLI2, CD44, PDGFRA, PTBP1, LCP2, PRKX, SGO1,
WLS, NEK2, TGFB2, FAS ) were identified for upregulated DEGs
and eight hub proteins (PTEN, MAPK11, HNF4A, MAPT, PRKCB,
PRKAR1B, KALRN, CAMK2G) for downregulated DEGs were iden-
tified. The specified topological properties of the top hub genes
from the PPI network was found for upregulated and down-
regulated PPI networks using the Cytoscape tool [86]. We have
provided the specified topological parameters as Table B and
Table C in the supplementary file (S1) for upregulated and down-
regulated PPI networks. Among the parameter list, the degree is
the most fundamental trait of a node in a network which is char-
acterized as the number of contiguous connections, for example,
the number of communications that interface one protein to its
neighbors. Betweenness centrality is a proportion of a vertex’s
impact on the data stream for each set of vertices, expecting
that information flows mainly through the shortest pathways
between them. Closeness centrality is an approach to identify
objects that can viably send data through a network. A hub
protein’s closeness centrality determines its normal distance to
every other node. Nodes with a high score of closeness have the

shortest lengths to all the other nodes. An average clustering
coefficient is a function of the level of the average clustering
of hub nodes in a PPI network. The topological coefficient is
the quantitative measurement of the degree to which a node
connects neighbors with other nodes. A topological coefficient
of 0 is estimated to hub nodes that have one or no neighbors.
The identified hub proteins are potential biomarkers which may
lead to new GBM therapeutic targets and may play significant
key roles in signal transduction during the progression of GBM.

Survival analysis

To analyze survival, we employed both gene expression and clin-
ical data acquired from TCGA and measured the risk of survival
of the DEGs associated with GBM patients. Consequently, we
determine significant genes that are involved in the pathological
processes of GBM progression and the survival of GBM cancer
patients. In our study, the survival function for the significant
genes of two groups (altered and unaltered) that are common
between NDs and the GBM is estimated by applying the Cox
Proportional Hazard Model and PL estimator. Both the univari-
ate and multivariate regression is fitted in this study and the
regression results of the most important statistically significant
DEGs which are common between GBM and our selected NDs of
CNS disorder are shown in Table 3, Table 4, Table 5, Table 6 and
Table 7, respectively.

Based on the nonzero regression coefficients, we found 15
genes between AD and GBM, 3 genes between ED and GBM,
10 genes between HD and GBM, 10 genes between MS and
GBM and 16 genes between PD and GBM from the RNASeq
data as the most significant differentially expressed common
biomarker genes by picking out a threshold of P-value ≤ 0.05.
In Table 3, Table 4, Table 5, Table 6 and Table 7, the positive sign
of the regression coefficients indicates that the hazard (risk
of death) is higher and thus prognosis worse. The P-value of
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Effects of CNS disorders on GBM progression 11

Fig. 3. Enriched signaling pathways common between GBM and each CNS disorder (a) AD, (b) ED, (c) HD, (d) MS and (e) PD.

the survival curve is used to indicate the difference between
altered versus an unaltered group of genes of the survival pat-
tern. The survival curve comparing altered and unaltered groups
for each significant gene that are common between GBM and

NDs obtained from the PL estimator function is shown as in
Figure 5. We have provided two (Figure 5(b) and Figure 5(c))
of three subfigure of Figure 5 as supplementary (S1) to reduce
redundancy.
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12 Rahman et al.

Fig. 3. continued.

From Figure 5, we see that 54 genes are identified as the
most significant genes which are associated with the survival
of GBM patients. Among them, gene number 1–15 between AD
and GBM, 16–18 between ED and GBM, 19–28 between HD and
GBM, 29–38 between MS and GBM and 39–54 between PD and
GBM associated with survival of the GBM patients. In the survival
curve of each gene, the altered expression of genes indicates
that a patient is less likely to survive compared to a person
in a non-altered group. From both univariate and multivariate
analyses, we observe that the P-value lower than 0.05 indi-
cates the significant difference between altered versus unaltered
group of genes associated with GBM patient survival. More-
over, the determination of the joint role of important clinical
and genetic factors have important entailment in identifying
influential genes that are associated with the survival of GBM
patients. In Figure 5, it is also noted that the normal gene expres-
sion is indicated by the red line and the altered gene expression
is indicated by the blue line in the survival curve as shown in
Figure 5.

Results comparison with Gold benchmark databases
and literature

We have developed a pipeline framework based on bioinfor-
matics and machine learning tools to identify biomarkers for

which CNS disorders influence the progression of GBM. As far
as we know, there are no such methods to identify the effect
of CNS disorders in GBM progression. Thus, to compare our
results obtained from our pipeline based on well-established
bioinformatics and machine learning tools, there is no other
criterion against which it can be compared. There are many
other cross-checking tests for the obtained results but they are
too time-consuming for the results of the test to be clinically
useful, and those tests may not be possible to perform on a
patient. A benchmarking study consists of a robust and com-
prehensive evaluation of the results of well-established bioinfor-
matics and machine learning algorithms. Benchmarking studies
aim to rigorously compare the results of different methods with
gold-standard benchmark datasets to determine the strengths
of results from proposed methods to provide recommendations
regarding suitable choices of analysis methods. Gold standard
benchmarking refers to the criteria by which scientific evidence
is evaluated and use accepted standards that we can look to
as an accurate and reliable reference for the comparison of our
results. In clinical bioinformatics and medicine, we often refer to
dbGap, OMIM and OMIM Expanded as the gold standard database
for comparing our results. These studies use gold-standard data
sets to serve as a reference and well-defined scoring metrics
to assess the performance and accuracy of our results from a
variety of analytical tasks and data types. To assess our results,
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Effects of CNS disorders on GBM progression 13

Fig. 4. Hub proteins from protein-protein interactions analysis.

we used the dysregulated DEGs (identified by the pipeline of
the selected CNS disorders) as input to the online gene set
enrichment analyzing tool, EnrichR [73], and obtained enriched
genes and their associated disease from the stated three gold-
standard benchmark databases. The statistical parameter, a P-
value of threshold <0.05 was chosen for several steps of analysis
to select genes associated with each cancer.

Among the several diseases with their enriched genes,
we choose only cancer-related diseases for constructing the
disease-gene association network. Our selected cancer such as
GBM is enriched with it’s associated genes from the mentioned
three gold-standard benchmark databases. Our enriched
disease-gene association network is constructed using the list
of cancer which is shown in Figure 6. This comparison confirms
that significant genes we identified in CNS disorders as having
known disease associations. Systematic benchmarking of our
results based on gold standard data outperforms the existing
results in a standardized way for this disease comorbidity
which strengthens confidence in the data we obtain using our
computational methodology. Also, we observe that our identified
genes are associated with GBM progression by studying the
literature to identify which of these genes have been clinically
used as biomarkers for GBM. Specifically:

• Reifenberger G et. al [87] showed the CD44 gene associated
with the incidence of GBM.

• Backes C et. al [88] previously found a link between FAM20A,
RRM2 genes and GBM incidence.

• Crespo I et. al [89] and Appin CL et al [90] identified a link
between the PDGFRA gene and GBM.

• Crespo I et. al [89] identified the ASCL1 gene associated with
the progression of GBM.

• Cheng W et. al [91] showed the FCGR2B gene associated with
the progression of GBM.

• Crespo I et al [89] and Cheng W et. al [91] identified the
MMP9 gene associated with the progression of GBM.

• Li QJ et. al [92] and Dunn GP et. al [93] have shown the PTEN
gene associated with the progression of GBM.

• Bo L et. al [94] identified the CDK1 gene associated with GBM
incidence.

• Cheng F et. al [95] identified the SOX2 gene associated with
the progression of GBM.

Therefore, it suggested that CNS’s disorders may influence the
progression of GBM.

DISCUSSION
This study aimed to establish the competency of the pipeline
of bioinformatics and machine learning approach to identify
the effects of NDs on GBM cancer comorbidity along with
survival analysis and to gain deeper insights into GBM associated
biomarkers that are essential for prognosis, diagnosis and treat-
ment by investigating genetics and molecular mechanisms at
multistage. To achieve our objectives, we applied this approach
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14 Rahman et al.

Fig. 4. continued.

to examining microarray and RNA-seq gene expression data
from NDs and GBM each with control individual samples to
identify the comorbidity progression of GBM.

Our proposed pipeline identified the significant DEGs
between NDs and GBM suggesting NDs may influence the
behavior of GBM. Based on upregulated and downregulated DEGs
common between NDs and GBM, we constructed two separate
up and down disease-gene association (diseasome) networks
which show strong evidence that NDs can indeed interact
with GBM as shown in Figure 2. The functional annotation
via enrichment analysis provides new knowledge about
complex diseases by determining common pathways between
NDs and GBM. Our identified molecular and ontological
pathways revealed by the dysregulated genes of GBM with
NDs disorder is shown in Figure 3 and Table 2. Our identified
molecular and ontological pathways indicated how NDs may
affect GBM cancer and influence the progression of GBM.
The multi-omics analysis involving protein–protein interaction
revealed the hub genes that are shown in Figure 4 involved
in key signaling pathways regulating important molecular
pathways in the pathobiology of GBM and suggest that NDs
affect GBM cancer. NDs of the CNS, for example, AD shares 49
significant DEGs with GBM, ED shares 11 significant DEGs with
GBM, HD shares 26 significant DEGs with GBM, MS shares 47
significant DEGs with GBM and PD shares 51 significant DEGs

with GBM as shown in Figure 2. These data provide significant
proof to support the involvement of these genes with the GBM
pathogenesis and the noxious effect of NDs/CNS disorder on
cancer. To evaluate the prognosis of the identified biomarkers
genes, we widely employed Cox Proportional Hazard Model to
predict the most significant biomarkers genes associated with
GBM progression and also associated with the survival of GBM
cancer patients. Both univariate and multivariate regression
analysis and the log-rank test was performed to determine
the significant difference between alter and unaltered groups
for each gene by estimating the survival function based on
the PL estimation procedure. We found 15 DEGs between AD
and GBM, 3 between ED and GBM, 10 between HD and GBM, 10
between MS and GBM and 16 between PD and GBM as biomarker
genes that affect the survival of GBM which is tabulated in
Table 3, Table 4, Table 5, Table 6 and Table 7, respectively, and
survival curve for these biomarker genes are shown in Figure 5.
A key reason for the use of the Cox PH model is that it relies
on fewer assumptions compared to parametric models. The
fundamental assumption in this model is the proportion-
ality of the hazard function. Note that the Cox PH model
assumes that the hazard ratio of two people is independent
of time. A total of 54 prognostic genes were identified that
affect the survival of the GBM patients by using the Cox PH
model.
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Effects of CNS disorders on GBM progression 15

Fig. 5. The survival curve comparing altered and unaltered groups for each significant gene that are common between NDs (AD, ED, HD, MS and PD) and the GBM is

shown in fig (a), (b) and (c). The gene numbers in the figure are divided into five groups where AD and GBM shares gene number 1–15, ED and GBM shares 16–18, HD

and GBM share 19–28, MS and GBM share 29–38 and PD and GBM shares 39–54. Here, the cyan-colored lines in the survival curve indicate data from individuals with

altered gene expression and the red indicates data from individuals with normal (i.e. unaffected) gene expression.
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16 Rahman et al.

Fig. 6. Potential targets validating results using gold-standard databases. The octagon-shaped red color nodes indicate disease node and blue color nodes indicate

genes. The red-colored center node is the acronym of central nervous system disorders which includes AD, ED, HD, MS and PD. The acronym CC for colon cancer, GC

for gastric cancer, EC for endometrial cancer, GBM for glioblastoma, LC for lung cancer, CRC for colorectal cancer, HC for hepatocellular carcinoma, RCC for renal cell

carcinoma and PC for prostate cancer.

In general, the results of our analyses show that the NDs
among the CNS disorders share dysregulated genes and molec-
ular mechanisms, and an individual with CNS disorders (AD,
ED, HD, MS and PD) is at increased risk of GBM development.
Our results are useful for both biomedical research and health
care utilization. Concerning biomedical research, our findings
revealed why individuals with NDs are more vulnerable to GBM
development. Our findings help us to acquire a better under-
standing of pathogenesis, which could lead to better preven-
tion, diagnosis and treatment. The identification of potential
biomarkers for GBM also opens new ways to think about treat-
ment strategies for this disease comorbidity and the prognostic.

We observe that our identified altered genes associated with
GBM involve several molecular and ontological pathways that
are related to cell proliferation, survival, migration and angio-
genesis as complex pathogenesis. Our methods are thus able
to identify the role of GBM comorbidity with NDs and lead to
better means of predicting the survival of the GBM patients
more precisely and helpful for the development of the health
care system. We verified these potential biomarker genes with
the gold standard benchmark databases and literature review as
shown in Figure 6 and we confirm that our identified biomarker
genes are strongly associated with the GBM progression and
associated with the survival of GBM patients.
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CONCLUSION
In conclusion, the co-occurrence of direct and inverse GBM
progression in patients with NDs/CNS disorders led us to iden-
tify biological and nonbiological relations. Our findings provide
an in-depth understanding of the pathobiology of GBM cancer
and why individuals with NDs are relatively vulnerable to GBM
development. In our study, we identified several gene mutations
associated with GBM progression but all of them were not signif-
icantly related to the survival of GBM patients. For this reason,
we expanded our study to identify the joint effect of clinical
factors and genes to identify biomarker genes that play roles
for the survival of the GBM patients and we identified 54 genes
that influence survival. From the clinical science perspective, we
suggest that the potential markers we identified in this work
could be useful for disease diagnostic and may help in finding
useful and novel therapeutic targets. At the same time, our find-
ings will assist in a variety of clinical and diagnostic activities.
Medical practitioners have recently begun to consider comor-
bidity interactions as an important part of treatment modalities,
and started to investigate the possibilities of using multi-omics
data by bioinformatics approach. Our proposed methodologies
can be used for this approach and may detect many disease
features, especially those at the earliest time points before the
symptoms appear, and help to gain a better understanding of
the complex pathogenesis of disease risk phenotypes and the
heterogeneity of disease comorbidity. Thus, it could be applied
to improve individualized medicine and clinical bioinformatics.
Thus, our study may lead to improve health outcomes and
reduce diagnostic costs. In this work, we investigated how gene
expression, multi-omics, clinical and molecular data can be inte-
grated and analyzed to identify diseasome and disease comor-
bidity interactions using bioinformatics and machine learning
models. In general, we used datasets of low sample size and
different cell types for cross disease or comorbidity analysis, so
it is possible to miss the genes associated with diseases. Our
future direction is to attain greater reproducibility of biological
findings in disease comorbidity identification, therapeutic tar-
gets/biomarker discovery that will further advance the quality of
individualized medicine for GBM patients that also suffer from
ND comorbidities.

Key Point
• Epidemiological and clinical studies link the central

nervous system (CNS) disorders and suggest that their
transcriptomic profiles could have a number of molec-
ular mechanisms in common. Our main objectives
are to develop an integrated framework based on
the bioinformatics and machine learning model to
unravel shared differentially expressed genes(DEGs)
and cell signaling pathways that can link CNS disor-
ders and glioblastoma (GBM);

• After analyzing transcriptomic data of selected CNS
disorders and GBM, and identifying DEGs employing
our framework, disease-gene association network, sig-
naling pathway, gene ontology (GO) analysis as well as
hub proteins identifications were performed to predict
the function of these DEGs;

• We expanded our study to determine the significant
genes that play a significant role in GBM progression
and affect the survival of the GBM patients by exploit-
ing clinical and genetic factors using the Cox Propor-
tional Hazard Model and the Kaplan–Meier estimator.

Our biomarker genes that influence patient survival
can be targets for therapeutic drug development;

• Our findings provide an in-depth understanding of the
pathobiology of GBM cancer and why individuals with
NDs are relatively vulnerable to GBM development.
The identified hub proteins are potential biomark-
ers which may lead to new GBM therapeutic targets
and may play significant roles in signal transduction
during the progression of GBM;

• Our proposed approach is generalized and can be used
for identifying key genetic and clinical factors of other
types of cancers.
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