Molecularly Targeted Clinical Trials

Matthew A. Smith-Cohn, DO^{a,b}, Orieta Celiku, PhD^c, Mark R. Gilbert, MD^{d,*}

KEYWORDS

• Glioblastoma • Heterogenicity • Targeted therapy • Blood-brain barrier • Synthetic lethality

KEY POINTS

- Glioblastomas are incurable malignant central nervous system cancers with an unmet need for new therapies.
- Intratumoral heterogenicity and redundancy of growth pathways make targeting individual pathways ineffective for most patients.
- The blood-brain barrier presents a challenge for drug delivery.
- Molecularly targeted clinical trial design requires robust biomarkers.
- Molecularly targeted therapies and synthetic lethality may benefit a subset of glioblastoma patients.

INTRODUCTION

Glioblastoma (GBM) is the most common primary brain tumor in adults, with approximately 12,000 new cases diagnosed each year in the United States.¹ The prognosis for patients with GBM remains dismal, with a median survival with surgery, chemotherapy, and radiation in patients eligible for clinical trials of only 15 months to 22 months.^{2,3} Data from population-based registries report a median survival of fewer than 12 months if all patients are included.⁴ Despite extensive research, there have not been significant advances in the past 30 years except for temozolomide with radiation therapy.^{5,6}

The 2016 World Health Organization guideline update of central nervous system tumors led to recognizing molecular profiling of brain tumors as best practice.² Aside from improved clarity of diagnosis, molecular profiling of tumors can identify gene or gene product alterations potentially amenable to targeted therapy. In contrast to traditional chemotherapies, which broadly affect cells in the body, targeted therapies interfere with specific molecular changes unique to the cancer cells. Targeted therapies have shown efficacy in various cancers, including lymphoma, breast, colon, and lung, but have demonstrated success in only a small subset of primary brain tumor patients.7-10 Because targeting a single mutation does not work for most malignant gliomas, exploiting a larger genomic context may be more effective. Synthetic lethality, or cell death resulting from simultaneous disabling of 2 genes, may be exploited to expand the therapeutic options of glioma patients. First observed by Bridges¹¹ in the early twentieth century when crossing fruit flies with certain nonallelic genes,¹² this approach as anticancer therapy is exemplified by the use of poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors in breast cancer patients with germline mutations in BRCA1 and BRCA2.13,14 Successful utilization of synthetic lethality in GBM will depend on the ability to predict robust synthetic lethal relationships. This article discusses the successes and challenges of targeted

* Corresponding author. National Cancer Institute, National Institutes of Health, 9030 Old Georgetown Road, Bloch Building 82, Bethesda, MD 20814.

E-mail address: Mark.Gilbert@nih.gov

Neurosurg Clin N Am 32 (2021) 191–210 https://doi.org/10.1016/j.nec.2020.12.002 1042-3680/21/Published by Elsevier Inc.

^a Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 1016, Bethesda, MD 20892, USA; ^b Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; ^c Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 1142, Bethesda, MD 20892, USA; ^d Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA

therapy in brain tumors and reviews synthetic lethality as an attractive new approach to treating brain tumors.

DISCUSSION

The Food and Drug Administration (FDA) approval of tamoxifen in the 1970s for estrogen receptorpositive breast cancer signaled the start of personalized, targeted cancer medicine. Subsequent decades of research led to the discoveries of a diverse arsenal of new therapies with clinical benefits in various cancers, notably imatinib for Philadelphia chromosome-positive chronic myeloid leukemia.^{15,16} Despite the success of molecularly targeted therapies in other cancers, however, these approaches have not demonstrated much success in GBM. This failure has been attributed to a variety of factors, including intratumoral genetic and transcriptional heterogeneity, redundant activating pathways or escape mechanisms, and delivery of a drug to therapeutic levels within tumor tissue through the blood-brain barrier (BBB).9,10 Recent advances in molecular testing and tumor profiling, however, have led to a resurgence of interest in targeted therapy with the increasing recognition of more robust and potentially actionable alterations.

Molecular Classification and Potentially Actionable Alterations in Glioblastoma

Genomic, transcriptomic, epigenomic, and proteomic analysis of GBM has revealed distinct molecular subtypes with different clinical behaviors and therapeutic implications.¹⁷ Work by The Cancer Genome Atlas (TCGA) classified GBM into 3 subtypes: classical, associated with EGFR amplification and CDKN2A deletion; mesenchymal, distinguished by NF1 deletions, elevated endothelial markers (cluster of differentiation 31 (CD31), vascular endothelial growth factor receptor-2 (VEGFR-2)), increased mitogen-activated protein kinase (MAPK) pathway activations, and decreased levels of mechanistic target of rapamycin (mTOR); and proneural, associated with PDGFRA amplification, IDH1 mutation, and proneural development gene expression. A fourth, neural subtype, later was attributed to neural tissue at the margin of the tumor.^{18,19}

Other significant genomic alterations identified by TCGA include mutations in *PIK3CA*, *PTEN*, *RB1*, and *TP53*; genomic gains and losses involving *MET*, *CDK6*, *CDK4*, *MDM2*, and *CDKN2A*/ *CDKN2B* codeletion; and oncogenic gene fusions, including fibroblast growth factor receptor 1 (FGFR1)-transforming acidic coiled coil 1 (TACC1), FGFR3-TACC3, Epidermal growth factor receptor (EGFR)-Septin 14 (SEPT14), and neurotrophic tropomyosin receptor kinase (NTRK).^{19–21} More recently, methylation profiling of an extensive series of GBMs has identified the Receptor tyrosine kinase (RTK1)-type corresponding to the proneural subgroup, RTK2-type, comprising classical and mesenchymal GBM and GBM with Histone Family 3A (H3F3A) alterations as a unique subset.²² Proteomic investigations of GBM found 2 subclasses with exclusive mutations. Proteomic cluster 1 (GPC1) exclusively had mutations in EGFRvIII and PIK3CA, whereas the second group, GPC2, was characterized by mutations in TP53, NF1, PTEN, RB1, and EGFR without the vIII gene fusion variant.¹⁷ More recently, grade 4 gliomas are segregated by their Isocitrate dehydrogenase (IDH) (IDH1/IDH2) mutation status: tumors with wild-type IDH retain the designation of GBM, whereas tumors with IDH mutation now are labeled as grade 4 IDH-mutated astrocytoma.

Drawing from the molecular insights and successes of targeted therapies of other cancers, attempts have been made to extrapolate these successes to GBM, albeit with limited success for most patients.

Signals of Efficacy in Biomarker-Driven Therapy in Glioblastoma

Biomarkers are biological molecules indicative of a physiologic state and may include DNA, RNA, protein, or extracellular vesicles.²³ Biomarkers in oncology fall in a spectrum of prognostic (or indicative of a patient's overall outcome) versus predictive (or informative of the expected response to therapeutic intervention).²⁴ Some biomarkers have both attributes; for example, in breast cancer, HER2 amplification is both prognostic of a poor prognosis due to a more aggressive course without targeted therapy and predictive of therapeutic efficacity with HER2 targeting treatments, such as trastuzumab.²⁵ Similarly, IDH mutations are a prognostic marker of better survival for glioma patients and may be predictive of response to IDH and PARP inhibitors.^{2,10,26,27} Some biomarkers are predictive of a lack of targeted therapy, as exemplified by a lack of efficacy of EGFR inhibitors targeting non-small cell lung cancers with concurrent mutation of EGFR and K-ras mutations, and lack of efficacy of BRAF inhibitors in mutant colon cancers and GBM with concurrent EGFR and BRAF mutations.^{24,28} An established and regularly utilized molecular biomarker in GBM is methylguanine methyltransferase (MGMT) promotor methylation status. When this DNA repair gene is inactive through methylation of the gene promoter (which occurs in approximately 30% of GBMs), it is

Relative to other cancers, biomarker-driven therapies in GBM are less established and have been mainly unsuccessful. Despite recent setbacks, targeted treatment of driver mutations and gene fusions in GBM has produced clinical benefit in rare subsets of patients exemplified in case reports and basket trials. Many clinical trials with active targeted therapy are under way for GBM patients (Table 1).

Most reports of the benefit of targeted therapy in GBM patients have been in driver mutations. BRAF mutations have been demonstrated to be a viable therapeutic target in a variety of cancers, including primary brain tumors through inhibition of BRAF and MEK, which is downstream in this kinase pathway.³¹ A basket trial using trametinib, a MEK inhibitor, included 5 patients with anaplastic astrocytoma and 6 with GBM. One patient had a partial response, and 5 patients had stable disease, with 2 of the patients having disease stabilization that lasted more than 1 year.⁴ Currently, a majority of reported cases of adult brain tumor patients with BRAF alterations are heavily pretreated, may have other current tumor-directed treatments, and had mixed use of different combinations of MEK and BRAF inhibitors making the results difficult to interpret.²⁸ A trial is under way evaluating the use of the MEK inhibitor binimetinib and BRAF inhibitor encorafenib in adults with recurrent BRAFV600E mutant GBM (NCT03973918). The *IDH* inhibitor ivosidenib has shown prolonged disease control in grade 2 and grade 3 IDH-mutant astrocytomas, but it is unknown if there is a benefit with grade 4 IDH-mutant astrocytomas.^{27,32} Neurofibromatosis type 1associated GBMs are uncommon and typically arise from lower-grade gliomas. A clinical benefit with MEK inhibitors was observed based on case report experiences.33,34 Targeting of TSC2 mutation with the MTOR inhibitor everolimus in a GBM patient with Li-Fraumeni syndrome also showed a therapeutic response.³⁵ Gliosarcoma, a subtype of mesenchymal GBM with plateletderived growth factor receptor (PDGFR) and KIT/ SCF autocrine activation loops, has an ongoing phase II trial using sunitinib that targets these pathways (NCT03641326).

Although gene fusions occur in 30% to 50% of GBMs, only a select few have been associated

with oncogenic biologic function.³⁶ Neurotrophictropomyosin receptor kinase (NTRK) fusions in adults with GBM are rare, but, similarly to other cancers with this alteration, have demonstrated a treatment response in case reports, including 45% volume reduction using entrectinib in a pontine astrocytoma patient harboring BCAN-NTRK1 fusion, and a partial response of subclonal periventricular lesion from 67 mm \times 52 mm to $8 \text{ mm} \times 4 \text{ mm}$ using larotrectinib in an adult with recurrent multifocal GBM with an EML4-NTRK3 fusion for 1 month.37,38 Several basket trials are exploring NTRK inhibitors.³⁹ A pediatric patient with GBM harboring a Receptor-type tyrosineprotein phosphatase zeta-MET proto-oncogene (PTPRZ1-MET) fusion and treated with crizotinib had a partial response. An ongoing trial (NCT02978261) is evaluating the c-Met Inhibitor PLB1001 in patients with PTPRZ1-MET fusion recurrent high-grade gliomas. The targeting of FGFR-TACC fusions also has been explored. A phase 1 trial using the pan-fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitor JNJ-42756493 reported a partial response in 2 GBM patients with FGFR3-TACC3 fusion.40 There are currently are ongoing trials in recurrent glioma with FGFR3-TACC3 fusions (NCT01975701, NCT02824133).

A majority of targeted therapy studies in GBM have been derived from successes in systemic cancer. Even among systemic cancers, however, there is heterogenicity of responses of the same drug to the same mutation, which is not surprising given the heterogeneity in the genetic and epigenetic background in which these mutations occur.^{10,41} Concomitant mutations can prevent therapeutic efficacy through the activation of alternative proliferation pathways. For example, EGFR mutations with concurrent EML4-ALK fusions or NRAS alterations lead to EGFR tyrosine kinase inhibitor resistance in non-small lung cancer. Similarly, targeted inhibition of BRAFV600E yields a response rate in 80% of melanoma versus 5% of colon cancers. It is hypothesized that this results from much higher expression in of EGFR in colon cancers, which results in adaptive feedback reactivation of MAPK signaling, leading to activation of other RAF kinases and subsequent resistance.²⁸

Challenges to Success of Molecularly Targeted Therapy in Glioblastoma

Throughout the spectrum of cancer, the number of patients eligible for targeted therapy is relatively low, with the number of patients who benefit from targeted therapy even lower. A cross-

 Table 1

 Active glioblastoma trials using molecularly targeting agents

NCT Number	Drugs	Targets	Title	Phases
NCT02761070	Temozolomide, bevacizumab	VEGFA	Bevacizumab Alone vs Dose-dense Temozolomide Followed by Bevacizumab for Recurrent Glioblastoma, phase III	Phase 3
NCT02678975	Disulfiram, alkylating agents	ALDH2, DBH	Disulfiram in Recurrent Glioblastoma	Phase 2, Phase 3
NCT02573324	Temozolomide, ABT-414, placebo for ABT-414	EGFR	A Study of ABT-414 in Subjects with newly diagnosed Glioblastoma GBM With Epidermal Growth Factor Receptor (EGFR) Amplification	Phase 2, Phase 3
NCT02152982	Temozolomide, veliparib	PARP1, PARP2	Temozolomide With or Without Veliparib in Treating Patients With Newly Diagnosed Glioblastoma Multiforme	Phase 2, Phase 3
NCT03025893	Sunitinib, lomustine	PDGFRB, FLT4, KDR, FLT3, KIT, FLT1, CSF1R, PDGFRA, STMN4	A Phase II/III Study of High-Dose, Intermittent Sunitinib in Patients With Recurrent Glioblastoma Multiforme	Phase 2, Phase 3
NCT03970447	Temozolomide, lomustine, regorafenib	STMN4, FGFR2, PDGFRB, ABL1, <i>BRAF</i> , RAF1, FLT4, KDR, KIT, FGFR1, RET, FLT1, NTRK1, PDGFRA, EPHA2, TEK, DDR2, MAPK11, FRK	A Trial to Evaluate Multiple Regimens in Newly Diagnosed and Recurrent Glioblastoma	Phase 2, Phase 3
NCT02525692	ONC201	DRD2, AKT1, MAPK1	Oral ONC201 in Recurrent GBM, H3 K27M glioma, and Midline Glioma	Phase 2
NCT03363659	Disulfiram, temozolomide	ALDH2, DBH	Disulfiram and Copper Gluconate With Temozolomide in Unmethylated Glioblastoma Multiforme	Phase 2
NCT03973918	Encorafenib, binimetinib	BRAF V600, MAP2K1, MAP2K2	Study of Binimetinib With Encorafenib in Adults With Recurrent BRAF V600-Mutated HGG	Phase 2

NCT03919071	Dabrafenib mesylate, trametinib dimethyl sulfoxide	BRAF, MAP2K1, MAP2K2, MAPK1	Dabrafenib Combined With Trametinib After Radiation Therapy in Treating Patients With Newly-Diagnosed High-Grade Glioma	Phase 2
NCT02981940	Abemaciclib	CDK4, CDK6	A Study of Abemaciclib in Recurrent Glioblastoma	Phase 2
NCT03746080	Plerixafor, temozolomide	CXCR4	Whole Brain Radiation Therapy With Standard Temozolomide Chemo- Radiotherapy and Plerixafor in Treating Patients With Glioblastoma	Phase 2
NCT03600467	SEVI-D (seviteronel in combination with dexamethasone)	CYP17A1	Activity of Seviteronel in Patients With Androgen Receptor (AR)- Positive Glioblastoma	Phase 2
NCT03618667	GC1118	EGFR	GC1118 in Recurrent Glioblastoma Patients With High EGFR Amplification	Phase 2
NCT02844439	Tesevatinib	EGFR, ERBB1, HER2, ERBB2, VEGFR, EPHB4	Study of Tesevatinib Monotherapy in Patients With Recurrent Glioblastoma	Phase 2
NCT03216499	HIF-2α inhibitor PT2385	EPAS1	HIF-2 Alpha Inhibitor PT2385 in Treating Patients With Recurrent Glioblastoma	Phase 2
NCT04051606	Regorafenib	FGFR2, PDGFRB, ABL1, BRAF, RAF1, FLT4, KDR, KIT, FGFR1, RET, FLT1, NTRK1, PDGFRA, EPHA2, TEK, DDR2, MAPK11, FRK	Regorafenib in Bevacizumab Refractory Recurrent Glioblastoma	Phase 2
NCT02926222	Regorafenib, lomustine	FGFR2, PDGFRB, ABL1, BRAF, RAF1, FLT4, KDR, KIT, FGFR1, RET, FLT1, NTRK1, PDGFRA, EPHA2, TEK, DDR2, MAPK11, FRK, STMN4	Regorafenib in Relapsed Glioblastoma	Phase 2
NCT02137759	Standard temozolomide, belinostat	HDAC1, HDAC2, HDAC3, HDAC6	MRSI to Predict Response to RT/ TMZ + Belinostat in GBM	Phase 2
NCT02977780	Temozolomide, neratinib, CC-115, anemaciclib	HER2, ERBB2, EGFR, MTOR, CKD4, CDK6	INdividualized Screening Trial of Innovative Glioblastoma Therapy (INSIGhT)	Phase 2
			(contin	ued on next page)

Table 1 (continued)				
NCT Number	Drugs	Targets	Title	Phases
NCT02885324	Cabozantinib	KDR, RET, MET	Pilot Study of Cabozantinib for Recurrent or Progressive High- Grade Glioma in Children	Phase 2
NCT03581292	Temozolomide, veliparib	PARP1, PARP2	Veliparib, Radiation Therapy, and Temozolomide in Treating Patients With Newly Diagnosed Malignant Glioma Without H3 K27 M or BRAFV600 Mutations	Phase 2
NCT03212274	Olaparib	PARP1, PARP2, PARP3	Olaparib in Treating Patients With Advanced Glioma, Cholangiocarcinoma, or Solid Tumors With IDH1 or IDH2 Mutations	Phase 2
NCT03661723	Pembrolizumab, bevacizumab	PDCD1, VEGFA	Pembrolizumab and Reirradiation in Bevacizumab Naive and Bevacizumab Resistant Recurrent Glioblastoma	Phase 2
NCT02626364	Crenolanib	PDGFRA, PDGFRB, FLT3	Study of Crenolanib in Recurrent/ Refractory Glioblastoma With PDGFRA Gene Amplification	Phase 2
NCT01817751	Sorafenib tosylate, valproic acid, sildenafil citrate	PDGFRB, BRAF, RAF1, FLT4, KDR, FLT3, KIT, FGFR1, RET, FLT1	Sorafenib Tosylate, Valproic Acid, and Sildenafil Citrate in Treating Patients With Recurrent High- Grade Glioma	Phase 2
NCT03522298	Paxalisib (GDC-0084)	РІКЗСА	Safety, Pharmacokinetics and Efficacy of Paxalisib (GDC-0084) in Newly-diagnosed Glioblastoma	Phase 2
NCT03027388	LB-100	PP2A	Protein Phosphatase 2A Inhibitor, in Recurrent Glioblastoma	Phase 2
NCT01582269	LY2157299 monohydrate, lomustine, placebo	STMN4	A Study in Recurrent Glioblastoma (GBM)	Phase 2

196

NCT03149003	DSP-7888 dosing emulsion, bevacizumab	VEGFA	A Study of DSP-7888 Dosing Emulsion in Combination With Bevacizumab in Patients With Recurrent or Progressive Glioblastoma Following Initial Therapy	Phase 2
NCT01903330	ERC1671, granulocyte macrophageecolony stimulating factor (GM-CSF), cyclophosphamide, oral control (sucrose pill) Injectable control (sodium chloride injection United States Pharmacopeia [0.9%]), bevacizumab	VEGFA	ERC1671/GM-CSF/ Cyclophosphamide for the Treatment of Glioblastoma Multiforme	Phase 2
NCT03532295	Epacadostat, bevacizumab	VEGFA	INCMGA00012 and Epacadostat in Combination With Radiation and Bevacizumab in Patients With Recurrent Gliomas	Phase 2
NCT03743662	Bevacizumab, nivolumab	VEGFA, PDCD1	Nivolumab With Radiation Therapy and Bevacizumab for Recurrent MGMT Methylated Glioblastoma	Phase 2
NCT03463265	ABI-009, bevacizumab, temozolomide, lomustine, marizomib	VEGFA, STMN4	ABI-009 (Nab-Rapamycin) in Recurrent High Grade Glioma and Newly Diagnosed Glioblastoma	Phase 2
NCT01004874	Bevacizumab, temozolomide, topotecan	VEGFA, TOP1, TOP1MT	Avastin/Radiation (XRT)/ Temozolomide (Temodar) Followed by Avastin/Temodar/ Topotecan for Glioblastoma	Phase 2
NCT01062425	Cediranib maleate, temozolomide	VEGFR1, VEGFR2, VEGFR3	Temozolomide and Radiation Therapy With or Without Cediranib Maleate in Treating Patients With Newly Diagnosed Glioblastoma	Phase 2
NCT02974621	Cediranib, cediranib maleate, olaparib	VEGFR1, VEGFR2, VEGFR3, PARP1, PARP2, PARP3	Cediranib Maleate and Olaparib Compared to Bevacizumab in	Phase 2
			(contin	ued on next page)

Table 1

(continued)

NCT Number	Drugs	Targets	Title	Phases
			Treating Patients With Recurrent Glioblastoma	
NCT03856099	TTAC-0001	VEGFR2	TTAC-0001 Phase II Trial With Recurrent Glioblastoma Progressed on Bevacizumab	Phase 2
NCT03673787	Ipatasertib, atezolizumab	AKT1, PDCD1	A Trial of Ipatasertib in Combination With Atezolizumab	Phase 1, Phase 2
NCT02715609	Disulfiram, copper gluconate, temozolomide	ALDH2, DBH	Disulfiram/Copper With Concurrent Radiation Therapy and Temozolomide in Patients With Newly Diagnosed Glioblastoma	Phase 1, Phase 2
NCT03158389	APG101, alectinib, idasanutlin, atezolizumab, vismodegib, temsirolimus, palbociclib	ALK, SMO, MTOR, CDK4, CDK6	NCT Neuro Master Match (NOA-20)	Phase 1, Phase 2
NCT02586857	ACP-196	ВТК	A Phase 1 b/2, Multicenter, Open- label Study of ACP-196 in Subjects With Recurrent Glioblastoma Multiforme (GBM)	Phase 1, Phase 2
NCT02942264	Zotiraciclib (TG02), temozolomide	CDK1, CDK2, CDK7, JAK2, CDK9, FLT3, FLK2, STK1	Zotiraciclib (TG02) Plus Dose-Dense or Metronomic Temozolomide Followed by Randomized Phase II Trial of Zotiraciclib (TG02) Plus Temozolomide vs Temozolomide Alone in Adults With Recurrent Anaplastic Astrocytoma and Glioblastoma	Phase 1, Phase 2
NCT01790503	PLX3397, temozolomide	CSF1R	A Phase 1 b/2 Study of PLX3397 + Radiation Therapy + Temozolomide in Patients With Newly Diagnosed Glioblastoma	Phase 1, Phase 2
NCT04121455	Olaptesed pegol	CXCL12		Phase 1, Phase 2

			Glioblastoma Treatment With Irradiation and Olaptesed Pegol (NOX-A12) in MGMT Unmethylated Patients	_
NCT00669669	Carmustine, O6-benzylguanine, plerixafor, temozolomide	GSR, CXCR4	O6-Benzylguanine-Mediated Tumor Sensitization With Chemoprotected Autologous Stem Cell in Treating Patients With Malignant Gliomas	Phase 1, Phase 2
NCT00555399	Vorinostat, isotretinoin, temozolomide	HDAC1, HDAC2, HDAC3, HDAC6	Vorinostat, Isotretinoin and Temozolomide in Adults With Recurrent Glioblastoma Multiforme (GBM)	Phase 1, Phase 2
NCT00731731	Temozolomide, vorinostat	HDAC1, HDAC2, HDAC3, HDAC6	Vorinostat, Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed Glioblastoma Multiforme	Phase 1, Phase 2
NCT03684811	FT-2102, azacitidine, gemcitabine and cisplatin	IDH1, DNMT1	A Study of FT 2102 in Participants With Advanced Solid Tumors and Gliomas With an IDH1 Mutation	Phase 1, Phase 2
NCT01434602	Everolimus, sorafenib	MTOR, PDGFRB, BRAF, RAF1, FLT4, KDR, FLT3, KIT, FGFR1, RET, FLT1	Phase I-II Everolimus and Sorafenib in Recurrent High-Grade Gliomas	Phase 1, Phase 2
NCT03150862	BGB-290, temozolomide	PARP1, PARP2	A Study Assessing Pamiparib With Radiation and/or Temozolomide (TMZ) in Subjects With Newly Diagnosed or Recurrent Glioblastoma	Phase 1, Phase 2
NCT03914742	PARP inhibitor BGB-290, temozolomide	PARP1, PARP2	BGB-290 and Temozolomide in Treating Patients With Recurrent Gliomas With IDH1/2 Mutations	Phase 1, Phase 2
NCT03782415	MN-166, temozolomide	PDE3, PDE4, PD10, PDE11	Study to Evaluate Ibudilast and TMZ Combo Treatment in Newly Diagnosed and Recurrent Glioblastoma	Phase 1, Phase 2
			(contin	ued on next page)

Table 1 (continued)				
NCT Number	Drugs	Targets	Title	Phases
NCT02331498	Pazopanib	PDGFRB, FLT4, KDR, KIT, FLT1, PDGFRA, FGF1, FGFR3, ITK, SH2B3	Phase I/II Study of Pazopanib + Temozolomide in Patients With Newly Diagnosed Glioblastoma Multiforme	Phase 1, Phase 2
NCT03466450	PF-04449913, temozolomide oral capsule	SMO	Glasdegib (PF-04449913) With Temozolomide Newly Diagnosed Glioblastoma	Phase 1, Phase 2
NCT02765165	USL311, lomustine	STMN4	Phase 1/2 Study of USL311 Alone and in Combination With Lomustine in Subjects With Advanced Solid Tumors and Relapsed/Recurrent Glioblastoma Multiforme (GBM)	Phase 1, Phase 2
NCT02770378	Temozolomide, aprepitant, minocycline, disulfiram, celecoxib, sertraline, captopril, itraconazole, ritonavir, auranofin	TACR1, VEGFA, ALOX5, rpsl, rpsD, MMP9, CASP1, CASP3, CYCS, ALDH2, DBH, PTGS2, PDPK1, SLC6A4, SLC6A3, ACE, MMP2, MMP9, ERG11, CYP51A1, pol, IKBKB, PRDX5	A Proof-of-concept Clinical Trial Assessing the Safety of the Coordinated Undermining of Survival Paths by 9 Repurposed Drugs Combined With Metronomic Temozolomide (CUSP9v3 Treatment Protocol) for Recurrent Glioblastoma	Phase 1, Phase 2
NCT03119064	Nanoliposomal irinotecan, temozolomide	TOP1, TOP1MT	BrUOG 329 GBM Onyvide With TMZ	Phase 1, Phase 2
NCT02611024	Lurbinectedin (PM01183), irinotecan	TOP1, TOP1MT	Pharmacokinetic Study of PM01183 in Combination With Irinotecan in Patients With Selected Solid Tumors	Phase 1, Phase 2
NCT03678883	9-ING-41, gemcitabine—21-d cycle, doxorubicin, lomustine, carboplatin, nab-paclitaxel, paclitaxel, gemcitabine—28 d cycle, irinotecan	TOP2A, STMN4, TUBB1, MAP2, BCL2, MAP4, MAPT, TOP1, TOP1MT	9-ING-41 in Patients With Advanced Cancers	Phase 1, Phase 2
NCT03213002	Capecitabine, temozolomide	TYMS	Oral Capecitabine and Temozolomide (CAPTEM) for Newly Diagnosed GBM	Phase 1, Phase 2

NCT01349660	Bevacizumab, BKM120	VEGFA	Combination of BKM120 and Bevacizumab in Refractory Solid Tumors and Relapsed/Refractory Glioblastoma Multiforme	Phase 1, Phase 2
NCT02330562	MRZ, bevacizumab	VEGFA	Stage 1: Marizomib + Bevacizumab in WHO Gr IV GBM; Stage 2: Marizomib Alone; Stage 3: Combination of Marizomib and Bevacizumab	Phase 1, Phase 2
NCT04004975	Anlotinib	VEGFR2, VEGFR3	Clinical Study on the Treatment of Recurrent Glioblastoma With Anlotinib	Phase 1, Phase 2
NCT04421378	Selinexor, temozolomide (temozolomide), lomustine (CCNU)	XPO1, STMN4	A Study of Selinexor in Combination With Standard of Care Therapy for Newly Diagnosed or Recurrent Glioblastoma	Phase 1, Phase 2
NCT01430351	Mefloquine, memantine hydrochloride, metformin hydrochloride, temozolomide	ADORA2A, HBA1	Temozolomide, Memantine Hydrochloride, Mefloquine, and Metformin Hydrochloride in Treating Patients With Glioblastoma Multiforme After Radiation Therapy	Phase 1
NCT02270034	Crizotinib	ALK, MET	Study to Evaluate Safety and Activity of Crizotinib With Temozolomide and Radiotherapy in Newly Diagnosed Glioblastoma	Phase 1
NCT03535350	Ibrutinib, temozolomide (temozolomide)	ВТК	Ibrutinib With Radiation and Temozolomide in Patients With Newly Diagnosed Glioblastoma	Phase 1
NCT03224104	TG02, temozolomide	CDK1, CDK2, CDK7, JAK2, CDK9, FLT3, FLK2, STK1	Study of TG02 in Elderly Newly Diagnosed or Adult Relapsed Patients With Anaplastic Astrocytoma or Glioblastoma	Phase 1
NCT03231501	Epitinib succinate	EGFR	HMPL-813 in Treating Patients With Glioblastoma	Phase 1
NCT02101905	Lapatinib, lapatinib ditosylate	EGFR, ERBB2	Lapatinib Ditosylate Before Surgery in Treating Patients With Recurrent High-Grade Glioma	Phase 1
			(contin	ued on next page)

Table 1 (continued)				
NCT Number	Drugs	Targets	Title	Phases
NCT02423525	Afatinib	EGFR, ERBB2, ERBB4	Safety Study of Afatinib for Brain Cancer	Phase 1
NCT02974738	РТ2977	EPAS1	A Trial of PT2977 Tablets In Patients With Advanced Solid Tumors	Phase 1
NCT03374943	KB004	EPHA3	A Trial of KB004 in Patients With Glioblastoma	Phase 1
NCT00102648	Lonafarnib, temozolomide	Ftase	Lonafarnib and Temozolomide in Treating Patients With Glioblastoma Multiforme That Is Recurrent or Did Not Respond to Previous Treatment With Temozolomide	Phase 1
NCT03452930	Tinostamustine	HDAC1, HDAC2, HDAC3, HDAC6	Tinostamustine With or Without Radiation Therapy in Treating Patients With Newly Diagnosed MGMT-Unmethylated Glioblastoma	Phase 1
NCT00268385	Temozolomide, vorinostat	HDAC1, HDAC2, HDAC3, HDAC6	Vorinostat and Temozolomide in Treating Patients With Malignant Gliomas	Phase 1
NCT02381886	IDH305	IDH1	A Study of IDH305 in Patients With Advanced Malignancies That Harbor IDH1R132 Mutations	Phase 1
NCT03514069	Ruxolitinib, temozolomide	JAK1, JAK2	Ruxolitinib With Radiation and Temozolomide for Grade III Gliomas and Glioblastoma	Phase 1
NCT02133183	Sapanisertib	MTOR	Sapanisertib Before and After Surgery in Treating Patients With Recurrent Glioblastoma	Phase 1
NCT02142803	Sapanisertib	MTOR	TORC1/2 Inhibitor MLN0128 and Bevacizumab in Treating Patients	Phase 1

			With Recurrent Glioblastoma or Advanced Solid Tumors	
NCT02238496	Perifosine, temsirolimus	MTOR	Perifosine and Torisel (Temsirolimus) for Recurrent/Progressive Malignant Gliomas	Phase 1
NCT03749187	PARP inhibitor BGB-290, temozolomide	PARP1, PARP2	BGB-290 and Temozolomide in Treating Isocitrate Dehydrogenase (IDH)1/2-Mutant Grade I-IV Gliomas	Phase 1
NCT03426891	Pembrolizumab, vorinostat, temozolomide	PDCD1, HDAC1, HDAC2, HDAC3, HDAC6	Pembrolizumab and Vorinostat Combined With Temozolomide for Newly Diagnosed Glioblastoma	Phase 1
NCT04205357	Sulfasalazine	PTGS1, PTGS2, ALOX5, CHUK, IKBKB, SLC7A11, ACAT1, TBXAS1, PLA2G1B	Sulfasalazine and Stereotactic Radiosurgery for Recurrent Glioblastoma	Phase 1
NCT03463733	Hydroxyurea, temozolomide	RRM1	Hydroxy-urea and Temozolomide in Patients With a Recurrent Malignant Brain Tumor (Glioblastoma)	Phase 1
NCT03587038	OKN 007, temozolomide	SULF2	OKN-007 in Combination With Adjuvant Temozolomide Chemoradiotherapy for Newly Diagnosed Glioblastoma	Phase 1
NCT02192359	lrinotecan, irinotecan hydrochloride	ΤΟΡΊ, ΤΟΡΊΜΤ	Carboxylesterase-Expressing Allogeneic Neural Stem Cells and Irinotecan Hydrochloride in Treating Patients With Recurrent High-Grade Gliomas	Phase 1
NCT02644291	Mebendazole	TUBA1A, TUBB4B	Phase I Study of Mebendazole Therapy for Recurrent/Progressive Pediatric Brain Tumors	Phase 1
NCT01729260	Mebendazole	TUBA1A, TUBB4B	Mebendazole in Newly Diagnosed High-Grade Glioma Patients Receiving Temozolomide	Phase 1
NCT02669173	Capecitabine, bevacizumab	TYMS, VEGFA	Capecitabine + Bevacizumab in Patients With Recurrent Glioblastoma	Phase 1
			(contin	ued on next pa

Table 1 (continued)				
NCT Number	Drugs	Targets	Title	Phases
NCT03722342	TTAC-0001 and pembrolizumab combination	VEGFR2	TTAC-0001 and Pembrolizumab Combination phase1b Trial in Recurrent Glioblastoma	Phase 1
NCT01849146	Adavosertib, temozolomide	WEE1	Adavosertib, Radiation Therapy, and Temozolomide in Treating Patients With Newly Diagnosed or Recurrent Glioblastoma	Phase 1
NCT04216329	Selinexor, temozolomide	XPO1	Selinexor (KPT-330) in Combination With Temozolomide and Radiation Therapy in Patients With Newly Diagnosed Glioblastoma	Phase 1

sectional study reported that 8.33% of 609,640 patients in 2018 were eligible for targeted treatment, but only 4.9% of all patients had a clinical benefit.⁴² These numbers likely are even lower in GBM due to a multitude of issues, discussed previously, including impaired drug delivery because of the BBB, intratumoral genetic and transcriptional heterogeneity, redundant activating pathways or escape mechanisms, and inherent therapeutic resistance.^{10,43}

The BBB presents a unique challenge in that it restricts the entry of more than 95% of FDAapproved drugs into the central nervous system, thereby preventing the delivery of therapeutic drug concentrations to brain cancer. Accordingly, targeted molecular therapies considered for clinical trials should demonstrate therapeutic levels within the brain and the entire tumor volume (both enhancing and nonenhancing).⁹

The genetic and transcriptional heterogenicity of GBM presents a challenge to targeting therapy in that subpopulations can respond to selective evolutionary pressures of targeted therapy, thereby resulting in treatment resistance.10 Single-cell analysis studies found that frequently there are multiple subtypes (mesenchymal, classical, and so forth) within 1 GBM, including a population harboring stem cell properties.⁴³ Perceived potentially actionable alterations could be passenger mutations, instead of driver mutations amenable to therapy.⁴⁴ A notable example is that EGFR is overexpressed in 50% to 60% of GBM patients making it historically an attractive target. EGFR tyrosine kinase inhibitors and monoclonal antibody targeting EGFR, however, have failed to show clinical activity.¹⁰ A later attempt to address intertumoral heterogenicity with a combination of EGFR tyrosine kinase inhibitor and mTOR inhibitors lead to dose-limiting toxicity and no therapeutic response.²⁰ Additionally, initial responses to the targeting of driver mutations often lack a durable treatment effect that has been reported in many cases.^{28,38,45}

Further complicating the picture and targeted therapy for cancer, in general, are recent investigations showing that off-target toxicity rather than the on-target effects are responsible for the antitumor efficacy. A study using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 mutagenesis evaluated a set of cancer drugs and drug targets and found that the effectiveness of drugs was unaffected by the loss of its putative target, indicating that these compounds kill cells via off-target effects. Therefore, providing experimental validation of the mechanism of action of cancer drugs in the preclinical setting would be critical before embarking on a clinical trial. Such verification may help decrease the number of therapies tested on humans that fail to provide any clinical benefit.⁴⁶ These challenges underscore the need to develop complementary approaches to direct targeting.

Synthetic Lethality and Future Approaches to Biomarker-Driven Strategies in Glioblastoma

A large number of currently active clinical trials (see Table 1) include a molecular targeting component and can be broadly divided into 2 classes: (1) trials whose eligibility criteria are based on the specific genetic alterations being targeted (for example, BRAFV600E, EGFRvIII, and IDH1 R132H), and (2) trials that target pathways frequently amplified over the disease course or as a response to treatment (for example, angiogenesis pathways or DNA repair pathways). The number of patients who can benefit from targeting specific genetic alterations in GBM is small. Many alterations in GBM are loss of function mutations or deletions, which makes their direct targeting difficult. The situation can be partially alleviated by expanding molecular testing to include gene expression profiling. The WINTHER trial (NCT01856296), which enrolled primarily patients with colon, head, and neck, and lung cancer, demonstrated that transcriptomic profiling can expand personalized cancer treatment.^{47,48} The success of targeting amplified pathways requires elucidation of the biological mechanisms that are being affected by targeting, identification of predictive biomarkers of response, and inclusion of such biomarkers' status in the eligibility criteria to identify the patients most likely to benefit from the therapy. As illustrated by the failure of many antiangiogenesis therapies to elicit a sustained response in GBM, targeting biological pathways essential for survival is likely to activate compensatory mechanisms that ensure cell survival.⁴⁹ In this situation, treatment can be effective only when such compensation is disabled either by the disease (inactivating mutation or gene deletion) or by targeted therapy.

Molecular targeting often works best where the requirement for the target is increased in cancer cells compared with normal cells, due to either intrinsic genetic or epigenetic changes in the cancer cells or extrinsic microenvironmental changes.^{50,51} One such dependency that can be exploited for therapeutic benefit is the dependency between 2 synthetic lethal partner genes: the loss of each gene individually can be tolerated by the cell, but their simultaneous loss leads to cell death (Fig. 1). For cancer cells in which 1 of the synthetic lethal partners is lost (via mutation or

Fig. 1. Synthetic lethality. (*A*) Synthetic lethality arises when simultaneous loss of 2 genes results in cell death. (*B*) PARP inhibition is a selective anticancer therapy for BRCA1/2 mutant cancer cells. Created with BioRender.com. MUT, mutant; WT, wild-type.

deletion), targeting the second partner provides an effective and selective anticancer strategy: the cancer cells cannot tolerate the loss of the second partner, whereas normal cells largely are unaffected.⁵⁰ The first-discovered and most effective to-date anticancer therapy that exploits synthetic lethal interactions is inhibition of PARP (PARP1/ PARP2) in breast cancer patients with germline mutations in BRCA1 and BRCA2.13,14 PARP senses single-strand breaks in DNA and induce DNA damage response; its inhibition leads to accumulation of single and double-strand breaks in DNA. Loss-of-function mutations of BRCA1/2, which are required for homologous recombination and DNA break repair, renders cells unable to repair the accumulated DNA damage, and induces apoptosis (see Fig. 1). PARP inhibition has been considered a therapeutic approach in the context of non-BRCA1/2 mutations in situations where cells have increased reliance on homologous recombination for survival (either due to cytotoxic stress induced by treatment or reactive oxygen species, or other DNA repair enzyme mutations). This concept is being tested in brain tumors. For example, NCT03212274 is trialing PARP inhibition in advanced IDH1/2 mutated gliomas (because 2hydroxygluterate produced by neomorphic IDH has been reported to suppress homologous

recombination), and NCT02152982 is trialing PARP inhibition in combination with temozolomide in newly diagnosed GBM.²⁶

Several preclinical studies have demonstrated the potential of targeting other synthetic lethal interactions as anticancer therapies.⁵¹⁻⁵³ Barbie and colleagues,⁵¹ for example, discovered that TBK1 (encoding the tank binding kinase) is essential in KRAS mutation-driven cell lines. Chan and colleagues⁵² showed that cancers with microsatellite instability depend on WRN helicase. The depletion of WRN-induced double-stranded DNA breaks and promoted apoptosis and cell-cycle arrest selectively in these models.⁵² To date, however, few clinical studies have managed to exploit such interactions beyond PARP inhibition.54 Some of the challenges associated with successfully translating these principles include the difficulty in experimentally determining synthetic lethal interactions, which theoretically entails knocking down all possible pairs of genes; the inability of preclinical models to fully recapitulate the patient disease; and the existence of multiple compensatory mechanisms, which lowers the magnitude of response (leading to synthetic sickness rather than death when a pair of genes is downregulated). In particular, the magnitude of the response may itself be dependent on a larger

molecular context rather than be uniform across tumor subtypes.⁵⁵ Similarly, subclonal heterogeneity affects the likelihood of response.⁵⁶

Given the limitations of preclinical testing and the extensive tumor heterogeneity, predicting robust synthetic lethal relationships is imperative for successfully translating the promise of synthetic lethal targeting. The advent of high-throughput screening and gene editing technologies facilitates largescale screening and identification of synthetic pairs in vitro models.⁵⁷⁻⁶⁰ The limitations of the experimental approaches are being overcome through computational and machine learning approaches that leverage knowledge from yeast screens, protein-protein information networks, metabolic and functional pathways, and biological principles.^{61–63} The accumulation of large multiomics patient-tumor derived data sets from projects like TCGA enables novel integrative computational approaches that strengthen predictions through evidence from orthogonal data sources.⁶⁴⁻⁶⁶ For example, Lee and colleagues'65 approach of identification of clinically relevant synthetic lethality (ISLE) sequentially filters putative synthetic lethal pairs by taking into consideration evidence from cell line screens, evidence of negative pressure for selection of disabled putative pairs as gauged by lower than expected frequency of encountering such pairs in patient tumors, evidence of lower viability of tumors that exhibit disabled putative pairs and that can be assessed through the association of such disabled pairs with longer overall survival of the patients harboring such tumors, and evolutionary relatedness of the genes in a pair, which can indicate similarity of function.65 Crucially, approaches like ISLE enable predicting targeted drug response for individual samples based on the genomic or transcriptomic status of the target's predicted synthetic lethal partners in the sample, effectively stipulating and improving the eligibility criteria for patient enrollment in clinical trials.

SUMMARY

Despite the advances and successes of molecularly targeted therapies in other malignancies, GBM remains among the most difficult to treat cancers, due to its robust heterogenicity and presence of the BBB preventing adequate delivery of most systemically administered agents. Traditional molecular targeted therapies work only in rare subsets of patients harboring a tumor with a true driver genomic alteration that continues to be required for tumor cell survival. Such driver targets, however, are unlikely to be identified for most brain tumors. Therefore, complementary approaches that incorporate a larger genomic context in the decision process may overcome the limitations of direct targeting and deserve further investigation. The maturation of a master protocol incorporating multicenter clinical trial designs as exemplified by National Cancer Institute Molecular Analysis for Therapy Choice (NCI-MATCH) (encompassing 40 treatment arms and spanning more than 1100 clinical centers) combined with advances in next-generation sequencing technologies that are enabling extensive molecular profiling of tumors are providing unprecedented opportunities to make the nextgeneration brain cancer trials transformative.

CLINICS CARE POINTS

- Molecular evaluation of GBM is the standard of care for diagnostic clarity and identification of potential druggable alterations
- Targeted therapy benefits few GBM patients due to immense molecular heterogeneity
- Delivery of targeted drugs at therapeutic concentrations often is impeded by the BBB, making it essential to demonstrate therapeutic levels of drug within the brain and entire tumor volume in preclinical studies
- The therapeutic benefit seen with a small subset of GBM patients indicate that robust molecular markers and patient selection are critical
- Novel complementary treatment approaches based on synthetic lethal interactions may expand the promise of precision oncology

DISCLOSURE

The authors have nothing to disclose.

REFERENCES

- Ostrom QT, Cioffi G, Gittleman H, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro-Oncology 2019; 21(Supplement_5):v1–100.
- Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016;131(6):803–20.
- Hegi ME, Diserens A-C, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352(10):997–1003.

Smith-Cohn et al

- Asklund T, Malmström A, Bergqvist M, et al. Brain tumors in Sweden: Data from a population-based registry 1999–2012. Acta Oncol 2015;54(3):377–84.
- Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N Engl J Med 2005; 352(10):987–96.
- Hegi ME, Stupp R. Withholding temozolomide in glioblastoma patients with unmethylated *MGMT* promoter—still a dilemma?: Table 1. Neuro Oncol 2015; 17(11):1425–7.
- Touat M, Idbaih A, Sanson M, et al. Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann Oncol 2017;28(7):1457–72.
- 8. Baudino T. Targeted cancer therapy: the next generation of cancer treatment. Curr Drug Discov Technol 2015;12(1):3–20.
- Grossman SA, Romo CG, Rudek MA, et al. Baseline requirements for novel agents being considered for phase ii/iii brain cancer efficacy trials:conclusions from the adult brain tumor consortium's first workshop on cns drug delivery. Neuro-Oncology 2020; noaa142. https://doi.org/10.1093/neuonc/noaa142.
- Chen R, Smith-Cohn M, Cohen AL, et al. Glioma Subclassifications and Their Clinical Significance. Neurotherapeutics 2017;14(2):284–97.
- Bridges CB. The origin of variation. Amer Nat 1922; 56:51–63. Available at. https://www.journals. uchicago.edu/doi/pdfplus/10.1086/279847.
- Nijman SMB. Synthetic lethality: General principles, utility and detection using genetic screens in human cells. FEBS Lett 2011;585(1):1–6.
- Bryant HE, Schultz N, Thomas HD, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005; 434(7035):913–7.
- Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005;434(7035):917–21.
- Yan L, Rosen N, Arteaga C. Targeted cancer therapies. Chin J Cancer 2011;30(1):1–4.
- Kantarjian HM, Talpaz M, O'Brien S, et al. Imatinib mesylate for Philadelphia chromosome-positive, chronic-phase myeloid leukemia after failure of interferon-alpha: follow-up results. Clin Cancer Res 2002;8(7):2177–87.
- Oh S, Yeom J, Cho HJ, et al. Integrated pharmacoproteogenomics defines two subgroups in isocitrate dehydrogenase wildtype glioblastoma with prognostic and therapeutic opportunities. Nat Commun 2020;11(1):3288.
- Wang Q, Hu B, Hu X, et al. Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell 2017;32(1):42–56.e6.

- Brennan CW, Verhaak RGW, McKenna A, et al. The somatic genomic landscape of glioblastoma. Cell 2013;155(2):462–77.
- Prados MD, Byron SA, Tran NL, et al. Toward precision medicine in glioblastoma: the promise and the challenges. Neuro Oncol 2015;17(8):1051–63.
- Okamura R, Boichard A, Kato S, et al. Analysis of NTRK Alterations in Pan-Cancer Adult and Pediatric Malignancies: Implications for NTRK-Targeted Therapeutics. JCO Precision Oncol 2018;(2):1–20.
- Sturm D, Witt H, Hovestadt V, et al. Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma. Cancer Cell 2012;22(4):425–37.
- Henry NL, Hayes DF. Cancer biomarkers. Mol Oncol 2012;6(2):140–6.
- Oldenhuis CNAM, Oosting SF, Gietema JA, et al. Prognostic versus predictive value of biomarkers in oncology. Eur J Cancer 2008;44(7):946–53.
- 25. Perez EA, Romond EH, Suman VJ, et al. Trastuzumab Plus Adjuvant Chemotherapy for Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer: Planned Joint Analysis of Overall Survival From NSABP B-31 and NCCTG N9831. JCO 2014;32(33): 3744–52.
- Sulkowski PL, Corso CD, Robinson ND, et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med 2017;9(375):eaal2463.
- Mellinghoff IK, Ellingson BM, Touat M, et al. Ivosidenib in Isocitrate Dehydrogenase 1 – Mutated Advanced Glioma. JCO 2020. https://doi.org/10.1200/JCO.19. 03327.
- Smith-Cohn M, Davidson C, Colman H, et al. Challenges of targeting *BRAF* V600E mutations in adult primary brain tumor patients: a report of two cases. CNS Oncol 2019;8(4):CNS48. https://doi.org/10. 2217/cns-2019-0018.
- 29. Wick W, Meisner C, Hentschel B, et al. Prognostic or predictive value of MGMT promoter methylation in gliomas depends on IDH1 mutation. Neurology 2013;81(17):1515–22.
- Rivera AL, Pelloski CE, Gilbert MR, et al. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro-Oncology 2010;12(2):116–21.
- Maraka S, Janku F. BRAF alterations in primary brain tumors. Discov Med 2018;26(141):51–60.
- Louis DN, Wesseling P, Aldape K, et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol 2020;bpa.12832. https://doi.org/10.1111/bpa.12832.

- Lobbous, Bernstock, Coffee, et al. An update on neurofibromatosis type 1-associated gliomas. Cancers 2020;12(1):114.
- Ameratunga M, McArthur G, Gan H, et al. Prolonged disease control with MEK inhibitor in neurofibromatosis type I-associated glioblastoma. J Clin Pharm Ther 2016;41(3):357–9.
- Zureick AH, McFadden KA, Mody R, et al. Successful treatment of a *TSC2* -mutant glioblastoma with everolimus. BMJ Case Rep 2019;12(5):e227734.
- Xu T, Wang H, Huang X, et al. Gene fusion in malignant glioma: an emerging target for next-generation personalized treatment. Translational Oncol 2018; 11(3):609–18.
- 37. Drilon A, Siena S, Ou S-HI, et al. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase i trials (ALKA-372-001 and STARTRK-1). Cancer Discov 2017;7(4):400–9.
- Schram AM, Taylor BS, Hechtman JF, et al. Abstract LB-302: potential role of larotrectinib (LOXO-101), a selective pan-TRK inhibitor, in NTRK fusion-positive recurrent glioblastoma. In: Dang CV, editor. Experimental and molecular therapeutics, Volume 77, Issue 13. American Association for Cancer Research; 2017. https://doi.org/10.1158/1538-7445. AM2017-LB-302. pp. LB-302. Available at: https:// cancerres.aacrjournals.org/content/77/13_Supple ment/LB-302. LB-302-LB-302.
- Gambella A, Senetta R, Collemi G, et al. NTRK fusions in central nervous system tumors: a rare, but worthy target. IJMS 2020;21(3):753.
- 40. Tabernero J, Bahleda R, Dienstmann R, et al. Phase I dose-escalation study of JNJ-42756493, an oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J Clin Oncol 2015;33(30):3401–8.
- Mroz EA, Rocco JW. The challenges of tumor genetic diversity: Tumor Diversity. Cancer 2017; 123(6):917–27.
- Marquart J, Chen EY, Prasad V. Estimation of the Percentage of US Patients With Cancer Who Benefit From Genome-Driven Oncology. JAMA Oncol 2018; 4(8):1093.
- Couturier CP, Ayyadhury S, Le PU, et al. Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nat Commun 2020;11(1):3406.
- 44. Gatenby RA, Cunningham JJ, Brown JS. Evolutionary triage governs fitness in driver and passenger mutations and suggests targeting never mutations. Nat Commun 2014;5:5499.
- International Cancer Genome Consortium PedBrain Tumor Project. Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. Nat Med 2016;22(11):1314–20.

- 46. Lin A, Giuliano CJ, Palladino A, et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci Transl Med 2019;11(509):eaaw8412.
- Rodon J, Soria J-C, Berger R, et al. Genomic and transcriptomic profiling expands precision cancer medicine: the WINTHER trial. Nat Med 2019;25(5): 751–8.
- Batchelor TT, Reardon DA, de Groot JF, et al. Antiangiogenic Therapy for Glioblastoma: Current Status and Future Prospects. Clin Cancer Res 2014; 20(22):5612–9.
- Gilbert MR, Dignam JJ, Armstrong TS, et al. A Randomized Trial of Bevacizumab for Newly Diagnosed Glioblastoma. N Engl J Med 2014;370(8): 699–708.
- Hartwell LH. Integrating Genetic Approaches into the Discovery of Anticancer Drugs. Science 1997; 278(5340):1064–8.
- Barbie DA, Tamayo P, Boehm JS, et al. Systematic RNA interference reveals that oncogenic KRASdriven cancers require TBK1. Nature 2009; 462(7269):108–12.
- Chan EM, Shibue T, McFarland JM, et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature 2019;568(7753):551–6.
- Karpel-Massler G, Ishida CT, Bianchetti E, et al. Induction of synthetic lethality in IDH1-mutated gliomas through inhibition of Bcl-xL. Nat Commun 2017;8(1):1067.
- Ashworth A, Lord CJ. Synthetic lethal therapies for cancer: what's next after PARP inhibitors? Nat Rev Clin Oncol 2018;15(9):564–76.
- Ku AA, Hu H-M, Zhao X, et al. Integration of multiple biological contexts reveals principles of synthetic lethality that affect reproducibility. Nat Commun 2020;11(1):2375.
- Hyman DM, Taylor BS, Baselga J. Implementing Genome-Driven Oncology. Cell 2017;168(4):584–99.
- Whitehurst AW, Bodemann BO, Cardenas J, et al. Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 2007;446(7137): 815–9.
- Williams SP, Barthorpe AS, Lightfoot H, et al. Highthroughput RNAi screen for essential genes and drug synergistic combinations in colorectal cancer. Sci Data 2017;4(1):170139.
- Shen JP, Zhao D, Sasik R, et al. Combinatorial CRISPR–Cas9 screens for de novo mapping of genetic interactions. Nat Methods 2017;14(6):573–6.
- Han K, Jeng EE, Hess GT, et al. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat Biotechnol 2017;35(5):463–74.
- 61. Kranthi T, Rao SB, Manimaran P. Identification of synthetic lethal pairs in biological systems through

network information centrality. Mol Biosyst 2013; 9(8):2163.

- Folger O, Jerby L, Frezza C, et al. Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 2011;7(1):501.
- Srivas R, Shen JP, Yang CC, et al. A Network of Conserved Synthetic Lethal Interactions for Exploration of Precision Cancer Therapy. Mol Cell 2016; 63(3):514–25.
- Liany H, Jeyasekharan A, Rajan V. Predicting synthetic lethal interactions using heterogeneous data sources. Bioinformatics 2020;36(7):2209–16.
- **65**. Lee JS, Das A, Jerby-Arnon L, et al. Harnessing synthetic lethality to predict the response to cancer treatment. Nat Commun 2018;9(1):2546.
- Jerby-Arnon L, Pfetzer N, Waldman YY, et al. Predicting Cancer-Specific Vulnerability via Data-Driven Detection of Synthetic Lethality. Cell 2014;158(5):1199–209.