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ABSTRACT

BACKGROUND AND PURPOSE: Differentiating glioblastoma from solitary brain metastasis preoperatively using conventional MR
images is challenging. Deep learning models have shown promise in performing classification tasks. The diagnostic performance of a
deep learning–based model in discriminating glioblastoma from solitary brain metastasis using preoperative conventional MR images
was evaluated.

MATERIALS AND METHODS: Records of 598 patients with histologically confirmed glioblastoma or solitary brain metastasis
at our institution between February 2006 and December 2017 were retrospectively reviewed. Preoperative contrast-
enhanced T1WI and T2WI were preprocessed and roughly segmented with rectangular regions of interest. A deep neural
network was trained and validated using MR images from 498 patients. The MR images of the remaining 100 were used as
an internal test set. An additional 143 patients from another tertiary hospital were used as an external test set. The classifi-
cations of ResNet-50 and 2 neuroradiologists were compared for their accuracy, precision, recall, F1 score, and area under
the curve.

RESULTS: The areas under the curve of ResNet-50 were 0.889 and 0.835 in the internal and external test sets, respectively. The
area under the curve of neuroradiologists 1 and 2 were 0.889 and 0.768 in the internal test set and 0.857 and 0.708 in the external
test set, respectively.

CONCLUSIONS: A deep learning–based model may be a supportive tool for preoperative discrimination between glioblastoma and
solitary brain metastasis using conventional MR images.

ABBREVIATIONS: CE ¼ contrast enhanced; GBM ¼ glioblastoma; ROC ¼ receiver operating characteristic; AUC ¼ area under the curve

G lioblastoma (GBM) and brain metastases are the most
common malignant tumors in adults.1 These 2 entities

have different treatment options, and it is therefore essential to
distinguish them promptly to determine the proper treatment
strategy. In patients with a history of underlying malignancy
and conventional MR imaging findings of multiple enhancing
lesions, a diagnosis can be made easily. However, approximately
25%–30% of brain metastases present as single lesions, and in

lung cancer—the most common cancer to metastasize to the
brain—approximately 50% of patients are thought to have brain
metastases as the initial presentation.2,3 In addition, GBM and
solitary brain metastasis have overlapping MR imaging features,
including rim enhancement with perilesional T2 hyperintensity,
and are thus difficult to differentiate preoperatively.4 However,
GBM has an infiltrative growth pattern; therefore, tumor cells
diffusely infiltrate beyond the enhancing portion, manifesting
as a perilesional T2 hyperintense region. Brain metastases have
similar MR imaging features; however, this perilesional T2
hyperintensity is primarily due to vasogenic edema caused by
the leaky capillary vessels of the enhancing tumor.5,6 In an effort
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to detect these microstructural differences, various advanced MR
imaging techniques, such as perfusion MR imaging, MR spectros-
copy, and diffusion tensor imaging, have been applied to distin-
guish GBM from solitary brain metastasis, with particular
emphasis on the aforementioned perilesional T2 hyperintense
region.7-10 Collectively, these studies have shown promising results
indicating that the perilesional T2 hyperintense region, along with
the enhancing portion itself, carries valuable information that may
preoperatively distinguish these 2 entities. However, advanced
imaging techniques require additional scanning time, and their
quantitative values can vary depending on the imaging parameters,
posing difficult challenges for practical application.

Recently, radiomics have been used to analyze various textural
and handcrafted features to classify or predict prognosis of dis-
ease through medical images that are beyond the perception of
human eye.11,12 However, radiomics needs careful preprocessing
steps, including delicate segmentation. Deep learning—a subfield
in machine learning—extracts information directly from the
data, omitting the step of manual feature extraction in decision
making.13 In the field of neuro-oncology, specifically glioma
imaging, previous studies have shown the potential of deep learn-
ing for classifying gliomas based on genetic mutations or clinical
outcomes.14-16

In this study, we hypothesized that deep learning may differ-
entiate GBM from solitary brain metastasis without extraction of
predefined features. Thus, we aimed to develop a deep learning–
based model to differentiate GBM from solitary brain metastasis
using preoperative T2-weighted and contrast-enhanced (CE)
T1-weighted MR images and further validate its diagnostic
performance.

MATERIALS AND METHODS
Patient Population
This retrospective study was approved by the institutional review
board of our hospital, which waived the requirement to obtain
informed patient consent. The records of 999 consecutive patients
with histologically confirmed GBM or brain metastasis between
February 2006 and December 2017 were retrospectively reviewed.
Among these patients, those with preoperative MR images, includ-
ing T2-weighted and CE T1WI, were included. Exclusion criteria

included 1) multiple enhancing lesions;
2) patients with absent or inadequate
MR images; and 3) patients with previ-
ous intracranial intervention, such as
operation, gamma knife surgery, or
radiation therapy. According to these
criteria, 598 patients were included
(357 men and 241 women; mean age,
57.4 6 14.7 years). Fig 1 summarizes
the study population selection.

From the total study cohort, 450
patients were randomly selected for
model training (300 GBM, 150 metas-
tasis), and 48 patients (32 GBM, 16
metastases) were selected for model
validation. The remaining 100 patients
(50 GBM, 50 metastases) were left out

on the patient level as an internal test dataset. The MR images of
143 patients (100 GBM, 43 metastases) at an outside tertiary
referral hospital were used as an external test dataset; patients
who satisfied the same inclusion and exclusion criteria as the in-
ternal cohort were extracted from their electronic database
between January 2014 and December 2017.

MR Acquisition and Image Preprocessing
Preoperative imaging was performed using 1 of 4 3T MR imaging
units (Ingenia or Achieva, Philips Healthcare; Discovery MR750,
GE Healthcare; Tim Trio, Siemens) using an 8-channel sensitiv-
ity-encoding head coil. Details on the MR scanners and imaging
parameters are summarized in the Online Supplemental Data. A
diagram of the overall workflow is shown in Fig 2. The CE T1WI
and T2WI of each patient were preprocessed, conducting inten-
sity normalization by WhiteStripe normalization and N4 bias
field correction. Images were resampled to 1� 1� 1mm iso-
tropic voxels. Preprocessed CE T1WI was coregistered to the
T2WI. Rectangular-shaped ROIs were manually drawn on T2WI
by a radiologist with 8 years of experience (B.S.) in MR imag-
ing analysis using a conventional software package (MIPAV,
National Institutes of Health) and confirmed by another radiol-
ogist with 13 years of experience (S.S.A.). ROIs were drawn on ev-
ery section in which the mass was visualized on preoperative
T2WI and included the peritumoral T2 hyperintense area, which
was defined as a high signal intensity on T2WI beyond the border
of the enhancing tumor portion.

Deep Learning Model
A 2D convolutional neural network (specifically the ResNet-50
model) with 50 layers consisting of 3-layer residual blocks17 pre-
trained with the ImageNet database was used. Hyperparameters
of the fully connected layer of ResNet were fine-tuned using the
training set data, and the convoluting and pooling layers were
frozen. The batch size was 64, and a drop-out rate of 0.5 was
applied with rectifier linear unit as the activation function. The
model was trained for 100 epochs with stochastic gradient
descent optimized with the Adam optimizer18 and the initial
learning rate set to 0.001. Batch normalization was used in each
layer to improve learning stability.19 Coregistered CE T1WI and

FIG 1. Flow chart showing the patient population in the internal and external cohorts.
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T2WI were used as inputs to 2 of the 3 channels for training of
our ResNet model. The same T2WI was inserted again into the
last channel of our deep learning. Each section of CE T1WI and
corresponding T2WI was treated as an independent image to
increase the number of input data even though a group of slices
belonged to the same patient. An ensemble learning method
based on 5-fold cross-validation was used for model validation
with most voting among models for final decision. Data splitting
during training of the model was done per patient and not per
section image to avoid overlapping bias. Regularization and fine
tuning of hyperparameters of our model was done using the vali-
dation set (n¼ 48) from our institution. To establish the basis for
judgment of our deep learning model, a class activation map was
derived from each section of the images. All steps of the method-
ology were implemented with Python 3.7 and PyTorch v1.2
framework (https://pytorch.org/).

The final model was validated in an internal test set. The pre-
dictive index was defined as the number of slides classified as
GBM by our classification model divided by the total number of
slides per patient (ranging from 0 to 1). To determine the optimal
cutoff value of the percentage of corrected slides for each patient,
receiver operating characteristic (ROC) curves were derived.
ROC curves were derived using SPSS version 25 (IBM).

Image Review by Neuroradiologists
The internal and external test datasets were reviewed by both
experienced and junior neuroradiologists (S.S.A., neuroradiolo-
gist 1) and (I.S., neuroradiologist 2), with 13 and 4 years of expe-
rience, respectively. Both neuroradiologists were blinded to the
pathologic and clinical information of all patients and were asked
to classify each image as either GBM or metastasis, referring to
the T2WI and CE T1WI. Subsequently, internal and external test
sets were re-evaluated and classified again by both neuroradiolo-
gists, this time referring to the classification results of the ResNet-
50 model.

Statistical Analysis
Patient demographics were compared between the GBM and me-
tastasis subgroups using the independent 2-sample t test or chi-
square test. The classification performance of the classification
model and 2 neuroradiologists were evaluated on their accuracy,
precision, recall, F1 score, and area under the curve (AUC). The
95% CIs of the precision, recall, and F1 scores were derived using
the bootstrapping method with 1000 times 90% random sampling.

All statistical values were derived using SPSS version 25. The
bootstrapping method was performed using R version 3.6.2
(http://www.r-project.org/). A P value #.05 was considered stat-
istically significant.

RESULTS
Subjects
A total of 6617 axial slices of tumors from 598 patients with GBM
or solitary metastases were included in the analysis. There was no
significant difference in age and sex distribution between the
GBM and metastasis groups in the internal and external cohorts;
however, a higher percentage of patients had infratentorial lesions
in the metastasis group (3.4% for the GBM group versus 22.7%
for the metastasis group). Patients in the metastasis group
included those with various primary tumor subtypes, most of
which were lung cancer. The demographics of internal and exter-
nal test sets are summarized in the Table.

Diagnostic Performance of Deep Learning–Based Model
The optimal cutoff value for the predictive index was 0.55 when
the AUC was 0.881 for the ROC curve drawn for the internal test
cohort (Fig 3). The accuracy, precision, recall, F1 score, and AUC
of the deep learning–based model were 89%, 0.852, 0.939, 0.893,
and 0.889 in the internal test cohort and 85.9%, 0.907, 0.889,
0.893, and 0.835 in the external validation, respectively (Online
Supplemental Data).

FIG 2. Diagram of overall workflow.
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In the internal test cohort, 8/50 (16.0%) metastases were mis-

classified as GBM, and 3/50 (6.0%) GBMs were misclassified as

metastases. Similarly, 9/43 (20.9%) metastases were misclassified

as GBM, and 12/100 (12.0%) GBMs were misclassified as metas-

tases in the external test cohort. According to tumor location, 83

lesions were located in the supratentorial area, and 17 lesions

were located in the infratentorial area in the internal test set.

ResNet-50 miscategorized 10.8% (9/83) of the supratentorial

lesions and 11.8% (2/17) of the infratentorial lesions. In the exter-

nal test set, 130 lesions were supratentorial, and 13 lesions were

infratentorial. All the infratentorial lesions were correctly catego-

rized by ResNet-50, and all 21 miscategorized lesions were

located in the supratentorial area in the external test set.
Because metastases were more prevalent in the cerebellum

compared with GBM, our deep learning model seemed to recog-

nize posterior fossa structures included in the ROIs, possibly con-

tributing to the higher classification performance for infratentorial

lesions (Figs 4 and 5).

Diagnostic Performance of
Neuroradiologists
The accuracy, precision, recall, F1 score,
and AUC of neuroradiologist 1 were
88.9%, 0.865, 0.918, 0.891, and 0.889 for
the internal test set and 86.6%, 0.926,
0.88, 0.903, and 0.857 for the external
test set, respectively. The accuracy, pre-
cision, recall, F1 score, and AUC of neu-
roradiologist 2 were 77%, 0.760, 0.776,
0.768, and 0.768 for the internal test set
and 75.3%, 0.828, 0.82, 0.824, and 0.708
for the external test set, respectively
(Online Supplemental Data).

Both neuroradiologists showed
improved diagnostic performance af-
ter referring to the classification
results of ResNet-50. The accuracy,
precision, recall, F1 score, and AUC of
neuroradiologist 1 after referring to
ResNet-50 were 92.0%, 0.904, 0.940,
0.922, and 0.920 respectively, for the
internal test set and 90.1%, 0.939,
0.920, 0.929, and 0.889 respectiv-
ely, for the external test set. The accu-
racy, precision, recall, F1 score, and
AUC of neuroradiologist 2 after refer-
ring to ResNet-50 were 91.0%, 0.940,
0.887, 0.913, and 0.910, respectively, in
the internal test set and 88.0%, 0.895,
0.940, 0.917, and 0.839, respectively,
in the external test set (Online
Supplemental Data).

DISCUSSION
We proposed a deep learning–based
model to differentiate solitary brain
metastasis from GBM preoperatively

using T2WI and CE T1-weighted conventional MR images. The
model was developed using a large study population with varying
scan parameters and validated in an external cohort and thus is
expected to be robust and reproducible. Also, the classification
model showed superior performance to that of the junior neuro-
radiologist and comparable results with those of the experienced
neuroradiologist for both the internal and external test sets.
Moreover, the classification model complemented the perform-
ance of the neuroradiologists, improving the classification per-
formance of both junior and experienced neuroradiologists
referring to the ResNet model.

It was noted that the deep learning–based model more fre-
quently misclassified brain metastasis as GBM than GBM as me-
tastasis. This might be because of the heterogeneity of the
metastasis group, which included various primary cancer sub-
types. In comparison, the GBM group included a histologically
homogeneous group of patients. Although GBMs are known to
have unique imaging and radiomics findings depending on their
underlying genetic mutation statuses,20,21 they are thought to be

Patient demographics of internal and external cohorts

Internal Cohort (n = 598) External Cohort (n = 143)
GBM

(n = 382)
Metastasis
(n = 216)

P
Value

GBM
(n = 100)

Metastasis
(n = 43)

P
Value

Age (years)a 57.3 6 15.2 57.5 6 13.8 .808 57.2 6 12.8 61.0 6 10.2 .081
Male sex (%) 223 (58.4) 134 (62.0) .381 63 (62.4) 25 (56.8) .633
Supratentorial
location (%)

369 (96.9) 167 (77.3) ,.001 98 (97.0) 32 (72.7) ,.001

Primary tumor
(%)

— Lung 91 (42.1) — — Lung 20 (45.5) —

Breast 25 (11.6) Breast 6 (13.6)
GIb 46 (21.3) GIb 7 (15.9)
GUc 16 (7.4) GUc 7 (15.9)
Othersd

38 (17.6)
Othersd

3 (6.8)
aMean 6 SD.
b Gastrointestinal (GI) origin includes tumors of colorectal, esophageal, stomach, and hepatic origin.
c Genitourinary (GU) origin includes tumors of kidney, ovary, and cervix origin.
dOther origin includes melanoma, head and neck, sarcoma, and unknown primary origin.

FIG 3. ROC curve for differentiating GBM and metastasis in the internal test set (AUC, 0.881; opti-
mal cutoff for predictive index, 0.55).
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relatively histologically homogeneous compared with metastases,
which can have completely different histologic backgrounds.

In conventional deep neural networks, deeper networks are
susceptible to the degradation problem, in which the network
depth increases and the accuracy subsequently becomes saturated
and degrades rapidly. ResNet-50 is a deep learning network that
uses a residual learning framework that allows substantially deeper
layers for training than that of conventional networks without deg-
radation of performance. This type of deep learning network is ca-
pable of extracting more features and thus more accurately
analyzing input images compared with conventional deep neural
networks. Since its introduction, it has been widely used in various
tasks in medical imaging, including detection, classification, and
localization,22,23 showing comparable or better performance than
that of conventional neural networks.24,25 Several imaging bio-
markers have been studied to distinguish GBM from solitary brain
metastasis. In previous studies, the shape of the enhancing portion,
the signal intensity, and the extent of the peritumoral T2 hyperin-
tensity were used to differentiate these 2 entities in conventional
MR images.26,27 In those studies, nonspherical morphology of the
enhancing portion and a higher normalized T2 signal intensity of

the peritumoral portion were defining features of GBM. However,
these previous studies had limitations in that they were conducted
in small study populations.

Recent studies have applied radiomics-based machine learn-
ing methods to discriminate between GBM and solitary brain
metastasis.28–30 Radiomics-based machine learning models were
used to preoperatively discriminate between these 2 entities based
on CE T1WI. In that study, the best-performing supervised
model showed accuracy of 85%.31 Another study used radiomics-
based machine learning to distinguish between GBM and solitary
brain metastasis.30 The researchers collectively investigated the
diagnostic performances of 30 diagnostic models, with the 2 best-
performing models showing an accuracy of 80%. Although these
studies had somewhat promising results, they also had limitations
in that the ROIs concentrated solely on the enhancing portions,
failing to include data from the peritumoral portion and lacking
external validation results. A recent study extracted radiomic fea-
tures from an enhancing tumor portion and peritumoral T2
hyperintensity area of GBM and solitary brain metastasis and
constructed a deep learning model based on these radiomic fea-
tures.32 The study conducted external validation of the deep

FIG 4. Images of a 65-year-old woman with history of recurrent ovarian cancer and pathologically proved brain metastasis. Contrast-enhanced
T1WI (A) shows a heterogeneously enhancing mass in the left cerebellum. B, T2WI shows a perilesional T2 hyperintensity area surrounding the
enhancing portion. C, Corresponding class activation maps show that the ResNet-50 model is referring to the mass and perilesional T2 hyperinten-
sity area as well as the surrounding posterior fossa structures. ResNet-50 and both radiologists all correctly classified this lesion as brain metastasis.

FIG 5. Images of a 62-year-old woman with pathologically proved GBM. CE T1WI (A) and T2WI (B) show an enhancing mass in the left frontal
lobe with surrounding perilesional T2 hyperintensity area. Whereas ResNet-50 and radiologist 1 correctly classified this mass as GBM, radiologist
2 misclassified this lesion as metastasis. Corresponding class activation map (C) shows that ResNet-50 is referring to the enhancing portion as
well as the surrounding peritumoral T2 hyperintensity areas.
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learning model with a high AUC value of 0.956. However, radio-
mics-based methods have innate limitations in that they include
labor-intensive segmentation steps. To date, there is no study
using an end-to-end deep learning–based method to discriminate
between GBM and solitary brain metastasis. Our method had
superior performance compared with those in the aforemen-
tioned studies using radiomics-based machine learning methods.
Moreover, a strength of our deep learning model was that it could
be robustly applied to conventional MR images with roughly
drawn rectangular ROIs.

Our study had several limitations. First, instead of a 3D-based
analysis, we used a 2D-based deep learning analysis to discriminate
between GBM and solitary brain metastasis. However, considering
that our training set was rather small (n=450) for deep learning–
based algorithm training, we reasoned that training with multiple
MR image slices would be more suitable for adequate model train-
ing. Moreover, our deep learning model showed good performance
in internal as well as external data, showing that our model has
been properly trained. Second, because the patients had multiple
MR slices, we arbitrarily adopted a new variable termed the “predic-
tive index.” This variable required certain considerations because it
was derived from a small internal test set; however, the diagnostic
performance after adapting this cutoff in the external validation set
demonstrated sustained discrimination performance. Third, in clin-
ical practice, brain masses represent various clinical entities along
with GBM and metastasis. These entities, such as lymphoma,
demyelinating disease, infarction, and so on, should also be consid-
ered and integrated into the classification model in future studies.
Finally, our model used only T2WI and CE T1WI, neglecting infor-
mation from other sequences, such as T2 FLAIR images, and other
advanced MR images, such as perfusion- or diffusion-weighted
images. In addition, T2 FLAIR images are generally used to evaluate
infiltrative nonenhancing glial tissue of GBM from vasogenic
edema of brain metastasis. However, the heterogeneity of T2
FLAIR sequences (ie, precontrast versus postcontrast or 2D versus
3D acquisition) in our patient population prevented their use in
training our deep learning model. Nevertheless, T2WI and CE
T1WI are considered to be the most fundamental MR images and
are almost always included in routine MR protocols, thus making
our classification model more robust.

CONCLUSIONS
We developed a deep learning–based classification model to dis-
criminate between GBM and solitary brain metastasis using con-
ventional MR images. Our model had a diagnostic performance
comparable with that of an experienced radiologist and had a com-
plementary role in discriminating GBM and solitary brain metasta-
sis. Therefore, deep learning may be used as an auxiliary tool for
the discrimination of GBM from solitary brain metastasis.

Disclosures: Sung Soo Ahn—RELATED: Grant: Basic Science Research Pro-
gram through the National Research Foundation of Korea, Comments:
2017R1D1A1B03030440*. *Money paid to institution.
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