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Radiomics‑based neural network 
predicts recurrence patterns 
in glioblastoma using dynamic 
susceptibility contrast‑enhanced 
MRI
Ka Young Shim1,9, Sung Won Chung1,9, Jae Hak Jeong1,9, Inpyeong Hwang2, Chul‑Kee Park3, 
Tae Min Kim4, Sung‑Hye Park5, Jae Kyung Won5, Joo Ho Lee6, Soon‑Tae Lee7, Roh‑Eul Yoo2, 
Koung Mi Kang2, Tae Jin Yun2, Ji‑Hoon Kim2, Chul‑Ho Sohn2, Kyu Sung Choi2* & 
Seung Hong Choi1,2,8*

Glioblastoma remains the most devastating brain tumor despite optimal treatment, because of 
the high rate of recurrence. Distant recurrence has distinct genomic alterations compared to local 
recurrence, which requires different treatment planning both in clinical practice and trials. To date, 
perfusion-weighted MRI has revealed that perfusional characteristics of tumor are associated with 
prognosis. However, not much research has focused on recurrence patterns in glioblastoma: namely, 
local and distant recurrence. Here, we propose two different neural network models to predict 
the recurrence patterns in glioblastoma that utilizes high-dimensional radiomic profiles based on 
perfusion MRI: area under the curve (AUC) (95% confidence interval), 0.969 (0.903–1.000) for local 
recurrence; 0.864 (0.726–0.976) for distant recurrence for each patient in the validation set. This 
creates an opportunity to provide personalized medicine in contrast to studies investigating only 
group differences. Moreover, interpretable deep learning identified that salient radiomic features for 
each recurrence pattern are related to perfusional intratumoral heterogeneity. We also demonstrated 
that the combined salient radiomic features, or “radiomic risk score”, increased risk of recurrence/
progression (hazard ratio, 1.61; p = 0.03) in multivariate Cox regression on progression-free survival.

Glioblastoma (GBM) remains the most aggressive primary brain tumor, with a median survival of 12–15 months 
despite optimal treatment1. The poor prognosis is due to the high rate of recurrence/progression2. In regions 
of physically disrupted blood brain barrier (BBB) by tumor cells, the contrast agents diffuse out of the vessels, 
manifesting enhancing lesions on contrast-enhanced T1-weighted images (CE T1WI) in nearly all GBM. These 
enhancing lesions are associated with dense tumor cells, and are the target for surgical resection3. However, 
CE T1WI is insufficient to distinguish paucicellular involvement of tumor from peritumoral edema, which is 
well-demonstrated on T2-weighted images (T2WI). T2 hyperintense area surrounding enhancing lesions on CE 
T1WI, should be considered as brain parenchyma infiltrated by isolated tumor cells, and radiation field should 
cover the area when planning radiation treatment4.

GBMs have high intratumoral heterogeneity (ITH), and result in inevitable recurrence5. Thus, many attempts 
have been made to predict relapse, or progression, and the prognosis of a tumor. Radiomics that extracts 
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quantitative features from radiographic images is the latest approach, and many studies have been conducted 
to relate radiomic profiles to GBM’s molecular subtypes, genetic mutations, and/or survivals6–10. Among them, 
radiomic features obtained from cerebral blood volume (CBV) maps, or hemodynamic parameter maps derived 
from dynamic susceptibility contrast-enhanced MRI (DSC MRI), have been reported as potential biomarkers 
to predict the prognosis of GBM11.

Recent surgical advances has increased rate of complete resection (CR) of contrast-enhancing lesions with 
the help of 5-aminolevulinic acid (5-ALA) guided resection, and intraoperative neurophysiologic monitoring, 
which leads to improved outcome12. However, GBM recurrence/progression is still almost inevitable, and further 
investigation for effective treatment strategy is highly required for recurrent GBM13. Distant recurrence (DR) 
has been known to have different tumor biology from local recurrence (LR), which represents low rate of reten-
tion of initial tumor mutations14, and thus requires different treatment strategy compared to LR. However, not 
much study has focused on the recurrence patterns in GBM. Moreover, no study has focused on the prediction 
of recurrence patterns after maximal surgical resection, especially at an individual level.

Here, we developed and validated the prediction model for recurrence patterns in GBM based on perfusion 
radiomics. We also identified salient radiomic features obtained from CBV maps to predict the recurrence pat-
terns using interpretable deep learning, and analyzed whether the salient features are associated with prognosis. 
Moreover, we examined whether the genetic difference affects the recurrence of glioblastoma. This creates an 
opportunity to provide personalized medicine, leading to optimal management in patients with glioblastoma.

Results
Patient characteristics.  Under the inclusion and exclusion criteria, total 192 patients were finally included 
in our study (Fig. 1). The clinical characteristics of the GBM patients in the disease recurrence (n = 125) and the 
non-recurrence (n = 67) group are summarized in Table 1. There were no differences between the two groups 
in regards of the age, and radiation dose. The male patients were more in the recurrence group than in non-
recurrence group (86 of 125 vs. 29 of 67, respectively, p < 0.001). O6-Methylguanine-DNA methyltransferase 
(MGMT) promotor methylation was more frequently observed in the non-recurrence group than in recurrence 
group (44 of 67 vs. 50 of 125, respectively, p < 0.001). Isocitrate dehydrogenase (IDH) wildtype was more frequent 
in the recurrence group than the non-recurrence group (121 of 125 vs. 57 of 67, respectively, p = 0.01). The mean 
duration of LR and DR were 416 ± 298 (range 22–1666) and 342 ± 189 (range 22–1,042) days respectively, which 
resulted in no statistical significance (p = 0.051).

Image analysis.  For perfusion radiomics, cerebral blood volume (CBV) maps were generated from DSC 
MRI. For each patient, total 1702 radiomic features were obtained from two regions of interest (ROI) on both 

Figure 1.   Patient inclusion/exclusion criteria.
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contrast-enhanced lesion, and non-enhancing T2 hyperintense lesion of tumor, overlaid on the CBV map. The 
overall workflow from image process to analysis is given in Fig. 2, and the obtained radiomic profile of recurrent 
glioblastoma patients (n = 125) is given in Supplementary Fig. 1.

Performance and interpretation of prediction models for recurrence patterns.  The sensitiv-
ity, specificity, accuracy, and area under the curve (AUC) of the prediction model for (1) LR vs non-LR was 
for 94.59%, 100.00%, 97.30%, and 0.995 (0.993–0.996) for discovery set, and 94.44%, 83.33%, 91.67%, and 
0.969 (0.903–1.000) for validation set; and (2) DR vs non-DR was for 93.33%, 100.00%, 96.67%, and 0.986 
(0.982–0.990) for discovery set, and 93.33%, 80.00%, 88.00%, and 0.864 (0.726–0.976) for validation set, respec-
tively (Table 2). Receiver operating characteristic (ROC) curves for validation set, and training curves for loss 
and accuracy of each model, are given in Supplementary Fig. 2. In fivefold cross validation, mean AUC was 
0.82 ± 0.09 for LR; and 0.86 ± 0.05 for DR (Fig. 3).

For each model, force plots, decision plots, and summary plots15 (detailed in Supplementary material), were 
obtained from Shapley additive explanations (SHAP) (given in Supplementary Fig. 3), and top 10 important 
features with largest feature importance values are listed in the Table 3. Full list of 32 features of prediction model 
for local and distant recurrence are given in Supplementary Tables 2 and 3, respectively. The representative cases 
with LR and DR are given in Fig. 4.

Radiomic risk score.  Using Cox regression with least absolute shrinkage and selection operator (Cox-
LASSO), only 3 features had non-zero coefficients and were survived from total 64 features (i.e. 32 features 
obtained from each of two different prediction model). Next, a radiomic risk score was developed using a linear 
combination of the 3 selected features with coefficients obtained from Cox-LASSO (Eq. 1), and each patient was 
stratified into either a high- or low- “radiomic risk group” using the median values of radiomic risk scores for 
cut-offs16.

In log-rank test, risk of recurrence was stratified between high and low radiomic risk group (p = 0.0047) 
(Kaplan–Meier plots illustrated in Fig. 5a).

Multivariate Cox proportional hazard model to predict progression free survival.  In multivari-
ate Cox regression model to predict progression free survival (PFS), among clinical and radiomic variables: 
age, sex, IDH status, MGMT status, and radiomic risk group, MGMT status, and radiomic risk group were sig-
nificant, and concordance index (C-index) of the multivariate Cox model was 0.66 (standard deviation = 0.03). 
More specifically, radiomic risk group experienced 1.6 times stronger association toprogression (i.e. hazard ratio 
(HR) = 1.61; 95% confidence interval (CI), 1.03–2.52; p = 0.035). MGMT-methylation group experienced about 3 
times weaker association to progression (i.e. HR = 0.36; 95% CI, 0.25–0.54; p = 6.38 × 10–7). A forest plot, showing 
the variables and HR with CI and p values of multivariate Cox-regression model, is given in the Fig. 5a. However, 
IDH-mutation was not significant in the multivariate Cox model (HR = 0.46; 95% CI 0.16–1.32; p = 0.147), but 
significant when MGMT status was excepted (HR = 0.26; 95% CI 0.092–0.74; p = 0.011) (Supplementary Fig. 4) 
as well as in log-rank test (p = 0.0049). Male sex (HR = 1.11; 95% CI 0.75–1.63; p = 0.602), and aged (HR = 1.00; 
95% CI 0.98–1.01; p = 0.858) were not significant variables. Male sex was not significant when MGMT status was 

(1)

Radiomic risk score = CE_wavelet_LHH_glcm_MCC × 0.219

+ CE_wavelet_HHH_gldm_DependenceNonUniformity

× 0.121+ NE_wavelet_LLL_firstorder_Kurtosis

× 0.068

Table 1.   Clinical characteristics of the study population. Unless otherwise specified, data are given as the 
number of patients. Data are expressed as mean ± standard deviation; MGMT, O6-Methylguanine-DNA 
methyltransferase; IDH, Isocitrate dehydrogenase. *Calculated with an unpaired Student’s t test. † Calculated 
with Fisher’s exact.

Characteristics Total (n = 192) Recurrence (n = 125) Non-recurrence (n = 67) p value

Mean age (years) 60.2 60.8 ± 13.5 59.1 ± 12.8 0.37*

Mean radiation dose (Gy) 56.6 56.3 ± 7.7 57.2 ± 7.0 0.42*

Sex < 0.001†

Male 115 86 29

Female 77 39 38

Methylated MGMT promoter < 0.001†

Positive 94 50 44

Negative 98 75 23

IDH1/2 mutation 0.01†

Positive 14 4 10

Negative 178 121 57
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excepted as well (HR = 1.01;95% CI 0.72–1.40; p = 0.971) (Supplementary Fig. 5). Kaplan–Meier plots for each 
variable are illustrated in Fig. 5b–d.

Discussion
The utility of CBV in the prediction of GBM patient outcome has been demonstrated in several previous stud-
ies. Other studies have similarly showed that CBV features, associated with tumor aggressiveness, is valuable 
parameters for prediction of glioma patient survival and prognosis17–19. However, single parameter approach 
has been noted for limited ability in survival prediction20,21. Recently, radiomics approach, in combined with 
building prediction models with large number of parameters such as neural networks has enabled accurate 
prediction at an individual level8,22, though the developed models should be sufficiently validated. Moreover, 
the individual prediction of the recurrence patterns in GBM is crucial for optimal management of the affected 
patients23. In our study, we evaluated radiomic features from CBV maps to see whether the recurrence patterns 
in GBM patients, and prognosis could be predicted with these features, using deep learning and Cox-regression, 
respectively. Specifically, 32 useful radiomic features were selected among 1702 features, and the recurrence pat-
tern of each patient in validation set was predicted using multilayer perceptron network as a classifier, showing 
excellent performance. Subsequently, “radiomic risk score” was developed using the 3 selected features from 
the 64 combined radiomic features, which were obtained to predict recurrence patterns, and the score was an 
independent risk factor of progression in multivariate Cox regression. As a result, the radiomic features of the 
CBV maps based on non-enhancing T2 hyperintense lesions, and contrast-enhanced tumor, were most helpful 
for the prediction of the local recurrence and distant recurrence, respectively. Moreover, the PFS could largely 
be predicted by using the radiomic features of the CBV maps combined with clinical variables.

Despite high performance of the developed prediction model based on radiomics, the data-driven nature of 
radiomics is insufficient in a way without semantic analysis, because inherently it does not provide additional 
insight to the biological meanings of selected features24. In the present study, we tried semantic analysis to under-
stand the final selected features with high importance values, obtained using SHAP algorithm15,25, which catches 
and provides the “insights” from the developed neural network. In the LR prediction, top three first-order, and 
shape features extracted from non-enhancing T2 hyperintense lesions, NE_wavelet_LLL_firstorder_10Percentile, 
NE_wavelet_LLL_firstorder_Kurtosis, and NE_original_shape_LeastAxisLength, showed the highest feature 
importance values using SHAP15, an extendable algorithm for interpretation of neural network models (Table 3): 
the first two features describe that tumors with higher CBV values (i.e. high 10Percentile), peaked at higher 
levels than mean in the histogram of voxel intensity of non-enhancing T2 hyperintense lesions (i.e. high Kur-
tosis), which might reflect higher infiltrating tumor cells in non-enhancing lesions, are associated with LR; and 
also non-enhancing lesions involving all directions equally (i.e. high LeastAxisLength), surrounding enhancing 
tumor, are associated with LR, which are consistent with previous studies26,27. In summary, high CBV values of 
nonenhancing T2 hyperintense lesions seemed to be the most useful parameter for LR prediction. Kim et al. also 
reported that CBV features from nonenhancing regions were useful for anticipating local recurrence, and even 
more significant if combined with franctional anisotrpy20. Our LR prediction model results determined that in 
the CBV maps, nonenhancing area were more competent than contrast-enhanced regions.

The most important feature of the prediction model for DR was CE T1WI based textural features from CBV 
maps: CE_wavelet_HHH_gldm_DependenceNonUniformity (Table 3). This parameter measures the similarity of 
dependence through the image, with a higher value indicating more heterogeneity, which might reflect ITH of 
CBV maps in contrast-enhanced regions. Meanwhile, for both DR, and LR prediction, top important features 
were mostly wavelet features (Table 3). As the wavelet transform is very useful in texture analysis because of the 
linearity and the possibility of time/space localizations28, recurrence patterns could largely be predicted by tex-
tural radiomic features from CBV maps. In addition, texture analysis has proven to be an effective way to measure 
ITH, as shown in breast cancer, lung cancer, colorectal cancer, etc.29–31. In addition, contrast-enhanced areas on 
CE T1WI could reflect ITH32: GBM cells release BBB disrupting factors which are up-regulated with increased 
malignancy, thus enhancing endothelial cell permeability32. Thus, higher signal on CE T1WI implies relatively 
more compromised BBB in tissue that later recurred, also consistent with infiltrating tumor characteristics33. 
However, the interpretation of the features is only a hypothesis, which requires further validation in cellular level.

DR has the apparent negative impact on survival of patients with malignant gliomas34. In addition, the nature 
of migratory glioma cells is highly associated with matrix adhesion which is mediated by signal transduction 
cascades used in transmembrane receptors35. Various genetic mutations to contributing DR in patients with 
GBM have been discovered including tumor suppressor gene PTEN, gene signaling to block apoptosis SPOCK1, 
ANXA11, and so forth36. As a result, DR of GBM is greatly related to highly malignant portions of GBM tumor 

Figure 2.   Overall workflow from tumor segmentation to prediction of recurrence patterns, and survival 
analysis. (A) Segmentation of contrast-enhanced and non-enhancing T2 hyperintense areas. (B) Multiple 
radiomic profiles including first-order, textural, shape and wavelet-transformed features were automatically 
calculated from contrast-enhanced and non-enhancing T2 hyperintense areas based on CBV map. Radiomic 
feature matrix (subjects × features) was obtained from image processing. (C) Two multilayer perceptron models 
were trained and validated to predict local and distant recurrence of glioblastoma, respectively. The prediction 
models were developed based on 32 features each, which were selected using SVM-RFE among 1702 features 
of the radiomic feature matrix. (D) The three selected features from the 64 features in the multilayer perceptron 
models using Cox-LASSO were used to develop “radiomic risk score”. The developed radiomic risk score 
was subjected to Cox proportional hazard model in addition to clinical variables to regress the progression 
free survival (PFS). CBV cerebral blood volume, SVM-RFE recursive feature elimination with support vector 
machine, Cox-LASSO Cox regression with least absolute shrinkage and selection operator.

▸
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cells which are well demonstrated in texture features from CBV map based on CE T1WI. In summary, because 
of DR’s aggressive nature, the feature from contrast-enhanced areas was more important than features from 
non-enhancing T2 hyperintense lesions in the prediction model for DR, in contrast to LR.

Rapp et al. has reported that recurrence patterns affect the survival in GBM patients23. Similarly, in the pre-
sent study, the radiomic risk variable, or the weighted combination of three selected radiomic features (Eq. 1) 
to predict the recurrence patterns, could predict the PFS using Cox regression model (C-index, 0.66), when 
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Table 2.   Diagnostic performance of the prediction model for each recurrence pattern: discovery and 
validation set. Discovery and validation set was randomly split the total dataset (n = 192) into 8:2 ratio. AUC​ 
area under the curve, CI confidence interval.

Discovery set Validation set

Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%)

AUC (95% 
CI)

Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%)

AUC (95% 
CI)

Local recur-
rence 94.59 100.00 97.30 0.995 (0.993–

0.996) 94.44 83.33 91.67 0.969 (0.903–
1.000)

Distant recur-
rence 93.33 100.00 96.67 0.986 (0.982–

0.990) 93.33 80.00 88.00 0.864 (0.726–
0.976)

Figure 3.   Receiver operating characteristics (ROC) curves of prediction models for recurrence patterns with 
fivefold cross validation for (a) local recurrence, and (b) distant recurrence.

Table 3.   Top 10 important features of neural network models to predict each recurrence pattern. CE, features 
from T1-weighted contrast-enhanced images; NE, features from non-enhancing T2 high signal intensity area; 
firstorder, first order features; glcm, gray level co-occurrence matrix features; gldm, gray level dependence 
matrix features; glszm, gray level size zone matrix features; shape, shape features. The feature was named as 
region_filter name_feature class_feature name. Feature classes and names can be found in the Supplementary 
Material. † Important features are listed in descending order of feature importance values. *Indicates the three 
selected features for radiomic risk score using Cox-LASSO.

Recurrence pattern Feature names† Importance values

Local recurrence (LR vs. non-LR group)

NE_wavelet_LLL_firstorder_10Percentile 14.48

NE_wavelet_LLL_firstorder_Kurtosis* 9.00

NE_original_shape_LeastAxisLength 7.38

CE_wavelet_LHH_glcm_ClusterShade 7.18

NE_original_glszm_LowGrayLevelZoneEmphasis 6.71

CE_wavelet_HLL_glcm_Idn 6.19

CE_wavelet_LHH_glcm_MCC* 6.06

NE_original_glcm_InverseVariance 5.35

NE_wavelet_HLH_glszm_SizeZoneNonUniformityNor 4.74

CE_wavelet_HHL_firstorder_InterquartileRange 4.70

Distant recurrence (DR vs. non-DR group)

CE_wavelet_HHH_gldm_DependenceNonUniformity* 5.99

NE_wavelet_LHH_firstorder_Kurtosis 3.65

NE_wavelet_HHH_firstorder_Energy 3.43

CE_wavelet_HLH_firstorder_Maximum 3.09

NE_wavelet_HLH_firstorder_Skewness 3.02

NE_wavelet_HLL_glcm_ClusterShade 2.09

CE_original_glszm_SmallAreaLowGrayLevelEmphasis 1.95

CE_original_shape_Elongation 1.78

NE_wavelet_LLH_glcm_Correlation 1.48

NE_wavelet_LHH_glcm_InverseVariance 1.39
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Figure 4.   Representative glioblastoma cases with local recurrence (A) and with distant recurrence (B), 
respectively. (A) A glioblastoma patient who had early local recurrence (recurrence free surival = 12 months) 
after surgery. The contrast-enhanced glioblastoma with necrosis and high CBV was noted on pre-operative 
MRI, and total resection of the contrast-enhanced area was performed. In this patient, local recurrence was 
developed on follow-up MRI. (B) A glioblastoma patient who had early distant recurrence (recurrence free 
surival = 11 months) after surgery. The contrast-enhanced glioblastoma with necrosis and high CBV was noted 
on pre-operative MRI, and total resection of the contrast-enhanced area was performed. In this patient, distant 
recurrence was developed in the right sylvian fissure and suprasellar area. The distant recurrence case had a 
42 times larger value of CE_wavelet_HHH_gldm_DependenceNonUniformity of CBV map, which represents 
the non-uniformity of gray level values, and thus heterogeneity of tumor, compared with the local recurrence 
case. Tumor ROI mask is overlaid on rCBV map (leftmost): contrast-enhanced tumor (CE) (purple), and 
nonenhanicng T2 hyperintense lesion (NE) (brown).
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combined with clinical variables: the radiomic risk variable increased the risk (HR = 1.61, p = 0.035), and MGMT 
methylation decreased the risk of the recurrence (HR = 0.36, p = 3.52 × 10–4), which is consistent with the previous 
study37. Interestingly, IDH mutation status was not significant (p = 0.147) when MGMT status variable was in 
the multivariate Cox regression model, but significant (p = 0.011) when MGMT status was excepted in the Cox 
regression, which was similar in the previou study38. Recently, sex difference has been revealed to be existent in 
treatment response of glioblastoma39. Smits et al. reported that female sex in combined with MGMT methyla-
tion—epigenetic silencing for DNA repair of tumor after temozolomide treatment, which has been shown to be 
more sensitive to chemotherapy40,41—showed more favorable outcome to standard therapy39,42. However, in our 
result, sex was not significant prognostic factor when removing MGMT status from the Cox model or not. Two 
forest plots for two different multivariate Cox models with and without sex variable are given in Supplementary 
Fig. 4. Adding and removing variables, radiomic risk group and MGMT methylation were the two only consistent 
significant prognostic factors in several different multivariate Cox regression models.

Regarding radiomic risk group variable, three selected features for radiomic risk variable were CE_wavelet_
LHH_glcm_MCC, CE_wavelet_HHH_gldm_DependenceNonUniformity, and NE_wavelet_LLL_firstorder_Kur-
tosis. The result that the two features from contrast-enhanced areas is crucial for predicting PFS, was consistent 
with previous studies that contrast enhancement is strongly associated with poor prognosis43. In addition, the 
two features were texture features regarding glcm_MCC, and gldm_DependenceNonUniformity, where maximal 
correlation coefficient (MCC) is a measure of complexity of the texture44. Both MCC and DependenceNonUni-
formity are also associated with variability of intensity values in contrast-enhanced lesions, which is consistent 
with that ITH is primarily related with the PFS.

Our study has several limitations. First, due to the retrospective design with relatively small sample size 
and single-centered data, the generalizability may be limited. Though we reduced the overfitting due to high-
dimensionality by using dimension reduction, and data augmentation, the prediction model should be further 
improved using a larger dataset. Further research with multicentered larger sample size with prospective design 
should be conducted to validate the generalizability of the developed model. Second, the recurrence is ulti-
mately time-dependent data, however, we specified the recurrence “at 1 year” to treat them as binary outcome 
to simplify the prediction model. Further improvement can be made integrating time information such as time-
to-progression to develop the prediction model. Third, multimodal MRI images were not utilized, and further 
improvement warranty the potential increase of the model performance. Fourth, semi-automatic segmentation 
was used to draw the tumor ROIs, which might lower reproducibility and also laborsome. Automatic tumor 
segmentation algorithm using deep learning could further improve reproducibility and easily applied to large-
scale data. Fifth, model comparison using other classifiers such as support vector machine, and random forest 

Figure 5.   Kaplan–Meier survival curves showing progression free survival (PFS): (a) Forest plot of multivariate 
Cox-regression model; and risk of recurrence was stratified between (b) high and low radiomic risk group 
(p = 0.0047), (c) IDH-mutation and wildtype (p = 0.0049), and (d) MGMT-methylation and unmethylation 
(p < 0.0001). Note: p values are obtained from the log-rank test which compares two survival functions according 
to risk group. 95% confidence intervals of survival functions are indicated as gray zone. Bottom tables indicate 
the actual number of patients at risk for the survival time according to the risk group.



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9974  | https://doi.org/10.1038/s41598-021-89218-z

www.nature.com/scientificreports/

was not performed, which might even improve the performance. Sixth, bias field correction was not performed 
in image preprocessing, which might affect the analysis. Lastly, to date, biological meaning of radiomcs features 
is not fully understood. Thus, further researches for determining relationships among radiomics data and tumor 
biology are needed.

Though many different machine learning algorithms, or even a neural network model with large number 
of parameters, have been utilized for feature selection, and classification in radiomics approach46–48, there is no 
single “ultimate” model that predicts everything49. Because the performance of the machine/deep learning model 
largely depends on the data itself rather than algorithm, which contains sufficient information to predict the 
specific variable such as prognosis. Moreover, for clinical application of radiomics, reproducibility and repeat-
ability of data should be also validated, and further study is warranted using external validation with different 
imaging settings such as MR scanner, as well as test–retest analysis, respectively45.

In conclusion, the radiomic features from CBV maps based on contrast-enhanced area and non-enhancing T2 
hyperintense area were mainly important for predicting DR and LR, respectively. The CBV heterogeneity was a 
salient parameter for both recurrence patterns as well as survival: LR, DR, and PFS. By using relevant features to 
predict the recurrence patterns, PFS could largely be regressed/explained in GBM patients using Cox-regression 
model. Our results might be helpful for the optimal treatment planning as well as clinical trial designs in GBM, 
avoiding suboptimal patient selection.

Methods
Patients.  This retrospective study was approved by the Institutional Review Board of Seoul National Univer-
sity Hospital. The Institutional Review Board waived the requirement for informed consent. The study protocol 
is performed in accordance with the relevant guidelines and regulations. Two hundred and ninety-five consecu-
tive patients (n = 295) diagnosed with glioblastoma from April 2010 to September 2019 at Seoul National Uni-
versity Hospital from the radiology report database were enrolled to the study. The followings were the inclusion 
criteria: patients (a) had a histopathologic diagnosis of GBM for the first time based on the 2016 WHO classifica-
tion of central nervous system tumors, (b) had preoperative (24–48 h before the operation) and follow-up 3 T 
MR imaging including contrast enhanced (CE) T1WI, DSC MRI and FLAIR, (c) underwent the standard treat-
ment, concomitant chemoradiotherapy with temozolomide and six cycles of adjuvant temozolomide after maxi-
mal (gross-total and near-total; > 95% by volume) surgical resection of contrast-enhanced region, and (d) had 
follow-up period of ≥ 1 year after surgery. The exclusion criteria were as follows: (a) sub-total resection (< 95% 
by volume) or biopsy (n = 68), (b) inadequate image quality for analysis (n = 10), and (c) follow up loss (n = 25). 
Under these inclusion and exclusion criteria, total 192 patients were finally included in our study (Fig. 1). We 
specified the extent of resection as maximal resection at least (i.e. including complete resection), because we 
focused to investigate the recurrence pattern when no measurable residual enhancing leseions were left after 
surgery, excluding the recurrence from measurable residual tumor26,50.

All patients routinely visited the outpatient clinic and underwent follow-up brain MR imaging with a brain 
tumor evaluation protocol at our institution every 3 months for the first 2 years. Then the follow-up period 
was extended to 6 months if the patient had no evidence of progression, clinically or radiologically. Based on 
the Response Assessment in Neuro-Oncology (RANO) criteria, the neuro-oncology team of our institution, 
consisting of radiologists, neurosurgeons, neurooncologists, and radiation oncologists, assessed the progres-
sion, and according to the assessment, the patients were classified into disease recurrence and non-recurrence 
groups. Patients corresponding to any of the followings were considered to have disease recurrence over a 1-year 
follow-up after the completion of adjuvant temozolomide51,52: (a) a greater than 25% increase in the sum of the 
products of the perpendicular diameters of the enhancing lesions with the smallest tumor measurement, (b) any 
new lesion, (c) clear clinical deterioration not attributable to causes other than the tumor and (d) clear recur-
rence of non-measurable disease. Because almost all glioblastoma progresses (i.e. recurs)53, and recurrence is 
time-dependent data in nature, we need an endpoint to assess the type of the recurrence. The median PFS was 
335 days in our data, and we evaluated the type of the recurrence at 1 year, which is similar logic to previous 
clinical trials54. The rest of the patients, who are not corresponding to all of the above, were grouped into non-
recurrene group. As a result, our study population was categorized into disease recurrence group (n = 125), and 
non-recurrence group (n = 67). The progression free survival (PFS) was defined as the interval between the initial 
diagnosis by MRI examination and the assessment of disease progression, or the last follow-up if the patient had 
no evidence of disease in the last follow-up50.

Definition of recurrence pattern.  Disease recurrence was identified in three types23: local recurrence 
(n = 49), distant recurrence (n = 32), and combined recurrence (n = 44) according to the following criteria. Local 
recurrence (LR) was defined radiologically as tumor regrowth around the resection cavity, which was consid-
ered as non-enhancing T2 hyperintense area after surgery. We defined both subependymal and leptomeningeal 
seeding as distant recurrence (DR)55, because GBM can spread through the CSF along the ventricles, leading to 
subependymal or ependymal enhancement on MRI. In our study, imaging criteria for subependymal seeding 
was linear or nodular enhancement of the subependymal region that was remote from the ventricular margin 
of the primary neoplasm. Leptomeningeal seeding was defined radiologically as linear or nodular enhancement 
in the subarachnoid space or along the pial surfaces of the brain or spinal cord56. While leptomeningeal seeding 
occurs in 4% of patients with glioma and is thought to be rare, subependymal seeding is associated with higher 
rate of recurrence of gliomas and the region has long been considered a common site for tumor invasion57,58. In 
addition, despite their seemingly different definition and incidence, Anderson et al.55 revealed that subependy-
mal and leptomeningeal seeding have equivalent clinical behavior regarding time to development of the disease, 
survival time from the diagnosis, rates of hydrocephalus and ventriculoperitoneal shunt placement, etc. Finally, 
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to further analyze features specific to local, and distant recurrence, total enrolled patients (n = 192) were grouped 
into LR (n = 93) and non-LR (n = 99) group; and DR (n = 76) versus non-DR (n = 116) group (i.e. binary clas-
sification), respectively.

Imaging protocol.  All the MR imaging analyzed in this study was preoperative imaging. For tumor seg-
mentation, the T1W 3D magnetization-prepared rapid acquisition gradient echo sequence before and after 
administration of gadobutrol (Gadovist; Bayer, Berlin, Germany; at a dose of 0.1 mmol/kg of body weight) and 
T2-FLAIR imaging were used for the enrolled patients. The DSC MRI protocols were acquired by using dedi-
cated protocols in our institute. MR scan parameters are provided in Supplementary Table 1.

Image processing and analysis.  The MR data including CE T1WI, FLAIR imaging and DSC MRI were 
transferred from the PACS workstation to a personal computer and processed with a software package (Nor-
dicICE v4.1.2; Nordic Neuro Lab, Bergen, Norway).

Prior to drawing regions of interest (ROIs), we performed coregistration of FLAIR and DSC MRI on postcon-
trast 3D T1WI as structural imaging, which was achieved automatically by an algorithm finding an optimal rigid 
transformation based on the geometric information59. Because 3D MPRAGE was performed for postcontrast 
T1WI, which is isotropic, T2 FLAIR and DSC MRI was also isotropically resampled (1 mm) to be coregistered 
to postcontrast T1WI, using trilinear interpolation using FSL (FMRIB Software Library; http://​www.​fmrib.​
ox.​ac.​uk/​fsl/)60. Manual correction was followed for the best matching nonenhancing T2 highsignal-intensity 
lesions, if there was geometric distortion due to postsurgical changes. After the motion correction of DSC MRI, 
deconvolution with the arterial input function was performed in the pharmacokinetic model. Next, a cerebral 
blood volume (CBV) parametric map calculated from DSC MRI was generated on a pixel-by-pixel basis with 
leakage correction (detailed in Supplementary Material). Subsequently, two ROIs were drawn slice by slice for 
tumor volume: (a) enhancing tumor (without necrotic regions) and (b) the non-enhancing T2 hyperintense 
lesions, which is illustrated in Supplementary Fig. 6. The enhancing tumor areas were drawn semi-automatically 
on CE T1WI using seed growing and threshold segmentation (and manually, if we need). Then, enhancing 
tumor areas with necrosis were drawn by adding enhancing tumor and necrosis. Necrosis was defined as areas 
of relatively hypo-intense regions, frequently located within the enhancing tumoral regions, on CE T1WI61. The 
non-enhancing T2 hyperintense lesions were drawn by subtracting the enhancing tumor areas with necrosis 
from T2-FLAIR hyperintense lesions50,52,61–63. All the images were processed using NordicICE (v4.1.2), and all 
ROIs were drawn in 3-dimension by three well-trained medical students (J.H.J, K.Y.K and S.W.J), supervised by 
one expert radiologist (S.H.C., with 17 years of neuro-oncology imaging experience).

Next, the radiomic features from the information contained in the voxels of the segmented structure were 
extracted using Pyradiomics 2.1.064, a publicly available python package. For reproducible feature extraction, 
fixed bin size method65,66 was used for image intensity discretization, and bin width was chosen to be 5. The 
radiomic features are composed of seven feature groups: 18 first-order features, 14 shape features (3D), 24 Gy-
level co-occurrence matrix (GLCM) features, 16 Gy-level size zone matrix (GLSZM) features, 16 Gy-level run-
length matrix (GLRLM) features, 5 neighboring gray tone difference matrix (NGTDM) features, and 14 Gy-level 
dependence matrix (GLDM) features. The full mathematical description and detailed number of each feature 
is in Supplementary Material. The original features were radiomics freatures extracted from original images, 
resulting in 107 features in total.

Wavelet transformation, or filter, was applied to the original input image to extract intensity and textural 
features from different frequency bands and to obtain fused texture characteristics from two imaging modali-
ties. As a result, each MRI sequence input produced a total of eight wavelet decomposition images as HHH, 
HLH, HHL, HLL, LHH, LLH, LHL, and LLL images, where ‘H’ stands for a high-pass filter and ‘L’ for a low-pass 
filter44. The first-order features and gray-scale variation features (GLCM, GLRLM, GLSZM, NGTDM, GLDM 
features) were then applied to the wavelet-transformed images for 18 first-order features + 75 Gy-scale varia-
tion features multiplied by eight images, thereby yielding 744 wavelet features. Finally, 851 radiomic features 
(107 original features, and 744 wavelet features) were respectively extracted from (a) contrast enhancing (CE) 
lesions and (b) the non-enhancing T2 hyperintense lesions (NE) based on CBV maps, resulting in total 1702 
features from each patient. The feature was named as region_filter name_feature class_feature name. Feature 
classes and feature names are detailed in the Supplementary Material. The overall workflow from image process 
to analysis is illustrated in Fig. 2, and the radiomic profile of recurrent glioblastoma patients (n = 125) is given 
in the Supplementary Fig. 1.

Tissue diagnosis and genetic analysis are given in the supplementary materal neural network 
model.  All 1702 radiomic features were z-normalized. Since the radiomic data is a high-dimensional data, or 
large dimension of feature (d = 1702) compared to the sample size (n = 192) for the model to be trained, feature 
selection was essential to avoid “curse of dimensionality”. For feature selection, recursive feature elimination 
with support vector machine (SVM-RFE)67 was performed to select important features by repetitively remov-
ing subsets of features with small weights until 32 features were left. Because the selected features, or radiomic 
data with reduced dimension, will be fed into following neural network model to predict the type of recurrence 
(Fig. 2), the number of selected features, 32, or a power of 2, was chosen heuristically to be appropriate number 
considering the size and dimensionality of dataset, which is also a commonly used number for the number of 
the nodes in hidden layers, and the number of the filters, in neural network models. Using the selected features, 
we developed the two different neural network models to predict recurrence patterns. Input features (d = 32), 
reduced dimension using SVM-RFE, were passed through 5 hidden layers to get the final output of prediction 

http://www.fmrib.ox.ac.uk/fsl/
http://www.fmrib.ox.ac.uk/fsl/
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score for two different binary classification tasks: 1) LR vs non-LR, and 2) DR vs non-DR. Overall model archi-
tecture is illustrated in Supplementary Fig. 7.

For evaluation, we performed internal validation using fivefold cross-validation to alleviate the limitation 
small-sized dataset, reporting more generalized performance. Moreover, to augment the insufficient train/dis-
covery dataset, as well as to deal with class imbalance, we used synthetic minority oversampling technique 
(SMOTE)68, which oversamples the minority class to match the number of samples in majority class, improving 
the model performance. We only augmented the train/discovery dataset, not validation set, because validation 
with synthetic data is not valid evaluation. The recurrence prediction model was developed on a randomly split 
80% (train/discovery set), and validated on the remaining 20% of data (validation set). To evaluate the diagnostic 
performance of the model, sensitivity, specificity, and accuracy was obtained, and area under the curve (AUC) was 
also obtained using receiver operating characteristic (ROC) analysis. To report more generalized performance, 
fivefold cross validation was also performed to obtain mean ± standard deviation of AUC for each of the two 
neural network models for binary classification: LR and DR.

To interpret and understand the features that the neural network model “thinks” are important, we used 
Shapley additive explanations (SHAP) for each model, which is an additive interpreting model for existing deep 
learning models15. All the implementation is detailed in Supplementary Material.

Statistical analysis.  Subsequent analysis was performed by using software R version 3.6.1 (R Core Team, R 
Foundation for Statistical Computing, Vienna, Austria)69. For all analyses, only p < 0.05 was considered statisti-
cally significant. Clinical characteristics, including age, sex, date of surgery, radiation dose, date of recurrence, 
and genetic information, were recorded for each patient. Fisher’s exact test was performed for categorical data. 
The data for each parameter were assessed for normality with the Kolmogorov–Smirnov test. An unpaired Stu-
dent’s t test was performed to compare data between the disease recurrence and non-recurrence groups. To 
examine whether the obtained features predicting recurrence patterns can also predict progression free survival 
(PFS), we developed a Cox proportional hazard model to regress the PFS with the total 64 selected features 
obtained above in the prediction model of LR vs non-LR, and DR vs non-DR (32 features for each, respectively). 
Among 64 features, Cox regression with least absolute shrinkage and selection operator (Cox-LASSO) was per-
formed to select important features (i.e. features with non-zero weights above threshold after LASSO regulari-
zation). We optimized the lambda, a hyperparameter for regularization of coefficients in LASSO, using cross-
validation, performed by cv.glmnet function in glmnet70, R package. Specifically, tenfold cross-validation was 
performed to obtain the lambda, which outputs the minimum criterion for training set as default settings. Next, 
a radiomic score was developed using a linear combination of the selected features with coefficients obtained 
from Cox-LASSO model (Eq. 1), and each patient was stratified into either a high- or low-“radiomic risk group” 
using the median values of radiomic scores for cut-offs16. Finally, using 5 variables (i.e. 4 clinical variables: sex, 
age, MGMT methylation, IDH mutation; and radiomic risk group), a multivariate Cox regression model was 
developed, and concordance index (C-index) was also obtained to evaluate the performance of the Cox model. 
All the survival analysis was performed using “survival” R-package71.

Data availability
All relevant data are available on request to correspondence. All codes for model implementation and analysis 
will soon to be uploaded at https://​github.​com/​kyuch​oi.
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