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Abstract

A brain tumor is an uncontrolled development of brain cells in brain cancer if not

detected at an early stage. Early brain tumor diagnosis plays a crucial role in treat-

ment planning and patients' survival rate. There are distinct forms, properties, and

therapies of brain tumors. Therefore, manual brain tumor detection is complicated,

time-consuming, and vulnerable to error. Hence, automated computer-assisted diag-

nosis at high precision is currently in demand. This article presents segmentation

through Unet architecture with ResNet50 as a backbone on the Figshare data set

and achieved a level of 0.9504 of the intersection over union (IoU). The

preprocessing and data augmentation concept were introduced to enhance the clas-

sification rate. The multi-classification of brain tumors is performed using evolution-

ary algorithms and reinforcement learning through transfer learning. Other deep

learning methods such as ResNet50, DenseNet201, MobileNet V2, and InceptionV3

are also applied. Results thus obtained exhibited that the proposed research frame-

work performed better than reported in state of the art. Different CNN, models

applied for tumor classification such as MobileNet V2, Inception V3, ResNet50, Den-

seNet201, NASNet and attained accuracy 91.8, 92.8, 92.9, 93.1, 99.6%, respectively.

However, NASNet exhibited the highest accuracy.

Two processes of transfer learning: freeze and fine-tune, are performed to extract

significant features from MRI slices. Brain tumor multi-classification is performed

using transfer learning, ResNet50-UNet, and NASNet architecture.
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1 | INTRODUCTION

Analysis and classification of medical imaging play an important role in

detecting abnormalities in various body organs, such as blood cancer

(Abbas, Saba, Mohamad, et al., 2018; Abbas, Saba, Rehman,

et al., 2019; Abbas, Saba, Rehman, et al., 2019; Abbas, Saba,

Mehmood, et al., 2019; Rehman, Abbas, Saba, Mahmood, &

Kolivand, 2018; Rehman, Abbas, Saba, Rahman, et al., 2018; Rehman,

Abbas, Saba, Mehmood, et al., 2018), lung cancer (Khan, Nazir,

et al., 2019; Saba, 2019; Saba, 2020; Saba, Sameh, Khan, Shad, &

Sharif, 2019), brain tumor (Saba, Mohamed, El-Affendi, Amin, &

Sharif, 2020), breast cancer (Marie-Sainte, Saba, Alsaleh, Alotaibi, &

Bin, 2019; Mughal, Muhammad, Sharif, Rehman, & Saba, 2018;

Mughal, Muhammad, Sharif, Saba, & Rehman, 2017; Mughal, Sharif,

Muhammad, & Saba, 2018). Moreover, organ abnormalities often lead

to rapid growth of tumors, which is the world's leading cause of death

(Fahad, Khan, Saba, Rehman, & Iqbal, 2018; Saba, Al-Zahrani, &

Rehman, 2012; Saba, Bokhari, Sharif, Yasmin, & Raza, 2018; Saba,
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Rehman, Mehmood, Kolivand, & Sharif, 2018; Ullah et al., 2019;

Yousaf, Mehmood, Saba, et al., 2019; Yousaf, Mehmood, Awan,

et al., 2019).

Brain tumors are a deadly illness and are blamed for several deaths

worldwide per year (Amin, Sharif, et al., 2020; Amin, Sharif, Raza,

Saba, & Anjum, 2019; Amin, Sharif, Raza, Saba, & Rehman, 2019; Amin,

Sharif, Rehman, Raza, & Mufti, 2018; Amin, Sharif, Yasmin, Saba, &

Raza, 2019). Brain tumor appears in two kinds: benign and malignant.

The benign tumor does not migrate to the surrounding tissues, but it is

typically not life threatening. Malignant tumor, however, extends to

other tissues and is thus harmful (WHO). WHO classifies brain tumors

into four groups (I, II, III, and IV). The least of all classes is the pace at

which the Grade I tumor spreads itself, while the Grade IV tumor is the

most harmful and destructive (Ejaz et al., 2018, 2020; Ejaz, Rahim,

Bajwa, Rana, & Rehman, 2019). For patients' clinical preparation, early

identification of brain tumors is very critical (Iqbal et al., 2019; Iqbal,

Ghani, Saba, & Rehman, 2018; Iqbal, Khan, Saba, & Rehman, 2017). It is

possible to detect brain tumors either through diagnostic image

processing or through biopsy. Per strategy has its own pros and cons.

Practitioners often utilize both invasive and non-invasive brain tumor

diagnostic methods depending on the case (Saba et al., 2020).

Various experimental imaging techniques, including CT and MRI,

are used for cancer/ tumor diagnosis. However, relative to CT, MRI is

safer because it does not subject living cells to toxic radiation (Afza,

Khan, Sharif, & Rehman, 2019; Al-Ameen et al., 2015; Husham,

Alkawaz, Saba, Rehman, & Alghamdi, 2016; Hussain et al., 2020;

Javed, Rahim, & Saba, 2019; Javed, Rahim, Saba, & Rashid, 2019;

Javed, Rahim, Saba, & Rehman, 2020; Javed, Saba, Shafry, &

Rahim, 2020). Normally, patients perform a biopsy to assess the

tumor's form and classification following early detection of abnormal-

ity using brain MRI. In this respect, the biopsy findings for detecting

brain tumors are regarded as an absolute test. Different computer-

aided diagnostic solutions have been suggested to increase brain

tumor diagnosis precision, whether benign or malignant. For the clas-

sification of brain tumor grade, different researchers have used a

range of unsupervised learning methods such as SVM, logistic regres-

sion, K-means, and supervised learning such as random forest classi-

fier, artificial neural networks, and naïve Bayes. Some researchers also

proposed a hybrid classification for the same task (Adeel et al., 2020;

Iftikhar, Fatima, Rehman, Almazyad, & Saba, 2017; Jamal, Hazim

Alkawaz, Rehman, & Saba, 2017; Khan, Sharif, et al., 2020; Khan,

Akram, et al., 2020; Khan, Sharif, Yasmin, & Saba, 2017; Saba, 2017).

Currently, deep learning has outperformed conventional machine

learning methods in several functions in recent years. Several deep

learning approaches have also been used (Mittal et al., 2020; Qureshi,

Khan, Sharif, Saba, & Ma, 2020; Ramzan, Khan, et al., 2020; Ramzan,

Khan, Iqbal, Saba, & Rehman, 2020). For the role of brain tumor grade

classification, several researchers have used pre-trained CNN archi-

tectures and fine-tuned them. Some have recommended modern

architectures as well and taught them from scratch. 2D was the bulk

of the CNNs used, although others have even used CNN architectures

in 3D (Khan, Sharif, et al., 2019; Khan, Javed, Sharif, Saba, &

Rehman, 2019; Rehman, Khan, Saba, et al., 2021).

The brain tumor classification task generally consists of four

phases: preprocessing, tumor detection, features extraction & selec-

tion, classification of brain tumor grade (Khan, Lali, et al., 2019).

A novel Fidon et al. have proposed scalable multimodal deep learn-

ing architecture for brain tumor detection (2017) with dice scores of

0.77, 0.64, and 0.56 on BraTS 2013 data set. Seetha and Raja (2018)

introduced a CNN framework for automatic brain tumor identification

and detection. For brain tumor segmentation and texture, Fuzzy-C-

means creates features isolated from segmented areas. Finally, these

features are fed to fused DNN and SVM classifiers and have reached

97.5% accuracy. Khawaldeh et al. introduced a non-invasive graduation

scheme of brain Glioma tumors (2018) using an updated version of Ale-

xNet CNN. The regression was achieved for whole-brain MR images

and image labeling was not pixel level, but with the image level. The

experimental results show that a reasonable performance was achieved

by 91.16% of the method. Sajjad et al. (2019) proposed a comprehen-

sive method for brain tumor gradings. For this reason, the tumorous

region after data augmentation was fed to pre-trained VGG-19 CNN.

The rating accuracy 87.38 and 90.67%, respectively, stated for data

before and after the augmentation. Özyurt, Sert, Avci, and Doga-

ntekin (2019) fused CNN with the neuromorphic, optimistic entropy of

the total fuzzy expert (NS-CNN) to evaluate brain tumors. These images

were then applied to the CNN for feature extraction. Eventually,

extracted features are fed in the SVM classification to be categorized

as benign or malignant with an averaged 95.62% precision.

For brain tumor grading classification, Saba, Mohamed,

et al. (2020) used the GrabCut technique to obtain MRI texture char-

acteristics. Of note, 98.78, 99.63, and 99.67% accuracy recorded on

(BraTS) of VGG-19 (CNN architecture) in 2015, 2016, and 2017,

respectively. Ejaz et al. (2020) proposed using the MICCAI BraTS data

set for hybrid SOM pixel marking with decreased cluster inclusion and

deterministic function clustering to identify brain tumors. The cluster

was collected utilizing three unsupervised learning methods for brain

tumor segmentation. The system was tested using the dice overlap

test, the Jaccard Tanimoto coefficient test, mean squared error, and

peak signal to noise ratio. The findings obtained were 98%, 0.06,

18 lb, and 96%, respectively (Khan, Ashraf, et al., 2020).

Iqbal et al. (2019) have developed a deep learning model for brain

tumor segmentation by combining short-term memory (LSTM) and

coevolutionary neural networks (ConvNet). Of note, 75% ConvNet

accuracy, 80% LSTM-based network accuracy, and 82.29% composite

accuracy were recorded on the BraTS 2018 data set. Recently, for

brain tumor detection, Rehman, Khan, Saba, et al. (2021) used pre-

trained 3D CNN. Three BraTS databases were checked in 2015, 2017,

and 2018, with 98.32, 96.97, and 92.67% precision.

1.1 | Main contributions

The main contributions of this research are as under

• In the preprocessing phase, a contrast-stretching algorithm is used

to produce images of high-resolution.
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• Brain tumor detection is performed through Unet architecture with

ResNet50 as a backbone.

• The process of data augmentation is employed to achieve better

results on small datasets.

• A new optimized framework called NASNet is applied, which uses

the idea of Evolutionary Algorithms (EAs) and Reinforcement

Learning (RL) for the optimization task.

• Finally, we also employed other deep transfer learning models such

as ResNet50, DenseNet201, MobileNet V2 and InceptionV3 for

brain tumor classification. We compared them with the NASNet

Model to show the efficiency of NASNet model.

Further, this article is structured into different sections, Section 2

presents research background, Section 3 presents the proposed model

with a detailed explanation of data set, preprocessing,

ResNet50-UNet segmentation, NASNet model, data augmentation,

and pseudo code. Section 4 highlighted the performance measures.

Section 5 exhibits experimental results and Section 6 concludes

research along with future directions.

2 | RESEARCH BACKGROUND

CNN has a prominent role in pattern and image recognition problems.

CNN filters are convolved upon input image to extract features auto-

matically. CNN architecture involves convolutional layers, pooling

layers and fully connected layers and hidden layers based on architec-

ture. The most common CNN architectures are AlexNet (Krizhevsky,

Sutskever, & Hinton, 2012), VGGNet (Simonyan & Zisserman, 2015),

MobileNet, DenseNet (DenseNet: Better CNN Model than ResNet, n.

d.), Inception (Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2016),

ResNet (He et al., 2016) and NASNet architecture (Radhika, Devika,

Aswathi, & Padma, 2020). LeNet architecture introduced CNN's idea

in 1990, but this architecture was not practical until 2010 due to lim-

ited computational resources. The notion of backpropagation was

mainly presented by LeNet (LeCun, Bottou, Bengio, & Haffner, 1998).

AlexNet was developed for object identification task and a deeper

network than LeNet and it achieved better accuracy on ImageNet

(Krizhevsky et al., 2012). Similarly, a filter size of 3 × 3 was introduced

in all the types of VGGNet, such as VGG16 and VGG19 to learn

nonlinear, complex features and make it computationally efficient.

Furthermore, GoogLeNet tried to reduce the number of parameters

and computations (Szegedy et al., 2015). The main aim of all the

grown architectures focused on increasing depth of the model to

enhance accuracy. This causes a vanishing gradient problem; during

back propagation, the gradient generates too small a value, resulting

in poor learning. ResNet proposed a solution to the vanishing gradient

problem by employing skip functions to enhance the network's per-

formance. A dense network has been produced for pattern reuse

(DenseNet: Better CNN Model than ResNet, n.d.). For successful

employment in embedded and mobile applications, a separable-

convolution was introduced to reduce the number of parameters in

MobileNet (Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018). A new

optimized framework called NASNet was evolved, which employed

the idea of EAs and RL for optimization tasks (Zoph, Vasudevan,

Shlens, & Le, 2018). Based on the information obtained from the

above-stated frameworks, we focused on NASNet architecture. The

proposed research work uses search techniques to locate good con-

volutional architectures on a database of interest. The search method-

ology employed in the NASNet model is the Neural Architecture

Search (NAS) framework introduced by (Zoph & Le, 2017). We

employed NASNet and various transfer learning techniques for useful

feature extraction, including ResNet50, DenseNet201, MobileNet V2

and InceptionV3 to achieve classification and detection on target data

set. Furthermore, we compared the NASNet model with others archi-

tecture to show its efficacy. Besides, we could use proposed method-

ology in other domains to gain the advantages of this research

activity.

2.1 | Ethical approval

No experiments are conducted on animals and humans. Only publicly

available benchmark data sets are used for experiments.

3 | PROPOSED MODEL FOR TUMOR
DETECTION AND CLASSIFICATION

3.1 | Data sets

We employed a public brain tumor data set from Figshare source con-

taining 3,064 brain MRI slices obtained from 233 patients

(Cheng, 2017). It involves three brain tumors: glioma, pituitary, menin-

gioma tumor and three distinct views: sagittal, axial, coronal views.

The data set is available in “.mat” format. Each MAT-file covers a

structure including patient ID, 512 × 512 image data in uint16 format,

types of brain tumors, border of tumor with the coordinate's points,

and ground truth in binary mask image. As CNN architecture takes

the image, we only used image data from the .mat files in our experi-

ment as presented in Figure 1. Furthermore, database description is

depicted in Table 1 and the distribution of tumor types is presented in

Figure 2.

3.2 | Preprocessing

Normally preprocessing is employed to improve and enhance the

input data to smooth line further processing (Lung, Salam, Rehman,

Rahim, & Saba, 2014; Majid et al., 2020; Marie-Sainte, Aburahmah,

Almohaini, & Saba, 2019; Marie-Sainte, Saba, et al., 2019; Rehman,

Khan, Mehmood, et al., 2020). In this case, it was mandatory since the

MRI images were acquired from various modalities that involve arti-

facts. Therefore, various image processing methodologies were

employed to enhance its contrast (Saba, Khan, Islam, et al., 2019;

Saba, Khan, Rehman, & Marie-Sainte, 2019; Sadad, Munir, Saba, &

SADAD ET AL. 3



Hussain, 2018). We applied the contrast-stretching algorithm to pro-

duce images of high-resolution using the following formula.

E x,yð Þ= i x,yð Þ− fmin

fmax− fmin

where, fmin and fmax are the minimum [0] and maximum value [255] in

the image i(x, y) and x, y denote each pixel in the image.

Furthermore, we resized the input images into 224 × 224 as per

the requirement of the proposed pre-trained models (Khan et

al., 2019).

3.3 | Proposed model for brain tumor detection

In this article, we employed U-Net architecture (Ronneberger,

Fischer, & Brox, 2015) for brain tumor detection, which achieved a

remarkable efficiency in detecting medical images. The backbone

applied is ResNet50 (He et al., 2016) which is pre-trained on the

ImageNet data set. Thus, we employed Unet model with ResNet50 as

a backbone to obtain the best detection. Our ResNet50-UNet seg-

mentation architecture comprises an encoder and a decoder. The

encoder is developed by eliminating the.

global average pooling and fully connected layer from the end of

ResNet50. The decoder involves five blocks, every block containing

2 × 2 up-sampling layer subsequently two sets of layers,

encompassing a convolution layer, Rectified Linear Unit (ReLU) and

batch normalization layer. The parameters are not set by the architec-

ture itself and could be performed through a fine-tuning approach.

The weights and learning rate of ResNet50-UNet architecture are

loaded and initialized to train the model. Following parameters for

ResNet50-UNet segmentation are set as illustrated in Table 2.

3.4 | Proposed model for brain tumor classification

The idea of NASNet model is introduced by the Google ML group

based on reinforcement learning. In NASNet, various amendments are

performed depending upon weights, the number of layers, regulariza-

tion procedures, and so forth, to enhance the architecture's efficiency.

The framework of NASNet comprises of CNN and Controller Recur-

rent Neural Network (CRNN) described in Figure 3. As shown, a

CRNN samples child architectures with various networks. The child

networks are trained to get accuracy. The obtained accuracies are

employed for controller updating so that the controller will produce

improved networks over time. The weights of the controller are

updated through gradient policy. The NASNet frameworks select the

finest best cells through the reinforcement learning approach, as

explained in (Zoph et al., 2018). Chen et al. (2018) documented that a

F IGURE 1 Brain tumor types

TABLE 1 Dataset description

Category Patients Number of slice

Glioma 91 1,426

Pituitary 60 930

Meningioma 82 708

Total 233 3,064

F IGURE 2 Distribution of tumor type [Color figure can be viewed
at wileyonlinelibrary.com]
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reinforced evolutionary approach could be applied to choosing the

best elements. A tournament selection approach is employed to

reduce the poor performing cell. The fitness function of the child is

improved and reinforcement mutations are accomplished. Through

this activity, the performance of cell structure optimizes further.

The NASNet network is trained using two kinds of input images

having size 224 × 224 and 331 × 331, to achieve NASNet Mobile and

NASNetLarge networks, respectively, presented in Table 3. Shifting

from NASNetMobile to NASNetLarge requires a massive expansion in

the number of parameters. Because NASNetLarge consist of

8,89,49,818 parameters and NASNetMobile comprises of 53,26,716

parameters. This creates NASNetMobile more consistent. In NASNet

network, the smallest unit blocks, which are combined to create a cell

as illustrated in Figure 4.

A cell is developed by concatenating various blocks, as presented

in Figure 5. NASNet used a search space by factorizing the architec-

ture into cells and further splitting it into blocks. The blocks and cells

are flexible in type or number and are optimized for the specified

database. More Detail about NASNet architecture can be found in

(Liaqat et al., 2020; Mashood Nasir et al., 2020; Radhika et al., 2020).

The most vital accomplishments of CNNs are transfer learning

that is employed where a smaller amount of data set is available such

as the situation under study. In this research work, we have employed

NASNet architecture for feature extraction and used ResNet50,

DenseNet201, MobileNet V2, and InceptionV3 to compare the results

of NASNet with other used models. The significant features are

extracted through two developments of transfer learning such as

freeze layers and fine-tune. It means that the pre-trained architecture

weights are transfer from source to target database, such as from

ImageNet to Figshare in our case as illustrated in Figure 6. Fine-tuning

of transfer learning is employed to enhance CNN architecture's effi-

cacy and substitute the pre-trained model's final layers only. In simple

words, 1,000 categories of ImageNet are substituted with the three

kinds of brain tumor according to Figshare data set. In the proposed

model, Adam optimizer is trained in each network, including NASNet

and others for brain tumor classification. The batch size is set to

32 and 1e-4 is assigned to the initial learn rate with the maximum

epochs of 50 as presented in Table 4

3.5 | Data augmentation

For training purposes, deep learning approaches need vast volumes

of labeled data. Unfortunately, the labeled medical image data set is

not large enough, causing problems during training, especially utiliz-

ing deep learning methods (Nazir, Khan, Saba, & Rehman, 2019;

Perveen et al., 2020; Saba, 2020). However, the data augmentation

approach provides a remedy to this issue by increasing the size of

the training data accessible. Therefore, the augmentation process is

employed to achieve better results on a small data set. Various data

augmentation styles, such as flipping and rotation, are applied to

capable the architecture to learn the variations during training. The

following parameters are employed during the augmentation pro-

cess, as depicted in Table 5. Moreover, some sample images are

illustrated in Figure 7.

3.6 | Pseudo codes for detection and classification

The pseudo codes for brain tumor detection and classification are

presented as under.

1. procedure detection_type (brain tumor detection)

F IGURE 3 Controller Recurrent Neural Network in NASNet
framework [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 The NASNet architecture

Identity 1 × 3 then 3 × 1 conv

1 × 7 then 7 × 1 conv 3 × 3 dilated conv

3 × 3 average pooling 3 × 3 max pooling

5 × 5 max pooling 7 × 7 max pooling

1 × 1 conv 3 × 3 conv

3 × 3 depthwise-separable—
conv

5 × 5 depthwise-separable—
conv

7 × 7 depthwise-separable—
conv

TABLE 2 Hyper-parameter for detection

Model Unet

Backbone ResNet50

Image size 256 × 256

Weight ImageNet

Optimizer Adam

Loss bce_jaccard_loss

Metrics iou_score

Epochs 80

Random seed 42

Batch size 16

SADAD ET AL. 5
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a. Input = Fighare_data set (3 types)

b. Unet_ResNet50 = detection (Input)

return detection_type, IoU score

2. procedure classification (Fighare_data set, true class)

a. Model = training ((NASNet (Fighare_data set, trueclass,

ImageNet))

b. Predicted_type = testing (Model (Fighare_data set)

c. Accuracy, Kappa = (Predicted_type, trueclass)

return Predicted_type, Accuracy, Kappa, Confusion Matrix, ROC

curve.

4 | PERFORMANCE MEASURE OF
DETECTION AND CLASSIFICATION

The detection of tumors is evaluated through IoU to assess brain

tumor detection accuracy on a Figshare data set. Similarly, the

classification of networks' performance is evaluated through accu-

racy and Kappa statistic (κ) as recorded in Table 6. Kappa statistic

(κ) is a measure of information employed to compares an observed

accuracy with a predictable accuracy (Viera & Garrett, 2005). For

further evaluation, the ROC curve and confusion matrix of the

actual and predicted tumor class is calculated during the testing

phase.

Where, True positive (TP), false positive (FP), true negative (TN),

and false negative (FN) are concerned to show how much the applied

model correctly and wrongly classified glioma, pituitary and meningi-

oma tumors. Furthermore, t0 is the relative experimental understand-

ing between the ground truth and classification algorithm. The

speculative probability of agreement chance by using comparative

information to highlight the possibilities of every category.

5 | EXPERIMENTAL RESULTS

The experiments are carried on Google Colab services and performed

based on the holdout method. We have assessed the best available

brain tumor detection parameters using ResNet50-UNet architecture

and achieved the highest IoU score of 0.9504 as presented in

Figure 8. Furthermore, the actual and predicted mask is presented in

Figure 9. We split the data set into two portions: training data

involves 80% and testing data comprises 20% of the data set. We

have evaluated the best parameters to get the highest performance of

the architecture. The NASNet architecture generates the highest

accuracy of 99.6% as compared to others. This value signifies the effi-

cacy of NASNet architecture for feature extraction and classification

of detected brain tumors. Similarly, the high value of kappa statistic of

0.99 for the NASNet network determines an ideal agreement with the

ground truth, as presented in Table 7. Figure 10 indicates the confu-

sion matrix acquired through the NASNet model for brain tumors

classification.

The statistical validation of NASNet architecture is done through

ROC analysis. Figure 11 presents the parameters for NASNet model

with the resulting AUC value.

F IGURE 4 Creation of a cell in NASNet network [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Arrangement of NASNet [Color figure can be viewed
at wileyonlinelibrary.com]
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In Figure 12, we investigated the NASNet network's performance

with DenseNet20, ResNet50, Inception V3, and MobileNet V2. We

have noticed that NASNet model achieve high accuracy in term of

classification.

5.1 | Analysis and comparisons

Nonetheless, it is hard to compare the results with the techniques

reported in state of the art due to different CNN models and data set

employed (Khan, Jabeen, et al., 2020). However, we still compare cur-

rent techniques on brain tumor detection and classification. Sajjad

et al. (2019), after comprehensive data augmentation, fed tumor

region to pre-trained VGG-19 CNN, which was fine-tuned for brain

tumor grade classification and attained an accuracy of 90.67% with

augmentation and without augmentation 87.38% on the radiopaedia

data set.

For the classification of multimodal automatic brain tumors with

linear contrast stretching, the transformation of learning-based

F IGURE 6 Proposed model [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Hyper-parameter for classification

Hyper-
parameters Value

Size of input
image

Optimizer Adam 224 × 224

Loss Categorical crossentropy

Batch size 32

Pooling GlobalAveragePooling2D

Initial learning

rate

1e-4

Epoch 50

Dropout 0.5

Train size 0.8

Test size 0.2

Random state 11

TABLE 5 Data augmentation parameters

Parameters Value

Horizontal flip True

Vertical flip True

Rotation range 90, 180

SADAD ET AL. 7
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extraction functions, correntropy-based features set, Khan, Jabeen,

et al. (2020) proposed a fusion of pre-trained CNN models (VGG16–

VGG19). The fused matrix was eventually fed to the extreme learning

machine for brain tumor identification. The suggested technique

obtained an accuracy of 97.8, 96.9, and 92.5%, respectively, for

BraTs2015, BraTs2017, and BraTs2018.

Recently, a 3D CNN architecture was developed by Rehman,

Khan, Saba, et al. (2021) to identify brain tumors using a pre-trained

CNN model and recorded an accuracy of 98.32, 96.97, and 92.67% in

BraTs2015, BraTs2017, and BraTs2018.

Table 7 exhibits experimental results using different deep

learning models to classify the brain tumor following its

detection.

6 | CONCLUSION

To explore and evaluate employed networks' performance, two trans-

fer learning processes that are freeze and fine-tune, are performed in

TABLE 6 Performance metrics

Measure Formula

Accuracy TP+ TNð Þ
TP+ FNð Þ + FP+TNð Þf g

Kappa (κ) t0−te
1−te

F IGURE 8 Analysis of tumor detection [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 7 Data augmentation illustration

8 SADAD ET AL.
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F IGURE 9 Actual versus predicted mask [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 7 Experimental result

Task Models Accuracy Kappa statistics

Classification of glioma, pituitary, and meningioma

tumors

NASNet 99.6 0.99

DenseNet201 93.1 0.89

ResNet50 92.9 0.89

Inception V3 92.8 0.88

MobileNet V2 91.8 0.87
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this article to extract significant features from MRI slices. A well-

known segmentation technique such as Unet architecture with

ResNet50 as a backbone to expose the tumor part and achieved

0.9504 of IoU score. Furthermore, multi-classification of brain tumor

has been performed on Figshare data set to identify the tumor type.

The process of multi-classification is performed using transfer learning

and NASNet architecture. To show the efficacy of NASNet architec-

ture compared with other architectures like ResNet50, DenseNet201,

MobileNet V2, Inception V2 are executed. NASNet architecture

achieved a higher classification accuracy of 99.6% on the target

data set.

Although this research investigated various architectures of deep

CNN with transfer learning for brain tumor detection, more models

still need to be researched. Therefore, powerful architecture with less

computational complexity will be employed in the future.
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