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Abstract
Purpose of Review This review summarizes the modern approach to surgical management of malignant brain tumors, highlight-
ing new technology and multimodal treatment paradigms.
Recent Findings Outcomes in patients with glioblastoma are strongly correlated with extent of initial surgical resection.
Intraoperative MRI, 5-ALA, and neuronavigation are surgical tools that can help achieve a maximal safe resection.
Stereotactic radiosurgery and brachytherapy can be used to enhance local control for brain metastases in conjunction with
surgery, while combinatorial approaches are increasingly employed in patients with multiple metastases. Advances in surgical
techniques allow for minimally invasive approaches, including the use of tubular retractors, endoscopes, and laser interstitial
thermal therapy.
Summary Primary and metastatic brain tumors require a multimodal, multidisciplinary approach to treatment. Surgical resection
can be paired with radiation for metastases to maximize tumor control, expanding systemic options. Technological innovations
have improved the safety of surgical resection, while expanding the surgical options and indications for treatment.
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Introduction

The management of central nervous system (CNS) malignan-
cy has been fundamentally reshaped by advances in molecular
characterization of tumors, allowing for exponential growth in
the field of targeted therapies and immunotherapies. Even in
the case of high-grade glioma, where progress has been incre-
mental at best, our understanding of how molecular subclas-
sification drives prognosis and treatment response has neces-
sitated a change in the approach to these tumors. In contrast,
options for the treatment of solid tumor brain metastases have
increased dramatically, with a corresponding improvement in
survival and overall prognosis for these patients. Furthermore,
the gains in survival have been accompanied by an increasing

number of patients with good functional status and systemic
control at the time of recurrence or progression, necessitating a
new approach to previously treated lesions.

As a result, the treatment of CNS malignancy has become
increasingly complex, demanding a systematic and multimod-
al approach to treatment which starts with the role for surgical
intervention. In this review, we will summarize guiding prin-
ciples in the approach to CNS malignancy, with particular
attention to the advances in surgery and radiosurgery. We will
detail our center’s decision-making process for determining
appropriate treatment options specific to the tumor histology,
and highlight innovations in neurological surgery, in particu-
lar developments in fluorescence-guided surgery, minimally
invasive surgery, laser interstitial thermal therapy, and
brachytherapy.

Management Paradigms for Surgical
Approach to CNS Malignancy

Surgical management of CNS malignancy is founded on three
basic principles: oncologic benefit, preservation and restora-
tion of function, and quality of life. Surgical decisions are thus
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based on achieving one or more of these goals and necessitate
a multidisciplinary approach to incorporate overall prognosis
and functionality into treatment paradigms. At institutions
where a multidisciplinary CNS tumor board is available, this
resource can help to coordinate care and maximize involve-
ment of subspecialists in treatment decisions. Figure 1 illus-
trates a standard approach to intracranial malignancy based on
these founding principles. The specific approach to primary
versus metastatic disease will be further outlined to delineate
factors unique to these conditions.

High-Grade Glioma Surgery

Glioblastoma (GBM, WHO grade IV) is the most common
malignant primary CNS tumor, with a dismal prognosis of
only 12–16 months despite multimodal treatment consisting
of maximal safe surgical resection, temozolomide, and radia-
tion therapy [1, 2]. In the past 50 years, minimal progress has
been made with regard to increasing overall survival (OS) for
high-grade gliomas (WHO grades III and IV) [1]. Treatment is
plagued by significant inter- and intratumoral heterogeneity,
microscopic invasion, and difficulty in distinguishing tumor
margins from normal brain intraoperatively [3, 4].

All glioma treatment is predicated on a tissue diagnosis,
with molecular analysis supplementing histopathologic

analysis. Where possible, gross total resection remains the
gold standard. For lesions not amenable to gross total resec-
tion, biopsy is recommended if radiation and chemotherapy
are being considered.

Extent of Resection

Of all available treatments for high-grade glioma, initial extent
of tumor resection (EOR) has the greatest impact on disease
control and survival [3, 5]. EOR is defined as the amount of
contrast-enhancing tumor resected during surgery, evaluated
by postoperative MRI. Brown et al. [5] performed a large
systematic review of EOR studies involving patients with
newly diagnosed glioblastoma, comparing gross total (GTR)
with subtotal resection (STR), defined by extent of contrast-
enhancing tumor resection. Patients with GTR were 61%
more likely to survive 1 year (RR 0.62; 95% CI, 0.56–0.69;
p < 0.001) and 19%more likely to survive at 2 years (RR 0.84;
95% CI, 0.79–0.89; p < 0.001) compared to patients with
STR. Progression-free survival (PFS) was also significantly
longer in patients undergoing GTR compared to STR. While
6-month PFSwas longer in the STR compared to biopsy alone
group, this benefit disappeared by 1 year, with no difference in
overall survival. Notably, in this study, risk for mortality was

Fig. 1 Proposed management
paradigm for surgical approach to
intracranial malignancy. This
brain tumor management
workflow applies generally and is
utilized in conjunction with a
multidisciplinary tumor board
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decreased for any degree of resection compared with biopsy at
1 year (RR, 0.77; 95% CI, 0.71–0.84 p < .001) [5].

There has been controversy surrounding the amount of
resection needed to confer a survival benefit. Earlier studies
suggested EOR of at least 78% or greater improved overall
survival, with incremental improvement in OS with greater
resection [3]. More recent studies have suggested resection
of > 98% is required to significantly improve OS [6], although
this predated a more nuanced understanding of molecular
drivers of prognosis, and does not take into account the ben-
efits of a partial resection on symptom palliation and preserv-
ing function during radiation.

In recent years, the concept of “supramaximal” resection,
involving resection of both contrast-enhancing tumor and ad-
ditional resection of the surrounding non-enhancing MR
FLAIR signal, has evolved. In a study by Li et al. [6], patients
with GTR and resection of greater than 53.21% of FLAIR
signal had significantly longer overall survival compared to
those with GTR and resection of less than 53.21% of FLAIR
signal (20.7 months versus 15.5 months; p < 0.001).
Importantly, there was no increase in risk of overall or post-
operative neurological deficit with expanded resection in these
cases. These results were independent of age, KPS score, pre-
operative contrast-enhancing tumor volume, presence of cyst,
and prior treatment status [6]. Collectively, these studies dem-
onstrate increased overall survival with increasing resection of
contrast-enhancing tumor, with a further benefit of resection
of FLAIR signal. More aggressive resection may be of partic-
ular benefit for IDH mutant gliomas [7••]. A new surgical
adjunct that determines molecular pathology intraoperatively
in a matter of minutes has the potential to guide real-time
surgical decisions [8••].

There is little doubt that a maximal safe resection remains
the goal in all cases, and neurosurgeons take maximal mea-
sures to achieve a GTR when possible. Resection of non-
enhancing disease is recommended in cases in which it does
not confer additional morbidity. Development of postopera-
tive neurological deficits has detrimental effects on patient
outcomes and survival [9]. Our institution utilizes various sur-
gical adjuncts to achieve maximal safe surgical resection
while minimizing the risk of postoperative neurological defi-
cits. The benefits of a GTRmust be balanced with the primary
goal of preserving neurologic function, with an emphasis on
maintaining a functional status that allows radiation and
chemotherapy.

Maximizing Surgical Resection

Given the clear importance of maximizing resection in high-
grade gliomas, various intraoperative adjuncts are available to
increase EOR with the goal of preserving neurological func-
tion. Neuronavigation allows for real-time stereotactic

localization of the tumor and vital neural structures through
registration of anatomical landmarks with preoperative MRI
and is standard of care. However, it is limited in utility after
initial approach due to reliance on preoperative imaging, mak-
ing intracranial navigation inherently inaccurate due to ana-
tomic shift caused by edema, positioning, and fluid shifts.
Intraoperative ultrasound is advocated to provide real-time
feedback and is readily available at most centers.

Intraoperative MRI

Postoperative MR imaging is typically performed within 48 h
of surgery to assess for EOR. If EOR is deemed to be subop-
timal, performing a second resection soon after the initial sur-
gery delays recovery and the start of chemoradiation, and
confers additional morbidity. Utilization of iMRI allows for
real-time assessment of EOR while the patient remains anes-
thetized, giving the surgeon the option of further resection if
necessary. Following iMRI, the patient is repositioned and
registered with the updated neuronavigation. The accuracy
and precision of neuronavigation is greatly improved, as the
new scan now accounts for brain shift from fluid changes,
edema, and resection. While performing iMRI increases oper-
ative time, several studies demonstrate a significant improve-
ment in EOR.Meta-analysis of recent literature byGolub et al.
[10] revealed surgical resection with the guidance of iMRI
was superior to resection with conventional neuronavigation
alone (OR 4.99, 95% CI 2.65–9.39, p < 0.001). However, this
does not take into account the use of intraoperative ultrasound
and fluorescence-guided resection.

Fluorescence-Guided Resection

Orally administered 5-aminolevulinic acid (5-ALA) is a
prodrug preferentially metabolized intracellularly by glioma
and endothelial cells to form the substrate protoporphyrin IX
(PpIX) through the heme synthesis pathway. PpIX produces
red fluorescence (635–704-nm wavelength) when excited
with blue-violet light (375–440-nm wavelength). The ability
of the prodrug to cross the blood-brain barrier, and its prefer-
ential metabolism by glioma cells, allows for improved defi-
nition of the tumor margins, in some cases beyond the
contrast-enhancing signal on MRI, thereby increasing EOR
[11].

Several studies have demonstrated that use of 5-ALA can
result in increase in EOR in high-grade gliomas. In 2019,
Gandhi et al. [12] published a systematic review and meta-
analysis on the use of 5-ALA-guided surgical resection of
high-grade gliomas and the effect on GTR and survival out-
comes. The rate of GTR was 76.8% (95% CI, 69.1–82.9%)
with 5-ALA-guided resection. When compared to
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conventional surgery, the use of 5-ALA resulted in 26%
higher rate of GTR. Additionally, the use of 5-ALA increased
OS by 3 months, and PFS by 1 month, respectively [12].
Golub et al. [10] demonstrated 5-ALA-guided resection was
superior to resection with conventional neuronavigation alone
(OR 2.866, 95% CI 2.127–3.863; p < 0.001). Notably, some
groups have reported an increase in transient neurologic def-
icits with more aggressive resection, and this must be weighed
against the potential impact on outcome [10].

Haider et al. [13] confirmed the use of 5-ALA-guided re-
section to increase EOR, including increasing EOR to 100%
when tumors that were preoperatively deemed to be fully re-
sectable. In addition, coupling iMRI and 5-ALA for resection
of lesions in eloquent structures increased EOR from 57.6 to
71.2% when compared to resection with iMRI alone [13].
Ultimately, surgical resection of high-grade gliomas with the
assistance of various intraoperative adjuncts can lead to in-
creased EOR with longer OS and PFS; the choice and combi-
nation of modalities is left to the discretion of surgeons. In our
experience, 5-ALA and iMRI offer similar benefit individual-
ly, and 5-ALA may be a cost-effective way to achieve in-
creased EOR in centers in which iMRI is cost or resource
prohibitive.

Brain Metastases

Surgical Resection

Advances in targeted therapy and immunotherapy have result-
ed in an increasing number of patients with metastatic cancer
acquiring good systemic disease control, often leaving the
CNS as the only site of uncontrolled disease. Patients with
non-small-cell lung cancers (NSCLC) harboring targetable
mutations often present with isolated brain metastases [14],
driving a fundamental change in our approach to patients with
progressive CNS disease without systemic progression.While
even therapies with CNS efficacy can have more modest re-
sults intracranially than systemically, an approach to CNS
disease which leverages the role of surgery and focused radi-
ation can allow patients to continue on otherwise effective
systemic agents.

Aggressive surgical approaches to brain metastases are crit-
ical in the management of metastatic disease. At our institu-
tion, patients newly diagnosed with a single surgically acces-
sible brain metastasis are generally recommended for resec-
tion in the appropriate clinical context. As of now, surgical
resection and stereotactic radiosurgery (SRS) have individu-
ally proven to be comparably safe and efficacious for treat-
ment of solitary metastases with respect to survival, adverse
events, and quality of life. Patients with high performance
score (KPS > 70) and well-controlled primary disease or dis-
easewith reasonable systemic options are carefully considered

for surgical management [15] followed by adjuvant SRS. For
tumors not amenable to surgery, SRS becomes a first-line
therapy [16]. In the setting of multiple metastases, accessible
lesions should be evaluated for the need for surgical resection.
Patients with large lesions (> 3 cm), lesions resulting in neu-
rologic deficit, and/or lesions resulting in significant radio-
graphic mass effect or impending impairment of CSF flow
are all candidates for surgical resection followed by SRS to
the resection cavity. In patients with poor systemic options,
surgery is reserved as a palliative option for large symptomatic
lesions resulting in neurological deficit.

Radiation Therapy

With the marked improvement in survival of patients with
brain metastases, WBRT is increasingly reserved for patients
who are not surgical or SRS candidates. While effective in
providing intracranial control, studies also showed
neurocognitive deterioration associatedwithWBRT, affecting
long-term cognitive status and quality of life [17, 18••].
Innovations in therapeutics over the past decade have driven
a major paradigm shift away from the use of whole-brain
radiation therapy (WBRT) for palliation treatment to high-
dose targeted radiation to improve tumor control rates, with
a focus on longer term oncologic benefit. Hippocampal avoid-
ance whole-brain radiation therapy (HA-WBRT) is currently
under investigation as a treatment modality to reduce
neurocognitive decline [19], and as a cost-effective alternative
to SRS for patients with multiple brain metastases.

Similar to surgical resection, SRS aims to achieve local
CNS control and is used in conjunction with systemic therapy
to prevent overall metastatic progression. SRS is indicated in
the treatment of smaller lesions (< 3 cm) with low levels of
edema, or lesions located in surgically inaccessible sites [15,
20]. A recent multicentered phase 3 trial investigated cogni-
tive outcomes and survival in patients treated with SRS versus
WBRT and demonstrated improved quality of life, functional
independence, and greater intracranial control with SRS
[18••]. In 2019, Nguyen et al. [21] advocated a single-
fractioned partitioned SRS strategy using Gamma Knife
Icon (GKI-SPARE), which conferred a dosimetric advantage
when compared to HA-WBRT for the treatment of 10–30
metastases in a retrospective study. As such, SRS is the pre-
ferred adjuvant therapy, with WBRT reserved for patients
ineligible for SRS and/or with leptomeningeal dissemination
[15, 21].

As a single modality, recent studies have shown no signif-
icant difference in local control between surgical resection or
SRS [16, 22•]. However, the combination of surgical resection
and radiosurgery achieves maximal local control, and the par-
adigms above are thus used to guide decisions regarding first-
line treatment for patients with brain metastases [17]. At our
institution, patients with good systemic options and functional
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status are offered radiosurgery for upwards of 15 lesions, in
the appropriate clinical context. The benefit of enhanced per-
formance scores, greater local control, and decreased depen-
dence on steroids support this combined treatment strategy
[23].

While both single-fraction and multifraction (typically 3)
SRS can be used, literature has increasingly supported the use
of multiple fractions to increase therapeutic efficacy for brain
metastases [15]. As a result, our standard practice is to deliver
27 Gy in 3 fractions to metastatic brain targets, with excep-
tions for proximity to critical structures such as the optic
nerves or chiasm, tumors > 3 cm or with significant vasogenic
edema, and brainstem lesions. In optimizing the implementa-
tion of SRS, the addition of a ~ 2-mm margin surrounding the
resection cavity significantly reduces rates of local failure
from 16% down to 3% at 12 months [24, 25].

Hypofractionated stereotactic radiosurgery (HF-SRS) is ef-
fective in patients who are otherwise poor candidates for SRS
due to large tumor size or lesions located in eloquent cortex
[26]. HF-SRS provides higher overall-dose radiation delivery
by means of serial low-dose treatments and is an increasingly
safe option for patients requiring high levels of radiation doses
while limiting adverse neurocognitive effects [25, 26].
Typically, 30 Gy dose delivered in 5 to 6 fractions can be safe
and effective for these lesions, minimizing rates of radiation
necrosis with good tumor control [27•].

Stereotactic radiation may also confer an abscopal effect,
which is the phenomenon observed when radiation to a pri-
mary site leads to regression of metastases at distant, second-
ary sites. This phenomenon is also referred to as the “distant
bystander effect,” since these antitumor alterations persist at
the target tumor site as well as having a systemic out-of-field
effect [28]. Ongoing research cites the immunomodulatory
effects of radiation therapy in altering the microenvironment
of the tumor and consequently reactivating the body’s im-
mune response [29]. Studies are underway investigating the
effect of immunomodulation following surgical resection and
radiation therapy, and increased efficacy of immunotherapy.

Innovations in Minimally Invasive Surgical
Approaches

Endoscopic Approaches

Over the past 1–2 decades, the use of the endoscope in neu-
rosurgery has evolved exponentially, offering minimally in-
vasive methods to access CNS tumors. The endoscopic tech-
nique is most commonly utilized for endonasal approaches to
the skull base and intraventricular surgery. Endonasal ap-
proaches to the anterior skull base allow for resection of pitu-
itary metastases (most commonly from breast and lung prima-
ry sites) [30, 31], as well as malignancies of the anterior skull

base [32], including malignant meningioma. The utilization of
endonasal endoscopic approach is widely advocated at our
institution, with increasing indications for its use, including
a recent report by Shafiq et al. [33•] for endoscopically placed
brachytherapy seeds at the site of recurrent skull-based
meningioma.

Tubular Retractors

The advent of the tubular retractor systems, including the
NICO BrainPath® (Nico Corp, Indianapolis, IN), has helped
to re-shape the definition of what is surgically accessible.
Surgery is performed via a 1.5-cm craniotomy, minimizing
incision size and postoperative healing. These stereotactically
guided tubular retractors are designed to offer a trans-sulcal
corridor for tumors, utilizing the brain’s natural corridors
while providing distributed circumferential retraction, aiming
to minimize injury to intervening brain. In many cases, the use
of this tubular system can replace conventional forms of brain
retraction, with the benefit of decreased trauma to the sur-
rounding brain. In other cases, this trans-sulcal approach
makes resection of deep-seated malignancies, such as those
in the basal ganglia, an option [34, 35]. At our center, we also
advocate the use of small tubular retractors to obtain tissue
diagnosis in suspected primary malignancies, offering signif-
icantly more tissue than conventional needle biopsy tech-
niques, and conferring the added benefit of direct visualization
and control of intratumoral hemorrhage.

Management of Recurrent or Surgically
Inaccessible Lesions

Laser Interstitial Thermal Therapy

Laser interstitial thermal therapy (LITT) involves use of a
heat-delivering probe guided by MRI thermometry [36].
Coagulative necrosis is induced by heating tumor tissue to
induce targeted hyperthermic injury at the subcellular level
[37]. The two approved LITT systems, NeuroBlate®
(Monteris Medical, Plymouth, MN) and Visualase®
(Medtronic, Minneapolis, MN), support a treatment radius of
1–2 cm from the tip, with temperatures beyond this radius
dropping off exponentially [36]. Monitoring of ablation tem-
peratures is done simultaneously using real-time MRI ther-
mometry and triggers immediate halting of treatment if tem-
peratures increase beyond an operator-defined threshold [38•].
Ablation trajectories are mapped using digital stereotactic nav-
igation tools, with efficacy demonstrated in treatment-
refractory or deep, surgically inaccessible lesions. In the lim-
ited available literature, LITT is notable for a low intraopera-
tive rate of complication and for short hospital stays, averag-
ing only 1–2 days [37]. LITT may also be safe for posterior
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fossa metastases without marked increase in postoperative
edema [38•]. LITT has emerged as a safe and effective tech-
nology to treat patients with a spectrum of intracranial tumors
[38•].

LITT is particularly appealing for the use of recurrent brain
metastases, as it is equally effective for radiation-related
changes (i.e., radiation necrosis) and recurrent tumor [39].
Furthermore, it allows for tissue sampling to help differentiate
radiation necrosis from recurrence, helping to guide further
treatment decisions postoperatively. Rao et al. [40] success-
fully utilized a LITT paradigm to target recurrent metastatic
lesions < 5 cm, with a median progression-free survival of
37 weeks. LITT has met standards for local control in manag-
ing treatment-refractory metastases, with local tumor control
rates reported as high as 77.4% [38•]. A multicenter study
analyzing use of LITT on recurrent brain metastases which
previously underwent SRS found no disease progression
when achieving at least 80% tumor ablation [41].

LITT can also be utilized for high-grade gliomas not ame-
nable to surgical resection. Meta-analysis by Ivan et al. [42]
demonstrated an average of 82.9% tumor ablation volume
resulting in OS and PFS of 14.2 and 5.1 months, respectively
[38•]. Ablation volume has been roughly equated to extent of
resection and can be thought of in a similar fashion with re-
gard to efficacy. The image-guided stereotactic placement of
the probe with real-time thermometry minimizes off-target
damage. LITT can also be employed for solitary metastases
not amenable to surgery or radiosurgery. Additionally, LITT
may enhance adjuvant therapies, such as systemic chemother-
apy, by disrupting the blood-brain barrier [38•, 43]. At pres-
ent, inadequacy of practice guidelines and evidenced-based
support for LITT has limited its widespread use; however, a
number of academic centers are increasingly incorporating
LITT into their treatment paradigms.

Salvage Stereotactic Radiation

Repeat SRS in a prospective study of 56 select patients by
Iorio-Morin et al. [44•] was demonstrated to be safe and effi-
cacious in patients undergoing multiple SRS treatments, with-
out concerns for added burden of edema or radiation necrosis.
Repeat SRS should be considered during clinical decision-
making as an option to spare patients later WBRT. Response
to initial SRS treatment can be predictive of response to sec-
ondary treatment, though lack of primary response does not
preclude secondary therapeutic effect.

Brachytherapy

Brachytherapy uses implanted radioactive sources deposited
inside the tumor resection cavity to treat locally infiltrating
tumor cells. Early utilization of brachytherapy at non-neural
sites of malignancy highlights its potential in the treatment of

metastatic brain cancers. However, concerns over the histori-
cally employed iodine-125 (I-125)—due to its long half-life
and associations with radiation necrosis, infections, hydro-
cephalus, and other complications—have limited the wide-
spread implementation of brachytherapy in the brain until re-
cently [33•,45]. Cs-131, with a short half-life of 9.7 days,
compared to that of I-125 (59.5 days), can deliver aggressive
radiation therapy while reducing the incidence of radiation-
induced necrosis [46].

The use of Cs-131 has brought renewed attention to surgi-
cal resection followed by brachytherapy as a therapeutic strat-
egy, particularly for recurrent lesions that have failed prior
resection or radiosurgical treatment. Brachytherapy with Cs-
131 permits radiation treatment to the tumor resection cavity
immediately upon placement, eliminating the lag-time in ini-
tial radiotherapy or other interventions that require return hos-
pital visits and additional procedures following resection sur-
gery [45]. Recent studies demonstrate brachytherapy to be a
safe and effective tool in managing patients with recurrent
metastatic disease due to dissipation of radioactivity after
1 month, with 90% of the therapeutic dose delivered within
this time [33•]. Furthermore, brachytherapy achieves local
control while sparing normal surrounding tissues due to the
steep falloff in dosing [33•]. Additional radiation to lesions
following prior failed radiotherapy can carry risks of radiation
necrosis and exceed the threshold of radiation tolerance in the
brain. In these cases, brachytherapy presents an alternative
method to achieve local control without compromising critical
surrounding structures in the brain [33•].

GammaTile therapy (GTT) is a unique type of brachyther-
apy, utilizing implanted sources of radioactivity within a
10 mm distance from a tumor site. The therapy involves a
collagen square embedded with radioactive Cs-131 seeds,
placed in the tumor resection cavity. This technique delivers
direct and uniform radiation while avoiding seed-to-brain con-
tact, thus lessening undue tissue injury [45]. Brachytherapy
may also have an added benefit of enhancing blood-brain
barrier permeability to facilitate adjuvant chemotherapy
delivery.

SRS Prior to Surgery

As mentioned above, SRS is typically provided as a postop-
erative adjuvant to improve local control of brain metastases
following surgical resection. However, risks of local tumor
recurrence or leptomeningeal disease remain relatively high.
Preoperative SRS is an exciting prospect as a means to im-
prove tumor control and potentially avoid leptomeningeal
seeding in select cases, without increasing the total radiation
[47, 48]. Preoperative SRS also allows physicians to contour
metastatic sites, preventing creation of an irregularly shaped
cavity following resection only. The so-called sterilizing ef-
fect may contribute to improved tumor control by limiting the
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potential for tumor cells to successfully seed outside the cavity
during surgery [47]. Furthermore, this treatment method could
help reduce risks of radiation necrosis, as the bulk of the sus-
ceptible tissue will be resected shortly thereafter with no need
to treat the surrounding brain during preoperative SRS [47].
Clinical trials investigating the efficacy of preoperative SRS
are currently underway [49].

Conclusions

Current treatment options for CNS malignancy include surgi-
cal resection, minimally invasive surgery, SRS/HF-SRS,
LITT, and brachytherapy. Multimodal treatment paradigms
and multidisciplinary approaches are critical to continue to
integrate promising new therapies. The surgical approach to
intracranial malignancy must take into account the primary
principles of diagnosis, oncologic control, neurologic preser-
vation, and palliation. Innovations in treatment paradigms,
including combinatorial strategies pairing radiation and sur-
gery, are essential to progress in the treatment of CNS malig-
nancy. Treatment decisions rely heavily on pathologic analy-
sis and molecular characterization, and advances in intraoper-
ative pathology may help guide surgical decisions for glioma
in particular [8••]. Surgical advances have improved extent of
resection, and expanded the breadth of tumors that may safely
benefit from surgical intervention. We advocate a multidisci-
plinary, personalized approach to patient care with an ongoing
drive to innovate and improve survival and quality of life.
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