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Abstract
Although imaging of gliomas has evolved tremendously over the last decades, published techniques and protocols are not always
implemented into clinical practice. Furthermore, most of the published literature focuses on specific timepoints in glioma
management. This article reviews the current literature on conventional and advanced imaging techniques and chronologically
outlines their practical relevance for the clinical management of gliomas throughout the cycle of care. Relevant articles were
located through the Pubmed/Medline database and included in this review. Interpretation of conventional and advanced imaging
techniques is crucial along the entire process of glioma care, from diagnosis to follow-up. In addition to the described currently
existing techniques, we expect deep learning or machine learning approaches to assist each step of glioma management through
tumor segmentation, radiogenomics, prognostication, and characterization of pseudoprogression. Thorough knowledge of the
specific performance, possibilities, and limitations of each imaging modality is key for their adequate use in gliomamanagement.
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Introduction

Before surgery (Table 1)

Is it a glioma?

Magnetic resonance imaging (MRI) is the workhorse of initial
workup for intracerebral masses. The minimum standard

protocol includes 3D pre-contrast T1-weighted (3D
T1wPre), fluid attenuation inversion recovery (FLAIR),
diffusion-weighted imaging (DWI), T2-weighted (T2W),
and post-contrast T1-weighted (3DT1wPost) sequences [33].

Conventional imaging of gliomaAdministration of gadolinium
(GD)-based contrast agents reveal blood-brain-barrier disrup-
tions, reflecting tumor infiltration and angiogenesis in glioma.
Mainly in high-grade glioma, comparison between pre- and
post-contrast T1W images defines the area of central tumor
invasion, often associated with (non-enhancing) central necrot-
ic tissue, sometimes hemorrhagic brain tissue and/or central
cysts. Cystic components are identified in T2W images through
T2-hyperintensity. The classical appearance of glioblastomas
(GBM) consists of an area of ring enhancement surrounded
by a hypo-T1/hyperT2 zone of brain edema and tumor infiltra-
tion. Contrast enhancement is also common in other high-grade
gliomas (HGG). Enhancement pattern is associated with tumor
aggressiveness [84] and angiogenesis-associated genes [94].
Although common, it is however neither a sufficient nor nec-
essary condition in HGG MRI. About one-third of non-
enhancing gliomas are HGG, especially in elderly population
[104], and one-third of HGG do not enhance, especially in
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isocitrate dehydrogenase (IDH)-mutated tumors [128]. Twenty-
six to forty-six percent of low-grade gliomas exhibit some de-
gree of contrast enhancement, especially gangliogliomas,
pilocytic or low-grade astrocytomas, and, rarely, low-grade
oligodendrogliomas [130].

In MRI, HGG is thus suggested by contrast enhance-
ment (nodular, patchy, or ring-like [128]) with or without
central necrosis and intratumoral hemorrhage (both better
appreciated on T2*), with or without mass effect, with ill-
shaped contour associated with central T2 hyperintensity,
central FLAIR hyper- or hypointensity and peritumoral ill-
defined FLAIR.

Computerized tomography (CT) can show central, periph-
eral, or ribbon-like calcifications, suggestive of oligodendrog-
lial tumors [97]. Due to its accessibility, CT remains important
in emergency conditions and in cases of rapid decline where
intratumoral hemorrhage is possible [127].

For systematic and reproducible interpretation of glioma
imaging features, standardized approaches have been pro-
posed. The Visually AcceSAble Rembrandt Images
(VASARI) feature set is a rule-based lexicon to improve the
reproducibility of glioma interpretation. It comprises 25 visual
criteria, including tumor location, lesion center laterality, elo-
quent brain involvement, enhancement quality, proportion en-
hancing, T1/FLAIR ratio, diffusion characteristics. It has been
shown to improve interpretation and reproducibility of glioma
description [98]. The meaning of VASARI features have been
made explicit via the design and implementation of a special-
ized ontology, called VASARI ontology [6]. Also, inter-
reader variations are being tackled by machine learning and
fully-automated segmentation [98].

Advanced imaging studies Diffusion-weighted imaging
(DWI) measures random motion of water molecules within

Table 1 Indicative imaging features of glioma: before surgery

MRI Mimics of GBM

Brain Abscess Encephalitis Inflammatory diseases Cerebral lymphoma Metastases

Absence of normal peaks in
spectroscopy

T2 hyperintensity in the limbic
system

Spectroscopy non-discriminant May or may not
enhance

Variable ADC

A typical peaks: acetate,
pyruvate, succinate

Rare gadolinium enhancement High or low ADC Extensive T2
hyperintensity

Low ADC if
mucinous

ADC reduced if purulent Spectroscopy resemble low-grade
glioma

Low rCBV compared with
normal brain tissue

Low ADC (high
cellularity)

ADC higher than in
HGG in peritumoral
area

High ADC in abscess walls Low ADC Lower rCBV than
HGG

Low rCBV in
peritumoral area

Reduced rCBV Signal overshoot
(contrast medium
leakage)

Prognosis

FET-PET interpretation MGMT promoter methylation IDH Mutation 1p/19q Codeletion

Aggressiveness correlated
with early peak

Higher ADC if methylated Single lobe, frontal, cysts,
secondary locations, sharp
delimitation

May or may not enhance

May be positive in nonglial
tumors (e.g., metastases)

Moderate rather than intense
elevation of rCBV elevation if
methylated

Large portion of non-enhancing
tissue

Fuzzy delimitations

Higher TBR max in HGG
than LGG

Increased K-Trans Lower rCBV than IDH-wt Heterogeneous T2

Low-grade
oligodendrogliomas
present high 18F-FET
uptake

Presence of 2-hydroxyglutarate
(2-HG)

> 40% calcifications

High rCBV and high 18F-FET uptake

Preoperative planning

Hotspots Factors influencing functional
MRI (fMRI)

Factors influencing diffusion-weighted imaging (DWI)

High choline/NAA Proximity with air cells, large
cortical veins

Coexistent/coalescent fibers

High rCBV Mass effect, edema Fiber bundle infiltration (diffusivity reduction)

High 18F-FET uptake Anxiety, pain, attention deficit Fiber bundle edema (enhanced diffusivity)

Elderly population
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each MRI volume unit (voxel). Water movements can be re-
stricted by high cellularity (tumors), high viscosity (necrotic
abscesses), or cytotoxic edema (acute ischemic injury). DWI
acquisitions being T2W sequences, it is necessary to withdraw
the influence of T2-hyperintensity on DWI signal by calculat-
ing the apparent diffusion coefficient (ADC).

Perfusion-weighted imaging (PWI) estimates blood perfu-
sion of the investigated tissue. Multiple acquisitions will de-
tect either an exogenous marker (GD, in dynamic susceptibil-
ity contrast (DSC), and dynamic contrast-enhanced (DCE)) or
an endogenous marker (Arterial Spin Labelling (ASL)).
Parameters that can then be extrapolated include cerebral
blood flow (CBF), regional cerebral blood volume (rCBV),
and blood-brain barrier permeability.

Magnetic resonance spectroscopy (MRS) analyses paren-
chymal chemical composition over one or several voxels,
where metabolites are quantified at the millimolar scale. N-
Acetyl-aspartate (NAA) is a marker of neurons, creatine (Cr)
is supposed to be constant in normal and pathological situa-
tion and thus acts as internal reference, choline (Cho) is a
marker of cell membrane breakdown, myo-inositol (mI) re-
flects normal glia, lactate (Lac) is a marker of anaerobic me-
tabolism, and free lipids (Lip) are markers of necrosis.

MRI mimics of high-grade gliomas

Infectious disease: brain abscess Brain abscesses are more
common in immunocompromised hosts. Pulmonary shunts
favor brain abscesses [28]. MRS may show the absence of
normal brain peaks (NAA, Cr, Cho) but may show peaks of
atypical metabolites: acetate, pyruvate, succinate [44]. ADC is
generally markedly reduced in the central portion of the ab-
scess due to pus viscosity, but not necessarily in the walls of
the abscess, which may harbor higher ADC values than tu-
moral cystic walls [23]. rCBV is also frequently reduced com-
pared with necrotic or cystic neoplastic walls [23].

Infectious disease: encephalitis Acute encephalitis may pres-
ent as T2 hyperintensity in the limbic system that is often
asymmetrical or unilateral. Contrast enhancement may rarely
be encountered [12]. MRS of encephalitis resembles low-
grade gliomas with elevation of the choline peaks and reduc-
tion of the NAA peaks. ADC is typically low, especially if the
examined brain tissue is infarcted [2].

Inflammatory diseases Acute monophasic syndromes, variants
of multiple sclerosis, such as Marburg variant or Balo’s concen-
tric sclerosis, may be misdiagnosed as HGG. In the case of a
fulminant mass lesion (Fig. 1), spectroscopy cannot formally
discriminate between the two, since these lesionsmay also harbor
high choline and low NAA levels. ADC values can be high or
low and rCBV is lower than normal brain tissue, which is gen-
erally the contrary of high-grade gliomas [22].

Cerebral lymphoma Primary central nervous system lympho-
ma (PCNSL) is rare, as it comprises only 2% of extranodal
lymphomas, but is more frequent in the immunocompromised
population. In the setting of rapidly progressive neurological
deterioration, lymphoma can masquerade as GBM. Both may
or may not enhance, can be surrounded with extensive T2
hyperintensity that respects the cortical ribbon integrity, and
have generally lowADC values in the core of the tumor due to
their very high cellularity. In immunocompromised patients,
lymphoma can harbor a necrotic component as well. The
rCBV of these tumors is significantly lower than that of
HGG. In PWI lymphomas tend to show a signal overshoot
(a signal higher than before perfusion), due to the T1 effect of
strong contrast medium leakage into the interstitium [47].

Metastases Metastases can be mistaken for GBM, especially if
no primary tumor is found, which is the case despite complete
workup in approximately 9% of solitary brain [39]. Small me-
tastases may be detected only on T2/FLAIR, but generally, me-
tastases tend to show (relatively homogeneous pseudo-spheroid)
enhancement. A sharp delimitation can in most cases be seen
between the metastasis and adjacent brain tissue, but perilesional
infiltration can be more prominent in some cases [10].
Peritumoral edema generally respects the cortical ribbon. MRS
is not helpful in the discrimination between metastasis and glio-
ma, just as very low central ADC can be found in mucinous
metastasis, mimicking brain abscess [93]. ADC values of metas-
tasis are variable and overlap with that of primary neoplasms.
However, ADC in the peritumoral area is generally higher in
metastasis than in gliomas because of subtler peritumoral cellular
infiltration, if there is any. rCBV is elevated in the core of me-
tastases, as in HGG, and perfusion markers overlap [2]. The
study of rCBV in the peritumoral zone can efficiently help in
differentiating HGG with tumoral infiltration (high rCBV) from
metastases with vasogenic edema (low rCBV) [82]. (Fig. 2).

Molecular correlates

Because of the differential response to adjuvant therapy, molec-
ular factors have become crucial in themanagement of glioma, as
evident in the most recent revision of the World Health
Organization classification of central nervous system tumors in
2016 [78].

MGMT methylation In GBM, the methylation of O-
methylguanine-DNA methyltransferase (MGMT) promoter is
associated with a better response to adjuvant therapy with com-
bined alkylating therapy (temozolomide) and radiation therapy.
Median survival is 22months ifMGMT promoter methylation is
present vs. 15 months if it is absent [48]. It is present in approx-
imately 45% of GBM [48]. The presence ofMGMTmethylation
also provides better outcomes in grade III gliomas (41.6 months
ofmedian survival if present vs. 16.9months if absent [132]) due
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to the co-occurrence of IDH mutation and MGMT promoter
methylation.

Conventional MRI cannot help predicting MGMT promot-
er methylation [34]. ADC values tend to be higher in methyl-
ated GBM, especially when examined in histogram analyses
rather than with standard ADCmapping. Moderately elevated
rather than very elevated rCBV is indicative of methylation
[108]. A predicting model combining tumor location, necro-
sis, ADC, and rCBF measured with ASL was able to detect
MGMT methylation with 91% sensitivity [46].

IDHmutation IDHmutation is present in themajority of grades
II and III glial tumors and is a marker of secondary glioblas-
toma (≈ 5% of all glioblastomas). IDH-mutated tumors have a
better prognosis than IDH-wild-type (IDH-wt) tumors. The
prognosis of lower grade gliomas without IDH mutation is
similar to that of GBM.

IDH-mutated tumors tend to be more frequently found in a
single lobe, especially the frontal lobe, harbor more cysts, and
present with more secondary locations. They often present sharp
MRI delimitation and large portions of non-enhancing tissue
[21]. rCBV is higher in IDH1-wt GBM than in IDH1 mutant
GBM [120].MR spectroscopymight help to detect IDH-mutated
glioma cells which contain high levels of 2-hydroxyglutarate
(2HG). This metabolite is normally undetectable, but present at
very high concentration (up to 100-fold) in IDH-mutant glioma.
Spectroscopy is sensitive and specific for detecting IDH-1 and
IDH-2 mutation via 2HG detection [25]. Detection of 2HG is
correlated with response to treatment: 2HG levels decline after
adjuvant treatment in IDH-mutant glioma [7]. Finally, prediction
of IDH-mutation status might be possible using dynamic 18F-
fluoroethyl-L-tyrosine positron emission tomography (18F-FET-
PET) correlating shorter TTP to more aggressive IDH1-wt glio-
ma [124, 125].

Fig. 1 Tumefactive demyelinating lesion 69-year-old female with history
of bilateral optic myelitis, right-side numbness, and paresis. MRI brain
scans. A-A’) FLAIR. B-B’) T1W+C. C-C’) ADC cartography. Baseline
MRI scan shows a necrotic left parietal lesion (post-central gyrus) with
hyper-T2 enhancing compound (incomplete ring enhancement). There is

no restriction of diffusion. Patient was treated with plasmapheresis and
rituximab IV injections. MRI control 17 months later shows complete
resolution of the lesion with glial scar. Those findings are in keeping with
neuromyelitis optica spectrum disorder with favorable outcome
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1p/19q codeletion 1p/19q codeletion is a necessary condi-
tion for the diagnosis of oligodendroglioma. Prognosis is
better than in glioma without 1p/19q deletion: in a group
of patients with grades II and III tumors, patients with 1p/

19q codeletion and IDH-mutation had a median survival of
8.0 years compared with patients without 1p/19q
codeletion but with IDH-Mutation who had a median sur-
vival of 6.3 years [31]. Patients with 1p/19q codeletion

Fig. 2 Brain metastasis. 1. 41-year-old female with personal history of
HER2-positive breast cancer and occipital headaches. (A) T1W+C. (B)
Corrected rCBV fused with T1W+C. (C) ADC mapping. Enhanced
parafalcorial left occipital lesion with peritumoral edema and no restricted
diffusion. ROI 1 is placed within the lesion and confirm the
hypervascularization compared with ROI 2 (contralateral normal brain).
ROI 3 indicates hypoperfused perilesional edema, in keeping with the

absence of infiltrative cells. Those findings are in keeping with intra-
axial brain metastasis. 2 Diagnosis algorithm of a T1+Gd enhancing
lesion using perfusion-weighted MRI (PWI). First, the tumor core is
analyzed, if it is highly hypoperfused, primary central nervous system
lymphoma (PCNS) is probable, if not, the peritumoral non-enhancing
tissue is analyzed. If the perfusion in that area is high, high-grade glioma
(HGG) is probable, if not, metastasis is more probable
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seem to benefit from procarbazine, lomustine, and vincris-
tine as adjuvant treatment. This is not the case for patients
without codeletion.

In oligodendroglioma, contrast enhancement may or
may not be present and tumor margins are fairly indistinct.
If a sharp border is present, it is more likely a 1p/19q-
intact tumor [59]. T2 signal intensity appears more hetero-
geneous, especially if the mid-frequency domain of the T2
signal is measured with S-transform analysis [19]. Image
texture can be defined as the heterogeneity intensity of an
image. Quantification of texture was developed for satel-
lite imaging applications and is now applied to the analysis
of medical images. An image transform relies on the trans-
form of visual data into frequency description; strong low-
er frequencies appear as homogeneous smooth regions,
whereas strong higher frequencies are seen as heteroge-
neous detailed regions. The S-transform is a Fourier trans-
form that provides local frequency spectra for each pixel in
the image independently and allows a pixel-by-pixel ex-
amination of image texture. Calcifications are frequent (>
40%) [108]. Grade II oligodendroglioma often exhibit
high rCBV values [58] and relatively high uptake of 18F-
FET [124]. Thus, IDH-mutated 1p/19q codeleted tumors
are difficult to differentiate from glioblastoma or high-
grade astrocytoma with 18F-FET-PET alone [56].

Prognostication Molecular characteristics are directly corre-
lated to tumor aggressiveness. Some tumor properties, such
as cellularity, vascularity, and metabolism, can be extrapolat-
ed from advanced imaging modalities [32]. Apart from
MGMT, IDH, and 1p/19q cited above, it can be useful to
detect other molecular markers that correlate with prognosis.
Complex imaging features, generally called radiophenotypes,
are currently being investigated for almost any predictive and
prognostic somatic mutation of glioma. In one investigation,
TP53, RB1, NF1, EGFR, and PDGFRA were associated with
conventional imaging features such as necrosis, degree of en-
hancement, and edema [27]. In another study, EGFR amplifi-
cations and CDKN2A loss were associated with high rCBV
[68]. mTOR-EGFR pathway activation is also associated with
high rCBV [76] and tumors with EGFR amplification tend to
occur in the left temporal lobe [35]. With more complex mul-
timodal imaging techniques, radiophenotypes can predict key
driver mutations in EGFR, PDGFRA, CDKN2A, and RB1
with 75%, 77%, 87.5%, and 87.5% accuracy [50].

PET-imaging with radiolabeled amino acids Positron emission
tomography (PET) performed with radiolabeled amino acids,
e.g., 18F-FET, has emerged as a useful tool in glioma assess-
ment, allowing for the visualization and quantification of tu-
mor features on a molecular level beyond morphological im-
aging [73]. Evaluation is usually based on 20–40 min post-
injection (p.i.) images. Important parameters are the

maximum tumor-to-brain ratio (TBRmax) and the biological
tumor volume (BTV), corresponding to the 18F-FET positive
tumor volume after application of a threshold of TBR > 1.6
[116].

TBRmax is higher in high-grade glioma than low-grade
diffuse astrocytoma. However, some low-grade tumors,
such as oligodendroglioma (IDH-mutated and 1p/19q
codeletion), can also show high 18F-FET uptake [51, 124].
Recently, C-Methionine PET/MRI data with machine learn-
ing algorithm was able to decipher higher TBR values in
grades II and III 1p19q codeleted tumor than in grades II
and III non-codeleted tumors [65]. Importantly, some low-
grade glioma might be FET negative. Specificity of static
18F-FET-PET to distinguish glioma and other brain lesions
is further limited by tracer uptake in nonglial brain tumors
(e.g., metastases) and non-neoplastic brain lesions (lower
TBR) [51]. Dynamic 18FET-PET, where tracer’s radioactiv-
ity is monitored from the injection up to 40–50 min p.i.,
offers time-activity curves (TAC) with additional informa-
tion on tumor grading and mutation status, increasing sen-
sitivity and specificity compared with static 18F-FET-PET.
While HGG often show an early peak followed by decreas-
ing TAC, low-grade tumors and non-neoplastic lesions of-
ten exhibit slowly increasing TAC [57]. Quantitative pa-
rameters derived from dynamic 18F-FET-PET, such as
time-to-peak (TTP), might provide additional information
for brain tumor assessment and outcome prediction [115].

Perspectives These PET and aforementionedMRI biomarkers
that could preoperatively help to predict tumor grading and
molecular variants, providing prognostic factors even before
histological diagnosis, are still under investigation. The com-
bination of state-of-the-artMRI and PET in increasingly avail-
able hybrid PET-MR-systems offers new opportunities for
comparative studies extracting differential morphological
and molecular tumor features. For the direct comparison of
different advanced MRI parameters and amino acid PET, we
refer to a recent review by Lohmann et al. [77].

Radiomics Radiomics, or quantitative radiographic phenotyp-
ing (www.radiomics.io), is a translational field of biomedical
research aiming to obtain molecular patterns through different
imaging modalities. Although it offers promising perspectives
for clinical decision-making and targeted treatment, there are
still challenges to overcome [99]. In addition, artificial intelli-
gence approaches as deep learning [105], neural networks,
and convolutional neural networks are being developed. The
aim is to help, if not replace, the clinician in grading predic-
tion, genetic information, preoperative planning, intraopera-
tive treatment planning, histopathologic diagnosis, radiation,
post-treatment follow-up, and outcome prediction [109]. Even
if surgery remains the mainstay in the initiation of glioma
treatment in the majority of cases for low-[55] and high-
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grade tumors [112], in some patients, e.g., in poor clinical
conditions, MRI techniques approaching the diagnostic yield
of histology could avoid any type of surgery, including purely
diagnostic needle biopsy.

Not confined to MRI techniques, machine learning and
artificial intelligence techniques are also investigated for
PET imaging alone for survival prediction [89], tumor seg-
mentation [16], pseudoprogression [64], or in combination
with MR for molecular subtyping [65, 79] and survival pre-
diction [91].

Extent of the tumor

Preoperative planningThe intratumoral histological heteroge-
neity of glioma is a possible reason for treatment failure [121].
Commonly, the most malignant portion that has been subject-
ed to histology will define grading.

In a stereotactic biopsy series, PWI could identify high
cancer burden areas (hotspots), especially in non-enhancing
tumors [66]. 18F-FET-PET can identify anaplastic foci in
low-grade glioma [70, 110]. In GBM, MRS can also help
identify hotspots, where choline to NAA levels are correlated
to cell density in the contrast-enhancing region and in the T2w
abnormality as well as in tissue outside both abnormalities
[29].

The extent of GBM resection directly correlates with survival
[112]. Complete removal of enhancing tumor (CRET)with some
peritumoral FLAIR abnormality, when feasible, may improve
overall survival compared with resection of enhancing tissue
only. Provided that no new neurological deficit occurred during
surgery, median survival time was 20.7 months at or over a cut-
off of 53.21% of total FLAIR abnormality resection vs.
15.5 months under 53.21%) [75, 96].

Lower grade glioma can be identified as areas of
hypertintensity in T2-weighted and FLAIR images, with dif-
ferent degrees of heterogeneity and hypointensity on T1-
weighted images. As stated above, contrast enhancement is
not exceptional in lower grade glioma. Maximal resection of
diffuse low-grade glioma according to functional (not only
anatomical) boundaries is associated with increased overall
survival. The surgical goal should therefore be to remove the
entire T2/FLAIR abnormality if function can be preserved. If
resection of more than 90% of tumor volume can be achieved,
97% of patients will survive more than 5 years [107].
Especially in IDH-mutated astrocytomas, gross total resection
is associated with better prognosis, as even small residual
tumor negatively affects overall survival [62, 133]. For lower
grade gliomas situated near eloquent brain regions, subtotal
resection preserving the eloquent region can still lead to better
survival [52]. Awake craniotomy with electrical mapping,
tractography, functional MRI, and intraoperative MRI are in-
creasingly used in order to maximize extent of resection.

Detecting function Functional MRI (fMRI) is based on local
variations in oxygen demand in connection with neuronal ac-
tivation. fMRI may delineate functional brain areas sufficient-
ly to influence surgical approaches and evaluate the probabil-
ity of postoperative deficits.

Beyond the approximate nature of the detection of func-
tional areas, fMRI presents other limitations. The tumor itself
can induce cerebral reorganization and false positive and neg-
ative results [106]. fMRI signal is not reliable in the inferior
temporal lobe or in the orbito-frontal cortex, close to air cells.
Large cortical veins can distort fMRI signal [4]. HGG mass
effect and edema can induce brain warping and decrease or
abolish fMRI signal [38, 69]. Anxiety, pain, and attention
deficits influence the participation to the task and fMRI is
highly sensitive to motion artifacts [106]. fMRI signal de-
creases with age so old patients must be analyzed cautiously.

Diffusion-weighted images and tractography Tractography,
the reconstruction of white matter bundles, is based on DWI.
It may preoperatively indicate the approximate location of
eloquent white matter tracts.

Again, this technique presents limitations. Without going
into detail, voxels will be given a single fiber orientation. If
fibers coexist, cross or coalesce, the algorithm leading to the
reconstruction of the tract may lead to false negative images,
i.e., the reconstructed fiber orientation not following an
existing path (tract). If cellular infiltration is present, the dif-
fusion will be more restricted and the tract might not be de-
tected. Fiber bundles carrying neurological function may thus
not be seen in tractography. Inversely, edema can lead to ar-
tificially elevated diffusion and thus can lead to false positives,
i.e., the fiber reconstruction following a non-existing path.

18F-Fluoroethyl-L-tyrosine positron emission tomography
Preoperative 18F-FET-PET has been shown to depict anaplas-
tic foci, which can be found in 44–55% of low-grade glioma
[70, 110]. These regions can be specifically targeted during
surgery to ensure precise sampling of the tumor, leading to
accurate grading. Furthermore, in HGG, tracer uptake in 18F-
FET-PET can depict larger tumor regions compared with con-
ventional GD-enhanced MRI [20]. Using the tumor volume
depicted by both amino acids 18F-FET and 11C-methionine
(MET), Pirotte and colleagues demonstrated that complete
resection of this area leads to significantly longer overall sur-
vival in HGG patients [92].

During surgery (Table 2)

Surgical adjuncts

The extent of resection is an essential surgical outcome that
influences the rate of recurrence, as well as progression-free
and overall survival [71, 101, 111]. To date, in high-grade
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glioma, gross total resection is defined as CRET and remains
the goal of malignant glioma surgery. However, tumor mar-
gins are difficult to define during surgery. Hence, various
surgical adjuncts have been introduced over the past decades.
Neuronavigation, fluorescence-guidance, intraoperative MRI
(iMRI), and ultrasound are established surgical tools in neu-
rosurgical practice [49].

Neuronavigation represented the first step in increasing in-
traoperative imaging in the surgical flow. However, this tool
suffers from potential inaccuracy due to brain shift and inter-
rupts surgery for reorientation [85, 134]. It is used to tailor
craniotomies and provide orientation during surgery.
Ultrasound is an inexpensive and rapid way of monitoring
resection (without the disadvantage of brain shift).

Fluorescence-guidance with 5-aminolevulinic acid (5-ALA),
provides real-time information within the operating surgical field
without concern for brain shift. It is approved for use in Europe,
USA, and numerous other countries. One drawback of fluores-
cence guidance is that it only provides 2-dimensional informa-
tion. Also, fluorophores can be obscured by blood, hiding im-
portant tumor tissue [113]. 5-ALA is given orally 4 h prior to
induction of anesthesia at a dose of 20 mg/kg b.w. Fluorescence
maximum in tumor tissue will be found 7–8 h after administra-
tion of 5-ALA [61]. CRET has been to date reported to be up to
96%when utilizing fluorescence-guidance with 5-ALA in a con-
temporary neurosurgical facility [103]. Another fluorescent
agent, fluorescein, gained popularity over the last years after
the introduction of a novel filter (YELLOW 560, Zeiss,
Oberkochen, Germany) that provides superior background illu-
mination compared with the 5-ALA filter system (BLUE 400,
Zeiss, Oberkochen Germany) [102]. Fluorescein marks areas of
blood-brain barrier breakdown and is to date still off-label.
Disadvantages are unspecific propagation into the edema zone
or into the surgical cavity during resection. Furthermore, time
dependency is not well studied for this fluorophore, hampering
its visualization during surgery [118, 119]. In low-grade glioma,
5-ALA-mediated fluorescence-guidance can indicate anaplastic
foci providing accurate grading [53].

Albeit expensive, iMRI has also shown it might increase
the extent of resection. Thus, potentially, it can be used to
monitor resection of non-enhancing, non-fluorescing low-

grade glioma tissue [117]. This 3-dimensional tool locates
residual tumor tissue in deep brain tissue. High costs and an
increase in surgery time are potential drawbacks.

Another adjunct that merits mention is Raman spectrosco-
py. This surgical adjunct is a label-free optical imaging of
fresh surgical specimens with potential for ex vivo and
in vivo implementation, adding the advantages of computer-
aided diagnosis and machine learning for tissue diagnosis
[49]. It provides reliable tissue diagnosis within the operating
room, potentially replacing fresh frozen sections in the future.

After surgery (Table 3)

Postoperative imaging

Postoperative MRI shows the extent of resection. If residual
tissue is present, second-look surgery for GBM can be an
option, as incomplete resection carries almost the same overall
survival rates than biopsy alone [67, 88]. Postoperative MRI
should be performed within 48 h of surgery since early sub-
acute blood will appear hyperintense in native T1W pre-
contrast images. As soon as 17 h after surgery, a linear reactive
non-tumoral enhancement may occur and significantly in-
creases after 45 h post-surgery [14].

In a prospective exploratory observation analysis, size of
residual 18F-FET-PET active tumor tissue was likewise corre-
lated with poorer outcome [81]. The authors demonstrated that
even in those patients with CRET in MRI, postoperative re-
sidual 18F-FET-PET volume > 4.3 cm3 was a critical cut-off to
predict worse overall survival.

Systematic postoperative CT is not routinely recommended
as it is unlikely to modify management if postoperative neu-
rological examination is unchanged. Nonreliable examina-
tions or worrisome clinical changes must lead to early postop-
erative CT [5, 37].

Complications

The incidence of documented complications after malignant
brain tumor surgery has been evaluated at 3.4% [30]. New or
worsened neurological deficits significantly reduce quality of

Table 2 Indicative imaging
features of glioma: during surgery Neuronavigation Ultrasound 5-ALA Intraoperative

MRI (iMRI)
Raman spectroscopy

Useful for
craniotomy
planning

Inexpensive Real-time 2D information
without brain shift
limitation.

Tumor depiction beyond
MRI borders

Allows resection
monitoring

Reliable tissue
diagnosis in the
operating room

Limited by brain
shift

Not limited
by brain
shift

Limited by: blood,
overhanging edges,
photosensitization

Expensive and
increases
surgery time
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life and overall survival [96]. It may be caused by incidental
resection of functional brain tissue, especially if no intraoper-
ative adjunct is used to localize function [100] and can be
intercepted through conventional MRI. Postoperative brain
ischemia is found in 31% of newly diagnosed glioma and in
80% of recurrent glioma [43]. They may be clinically silent or
have a high impact on autonomy. The total volume of infarct-
ed brain tissue, in DWI, is positively correlated to new neuro-
logical deficits [54] and inversely correlated to overall surviv-
al, but not to progression-free survival [15].

Slight bleeding in the surgical cavity is frequent, but symp-
tomatic hematoma is rare (approx. 1%) [30].

The incidence of surgical site infection after clean craniot-
omy is low (1.5%) [122]. It may be higher in the older popu-
lation with GBM (9.8%) [24] and it does not modify survival
rates. Because of postoperative artifacts, ADC is not as dis-
criminatory in postoperative infections as in primary abscess-
es, where central ADC is generally low; this is not seen in all
post-craniotomy infections [11]. Three months after surgery,
DWI might regain its validity but the majority of

postoperative infections occur within the first month after cra-
niotomy [11].

Follow-up

Radiotherapy planning

Target volume is based on conventional MRI, including T1+
Gd and FLAIR sequences performed at a maximum of 2 weeks
before RT. The gross tumor volume (GTV) calculation is based
on the surgical cavity + any residual enhancing tumor + a 2- to
3-cm margin for the clinical target volume (CTV) + a 3- to 5-
mm margin to account for setup error in the planning of the
target volume (PTV) [86]. Smaller CTVs have been tested with
similar to better outcomes regarding overall survival [90].

Despite correct planning, most recurrences (80 to 90%)
occur in the irradiation field. In addition, some cognitive side
effects of radiation are attributed to irradiation of functional
brain tissue and tend to be dose-dependent [45, 74]. Therefore,
better delineation of the tumor is desirable. The following

Table 3 Indicative imaging features of glioma: after surgery

Postoperative imaging Complications

Linear enhancement will appear early (17 h post-surgery) Ischemia: 31% in first surgery; 80% in recurrent glioma,
total volume of infarcted tissue correlated with new
deficits and inversely to OS

CRET with FLAIR resection (> 53.21% of FLAIR abnormality):
OS 20.7 months vs. 15.5 months, provided that no new neurological
deficit occurred

Hematomas are rarely symptomatic (1%)

Better prognosis if < 4.3 cm3 of residual FET uptake Surgical site infection: higher risk for GBM in the elderly
population, ADC not as discriminatory as in primary
brain abscess during the postoperative phase (3 months)

Radiation therapy planning

Conventional planning Advanced FET-PET

Surgical cavity+ any residual enhancing
tumor (GTV) + 2-3 cm margin
(CTV) + 3-5 mm (PTV)

DWI can indicate the type of recurrence Incorporation of FET-PET in the planning
process leads to field reduction

80–90% of recurrences will be located
in the field

High choline/Naa and high rCBVareas can be
included in the planning

Cognitive side effects dose related High infarcted volume is associated with
multifocal progression

Response to treatment

RANO criteria Progression vs. Pseudoprogression Antiangiogenic Therapy Immunotherapy

A FLAIR increase on a
stable/increasing dose of steroids is
also compatible with progression

Up to 36% of pseudoprogression in GBM,
pseudoprogression and true progression can
coexist

No effect on overall survival iRANO: control MRI at
3 months in cas of
new enhancement

Limitation: measured on the maximal
diameters of the tumors and HGG
grow in an irregular pattern

Monitoring rCBV: progressive elevation
suggests true progression, stable or declining
rCBV suggests pseudoprogression

Associated with diffusion
restriction and T1
hyperintensity in
periventricular zone

Lower rCBV (<2 ml/100 g) and MAX rCBV
(<2.6 ml/100 g) in pseudoprogression

FET-PET: low TBRmax and long TTP suggest
pseudoprogression
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tools show promise and may also help in designing clinical
trials:

Advanced imaging studies of the invasive tumoral burden
Some diffusion parameters (p for isotropic and q for aniso-
tropic components) may distinguish three different recurrence
patterns: a diffuse pattern (p > q), a localized recurrence pat-
tern (p > q in one direction), and a limited recurrence pattern
(p ≈ q). Incorporating these data in clinical practice has been
proven to reduce the size of the CTV [9].

Furthermore, in the infiltrative portion of GBM, rCBV is
elevated, compared with normal-appearing white matter and
so is the Choline/NAA ratio [29, 95].

18F-FET-PET FET-PET might improve the delineation of the
target volume by directly detecting metabolically active tumor
tissue. CTV margins in glioblastoma patients could be re-
duced through combined 18F-FET-PET-MR delineation,
compared with MRI alone, without negative impact on the
pattern of recurrence [36, 80].

Diffusion and recurrence The total amount of postoperatively
infarcted tissue on postoperative diffusion maps is correlated
to the type of progression: the highest infarcted volume was
correlated with multifocal progression and recurrence with
contact to the ventricle or the dura [13].

Response to treatment

The evaluation of response to treatment is defined by the
Response Assessment in Neuro-Oncology (RANO) criteria
[129], i.e., MRI findings, clinical findings, and the need for
corticosteroids. MRI findings include size of enhancing tumor
and hyperintense FLAIR regions. Some tumors only progress
on FLAIR images, but do not specifically enhance during
progression. Therefore, any significant increase of FLAIR
hypersignal of a non-enhancing lesion on a stable or increas-
ing dose of corticosteroids meets the criteria for progression.
RANO criteria are based on 2-dimensional measurements, the
products of the two maximum diameters of the enhancing or
FLAIR tissue. This approach is simple. However, many HGG
grow in an irregular pattern. In order to obtain a more accurate
assessment of tumor size and growth, quantifying the entire
tumor with automated computer-assisted volumetric tools can
provide more precise measurements [26].

Progression vs. pseudoprogression

Pseudoprogression is defined by the development of new or
enlarging enhancement that mimics true progression. In
pseudoprogression, the enhancement area will decrease over
time contrary to true progression. Pseudoprogression ismostly

encountered after radiotherapy combined with temozolomide
for GBM. It may occur as frequently as in 36% of cases [1],
typically within the first 3 months after initiation of radiother-
apy, but late pseudoprogression can occur up to 18 months
after the initiation of radiotherapy [63, 114, 131]. In rare cases,
especially with IDH-1 mutation in young patients, contrast-
enhanc ing spo t s c an be cons ide r ed l a t e -onse t
pseudoprogression up to a median of 30 months after irradia-
tion [126]. On conventional MRI, it appears as a thick en-
hancement around the surgical cavity and is virtually insepa-
rable from true progression with this imaging modality alone.
In one study rCBV tends to be higher in true progression
compared with pseudoprogression with a threshold of
2.0 mL/100 g with high sensibility and sensitivity [72].
Another study has indicated that maximum rCBV was better
than rCBV at differentiating true progression from treatment
effect when maximum rCBV was set at 2.6 ml/100 g [17].
Nevertheless, pseudoprogression and true progression often
coexist. A single MRI session may not help differentiate both
entities. Monitoring the rCBV can be needed during the
follow-up period, as a linear elevation is associated with pro-
gression; stabilization or regression of rCBV is more compat-
ible with pseudoprogression [18]. Adding DTI, ASL, and
spectroscopy might improve the accuracy of MRI diagnosis
in such instances [123]. PET imaging utilizing the
radiolabeled amino acid 18FET has been advocated to distin-
guish pseudo from real progression [41] as recently empha-
sized by the PET-RANO group. Besides TBRmax, the eval-
uation of dynamic FET parameters (TTP) enables differentia-
tion of tumor recurrence from treatment-related changes [3,
42]. (Fig. 3.)

Antiangiogenic therapy

Bevacizumab has no effect on overall survival and its effect on
progression-free survival, measured on enhancement, is relat-
ed to the effect on the blood-brain barrier [60]. The
bevacizumab-induced suppression of enhancement was called
“pseudoresponse,” and was a driver of the need for MRI pro-
tocols accounting for the non-enhancing part of glioma.

Therefore, perfusion imaging studies helped in differenti-
ating non-enhancing tumor from radiation-induced gliosis and
edema. Perfusion markers tended to be elevated in the infil-
trative part of the tumor [8]. Bevacizumab is also associated
with a pattern of persistent restriction of diffusion that may
mimic viable tumor, especially in periventricular area and
hyperintensity in T1W images, so careful interpretation of
diffusion is needed in the context of antiangiogenic therapy
[83]. As FET uptake seems partly independent of blood-brain
barrier permeability, FET might be useful for longitudinal
imaging of patients receiving antiangiogenic therapy [40].
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Immunotherapy

There is very little information regarding the treatment-related
PET and MRI modifications after immunotherapy. On the
basis of RANO criteria [129], the “immunotherapy response
assessment in neuro-oncology” (iRANO) was designed in or-
der to address the challenges associated with immune therapy
in brain tumors. It is therefore recommended, after any MRI
that would show any enhancement increase, to consider the
possibility of immunotherapy pseudoprogression and to per-
form an MRI confirmation 3 months later [87].

Conclusions

Treating patients with glioma requires thorough knowledge of
conventional imaging techniques that are of primary impor-
tance in every step of their management. Among current ad-
vanced imaging techniques, some will be considered conven-
tional in the near future as evidence of their usefulness accu-
mulates. This overview, intended for clinicians, summarizes
the state-of-the-art conventional and advanced imaging tech-
niques of glioma management.
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