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Abstract

Introduction: Radiomics now has significant momentum in
the era of precision medicine. Glioma is one of the patholo-
gies that has been extensively evaluated by radiomics. How-
ever, this technique has not been incorporated into clinical
practice. In this systematic review, we selected and reviewed
the published studies about glioma grading by radiomics to
evaluate this technique’s feasibility and its challenges. Mate-
rial and Methods: Using seven different search strings, we
considered all published English manuscripts from 2015 to
September 2020 in PubMed, Embase, and Scopus databases.
After implementing the exclusion and inclusion criteria, the
final papers were selected for the methodological quality as-
sessment based on our in-house Modified Radiomics Stan-
dard Scoring (RQS) containing 43 items (minimum score of
0, maximum score of 44). Finally, we offered our opinion
about the challenges and weaknesses of the selected pa-
pers. Results: By our search, 1,177 manuscripts were found
(485in PubMed, 343 in Embase, and 349 in Scopus). After the

implementation of inclusion and exclusion criteria, 18 pa-
pers remained for the final analysis by RQS. The total RQS
score ranged from 26 (59% of maximum possible score) to
43 (97% of maximum possible score) with a mean of 33.5
(76% of maximum possible score). Conclusion: The current
studies are promising but very heterogeneous in design
with high variation in the radiomics software, the number of
extracted features, the number of selected features, and ma-
chine learning models. All of the studies were retrospective
in design; many are based on small datasets and/or suffer
from class imbalance and lack of external validation data-
sets. © 2021 S. Karger AG, Basel

Introduction

Gliomas are the most common primary malignancies
of the central nervous system. Histologically, they show
the glial cells’ characteristics and are generally classified
due to these similarities [1]. Traditionally, gliomas have
been classified into slow-growing lesions (WHO grades 1
and 2) and rapidly progressive lesions (WHO grades 3
and 4). WHO grade 1 and 2 gliomas are considered low-
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grade gliomas (LGG), while grades 3 and 4 are classified
as high-grade gliomas (HGG). Glioblastoma multiforme
(GBM, WHO grade 4) is the most aggressive type of gli-
oma with poor prognosis and median survival of about 15
months, even after multimodal therapy [2]. However, this
classification has been modified in the most recent WHO
classification. Based on the 2016 WHO glioma classifica-
tion, a glioma is classified based on histopathology char-
acteristics and molecular fingerprints [3]. The WHO gli-
oma classification will be modified soon, and a new ver-
sion will be released by mid-2021. It is estimated that such
new classification relies more on the molecular finger-
prints [4-8]. Despite the momentum toward the molecu-
lar fingerprint, the glioma classification into LGG versus
HGG or grade 1, grade 2, grade 3, and grade 4 is still com-
monly used in clinical practice. Also, glioma classification
into low-grade and high-grade is still standard of care in
the radiology reports [9-11].

Radiomics includes recently emerging techniques that
convert digital medical images into mineable data by ex-
tracting quantitative descriptors and can potentially
quantify tumor characteristics. Using radiomics, through
the mathematical models built based on selected ra-
diomics features, predicting the tumor phenotype, mo-
lecular markers, and the prognosis is feasible [12]. Recent
studies have shown encouraging results of applying ra-
diomics in oncological practice [13-15]. This method can
enhance the traditional imaging analysis and provide per-
sonalized medicine for patients [16]. The power of ra-
diomics in quantifying distinct tumor types and, conse-
quently, tumor grading and predicting different cancers’
survival has been demonstrated by many experimental
studies [16-21]. The preliminary investigations about the
role of radiomics for glioma are promising. It seems that
radiomics can provide an acceptable method to charac-
terize the histologic and molecular features of different
glioma subtypes. By extracting numerous image features
based on tumor geometry, histogram, and texture analy-
sis, radiomics can effectively characterize tumor pheno-
types [22]. Glioma is one of the widely evaluated tumors
by radiomics technology [13, 23, 24]. Despite the facts
mentioned above, radiomics is not a part of the standard
of care clinical practice [24]. Lack of clinical application
can be attributed to several weaknesses in radiomics study
designs, including lack of standard guidelines about using
a special radiomics software, the number of extracted fea-
tures, feature selection technique, and the machine learn-
ing models [24, 25].

This systematic review was conducted to analyze the
most recent studies in glioma grading by machine learn-
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ing-based radiomics, evaluate the possibility of clinical
usage of this technique, and reveal the weaknesses that
must be resolved in the future.

Materials and Methods

Article Search Strategy and Study Selection

A database search was conducted in PubMed, Scopus, and EM-
BASE to identify all relevant published researches. Papers pub-
lished in these databases from 2015 until 2020 were included. Our
research contains papers published before September 2020. The
search terms used to find radiomics studies were “glioma” OR “as-
trocytoma” OR “glioblastoma multiforme” OR “glioblastoma”
AND “radiomics” OR “radiogenomics” OR “artificial intelli-
gence.” Overall, seven different strings were searched in the data-
sets mentioned above (online supplement 1; for all online suppl.
material, see www.karger.com/doi/10.1159/000515597).

Data Extraction and Analysis

The search results were then reviewed by two experienced re-
viewers (H.S., with 16 years of experience in neuro-oncologic im-
aging and artificial intelligence, and M.T., with 9 years of experi-
ence in health information management and artificial intelligence)
by paper title. The papers that were related to the grading of glioma
and radiomics were then selected by these two reviewers by con-
sensus. Subsequently, five reviewers (Z.S., A.R., A .H.S., who had
14 years of experience in medical imaging, H.S., and M.T) evalu-
ated the eligible radiomics performance studies. The PRISMA
flowchart of study is shown in Figure 1.

Before performing their analysis, an online expert panel was
convened to review and discuss the items listed in the RQS and en-
sure they all had explicit knowledge of RQS. The detailed RQS score
was adopted and modified from another group’s prior published
study [26]. The reviewers extracted the data using a predetermined
RQS evaluation according to 43 components for each article: Title
(1 item), Abstract (5 items), Introduction (6 items), Materials and
Methods (23 items), Results (1 item) and Discussion (7 items). For
each item, score 1 or 0 was assigned to the papers. The only excep-
tion was “using the external dataset,” for which a score of 2 was as-
signed with total score range for any paper between 0 and 44 (online
supplement 2). Also, for each article, a questionnaire consisting of
10 items regarding the radiomics pipeline was filled, which includ-
ed: 1. type of dataset, 2. MRI sequences used, 3. number of patients,
4. number of extraction features before and after feature selection,
5. software for radiomics, 6. Al model, 7. number of patients in each
grade, 8. type of performance metrics, 9. most important findings,
and 10. limitations and weaknesses. Each article was evaluated by
two of the five independent reviewers. Disagreements between any
two reviewers were discussed at a research meeting attended by the
reviewers and an additional reviewer until the consensus was
reached. The entire processes of RQS evaluation and questionnaire
filling was double-checked separately by H.S. and M.T. and dis-
agreement was resolved by consensus.

Statistical Analysis

All statistical analyses were performed using SPSS (SPSS ver-
sion 22; SPSS, Chicago, IL) and R (R version 3.3.3; R Foundation
for Statistical Computing, Vienna, Austria).
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Fig. 1. The PRISMA flowchart of this systematic review.

Results

A total of 1,177 records were identified until Septem-
ber 13, 2020. Retrieved article titles were screened for eli-
gibility. After title screening and removal of duplicates,
810 papers were excluded. Screening of the abstracts of
the remaining 367 articles was performed. Abstract re-
view further excluded 332 articles for the following rea-
sons: non-English (n = 17), conference abstract/no full
text (n = 161), not within scope of review (n = 131), re-
views (n = 21), and pediatric (n = 2). Full-text reviews of
the 35 potential articles was performed. After full-text
evaluation, one paper was excluded because the number
of patients and MR sequences were not reported. Thir-
teen papers were out of the scope of this review. Three
papers did not use machine learning models, which re-
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vealed 18 papers for the final review (four papers from
2020, seven papers from 2019, five from 2018, and two
from 2017). The total RQS score ranged from 26 (59% of
maximum possible score) to 43 (97% of maximum pos-
sible score) and with a mean of 33.5 (76% of maximum
possible score).

The design of the final papers has been summarized in
Table 1. All papers used MRI for the imaging modality,
and all of them were retrospective in design. The patient
number ranged from 40 to 285 (mean: 157, SD:94). In
seven studies, public datasets were used. In nine studies,
in-house datasets were used. In two papers, the radiomics
pipeline was developed on an in-house dataset and was
tested on an external dataset. The used softwares for fea-
ture extraction were IBEX: n=1, Pyradiomics: n="7,Mat-
lab: n = 11, MaZda: n = 1. The number of extracted fea-
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elimination; MRMR, minimum redundancy maximum relevance; ROSE, random oversampling examples; GBM, gradient boosting machine; DNN, deep neural network; KNN, k-nearest

neighbors; ANOVA, analysis of variance.
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tures for each patient ranged from 91 to 39,212 (mean:
3,552 features). The used dimensionality reduction tech-
niques were: least absolute shrinkage and selection op-
erator (n = 6), t test (n = 4), partial least squares (n = 1),
recursive feature elimination (n = 5), elastic net regular-
ized generalized linear model (n = 1), support vector ma-
chine (n = 1), minimum redundancy maximum relevance
algorithm (n = 1), elastic net (n = 1), random oversam-
pling examples (n = 1), Pearson’s R (n = 1), K-mean (n =
1), x* (n = 1), heatmap (n = 1), random forest (n = 1),
Mann-Whitney U test (n = 1), and decision tree (n = 1)
(many studies used several dimensionality reduction
techniques). The used AI models were: decision tree (n =
1), least absolute shrinkage and selection operator (n=1),
support vector machine (n = 9), random forest (n = 5),
logistic regression (n = 10), linear discriminant analysis
(n=1),linear regression (n = 1), elastic net (n = 1), gradi-
ent descent algorithm (n = 1), k-nearest neighbors (n =
1), deep neural network (n = 1) (several studies used more
than one AI model). The used MR sequence used for fea-
ture extraction were: T1 (n=9), T2 (n = 14), FLAIR (n =
10), T1+C (n = 14), DWI/ADC (n = 4), MR perfusion
(n = 3), diffusion tensor imaging/diffusion kurtosis imag-
ing (DTI/DKI) (n = 2), MR spectroscopy (n = 1). The
performance of each study and its most important find-
ings and limitations have been summarized in Table 2.

Discussion

Our systematic review identified and evaluated the re-
search papers dealing with radiomics analysis of gliomas
for grading purposes. The role of radiomics feature ex-
traction has been explored in association with different
types of machine learning. The preliminary results are
promising with high sensitivity, specificity, accuracy, and
AUC, as described in Table 2. However, the performance
metrics provided by many studies are based on the “test
and train” on a single. In two studies, the developed ra-
diomics platforms were used for external datasets with
reported AUCs of 94% [32] and 72% [38], which would
be more realistic performances.

Based on our analysis, we now know several facts about
radiomics and glioma grade prediction: A) It appears that
using multiple MR sequences for feature extraction is
more efficient than a single sequence. Nevertheless, T1+C
was reported as the most important sequence. B) Adding
advanced MR techniques (MR perfusion and MRS) can
improve radiomics performance. C) Feature extraction of
multiple areas (intratumoral, enhancing tumor, and as-
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sociated edema) is more efficient than a single lesion. D)

There is no agreement about the number of the extracted

features and the selected features. E) The Matlab and

Pyradiomics libraries are the most commonly used soft-

wares for feature extraction. F) Adding wavelet features

to the traditional features will improve radiomics perfor-
mance. G) Dimensionality reduction and feature selec-
tion is a universal approach and increases the prediction
accuracy. LASSO is the most commonly used technique
for feature extraction. However, many other feature se-
lection techniques were also used. H) Traditional feature
extraction (e.g., using Pyradiomics and MatLab) is more

effective than deep-learning-based feature selection. I)

Gray-level co-occurrence matrix (GLCM) features are

probably the most predictive features. J) SVM, LR, and RF

are the most promising machine learning models for
grading prediction. The deep neural networks are not
common for glioma grade prediction.

The most common limitations in the selected papers
are as below:

1. Retrospective studies: The retrospective nature of the
studies is a very common limitation for radiomics
studies. All of the selected studies in our systematic re-
view are retrospective. Such a study design is suscep-
tible to various biases, including selection bias.
Potential solution: By conducting prospective studies,
it is possible to use accurate inclusion and exclusion
criteria and to have a more realistic estimation of ra-
diomics performance. Nevertheless, such prospective
studies can be very time-consuming in relatively small
medical centers and small patient populations [45, 46].

2. Dataset: Using public datasets is a very common ap-
proach in radiomics studies. In our review, seven stud-
ies have been performed on the Cancer Genome Atlas
(TCGA) dataset [47-49]. That means many of the stud-
ies are essentially using a similar patient population
again and again. Their results cannot be generalized to
the real world. Also, images in these datasets are from
different medical centers and different MR scanner
vendors with significant heterogeneity in image acqui-
sition and reconstruction. In addition, these public da-
tasets suffer from old technology. Many cases in TCGA
datasets belong to the early 2000s. These MR images
have been performed by 90s MR scanners, which now
are nearly completely out of use. Sequence parameters,
reconstruction techniques, noise, and many other im-
age properties of such images are entirely different than
today’s state-of-the-art MR images. The estimated ra-
diomics results based on old images cannot be general-
ized to today’s patient population.
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Potential solution: Using an in-house dataset of recent
patients would be a more realistic estimation of the ra-
diomics approach. Also, for using a public dataset, the
researchers must consider the time of the scan, scanner
vendor, sequence physics, reconstruction techniques,
and noise before including the case in their study. The
old images must be excluded [45, 46, 50].

. Class imbalance: GBM is the most common subgroup

of glioma and comprises most of the datasets (public
and in-house). If the prevalence of one condition
(GBM) is significantly higher than other conditions
(grades 1-3), the study is susceptible to imbalance and
overfitting. The developed model works perfectly in
the training dataset but very poorly in the real world.
In our review, 44.4% of studies suffer from imbalance.
Potential solution: By arranging the dataset before the
study and assigning a relatively same number of differ-
ent grades, the imbalance can be avoided. This ap-
proach is challenging if the entire dataset is small. In
this situation, there are several techniques to avoid im-
balance. In our review, SMOTE was the most common
approach to subside the imbalance between the differ-
ent grades [51].

. External validation: All of the challenges mentioned

above can reduce the generalization of developed
models because of overfitting. Developing a radiomics
solution on one training dataset and using it for an-
other dataset from another medical center (external
validation) is the best strategy to ensure that the mod-
el works well. Unfortunately, this approach is not pop-
ular in most of the radiomics and medical Al literature.
So far, only about 6% of medical AI publications used
external validation [46]. In our review about glioma
grading, only two studies used external datasets [32,
38]. Park et al. [38] reported a decrease in the perfor-
mance for the external dataset. This fact raises concern
about the reported performances in other studies as
well. The performances of the other developed models
are likely overestimated by overfitting [38].

Potential solution: Testing the trained radiomics mod-
el on a new dataset from another patient population
and medical center is the most robust technique to en-
sure that the study does not suffer from variable biases
and poor design [46].

. Moving target: The grading guidelines of malignan-

cies, including gliomas, are continually evolving. The
WHO has released the glioma grading system in 2007
and 2016, and the next guideline will be released by
mid-2021 [52]. These systems are gradually evolving
from a pure histopathologic approach to the molecular
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fingerprint for classification. In this context, one tu-
mor can be assigned to different grades using different
WHO criteria. This effect would be more dramatic by
using the old public datasets.

Potential solution: A prospective study design would
decrease this limitation. Also, in a retrospective study,
repeat grading is necessary. Repeat grading using the
molecular diagnosis can be very costly and even im-
possible if the tissue is not available to repeat the mo-
lecular diagnosis [52].

6. Vague patient population: In our review, five studies

mentioned the exact number of patients in each grade
[37, 38, 40, 42, 43]. Other papers have used patients in
LGG and HGG classes.
Potential solution: The exact number of patients in
each grade must be reported. In this way, the role of
radiomics for each grade can be evaluated separately.
Radiomics may work well for one grade but may be
poor for another grade. At this time, the performance
of radiomics for each glioma grade remains unknown
(37, 40].

7. Small dataset: In our review, the average number of
patients in studies that used the in-house and public
dataset was 157. Generalization of the results of these
studies to the real world would be challenging.
Potential solution: Combining datasets from different
medical centers will increase the patient population
and improve the studies [53].

8. Heterogeneity of radiomics techniques: There is no
standard approach for feature extraction. In many
studies, the features have been extracted by in-house
developed software, which are not reproducible by
other researchers. There is no consensus about the
number of extracted features, traditional versus wave-
let features, MR sequence, segmentation areas on im-
ages, feature selection technique, and machine learn-
ing models [54].

Potential solution: Using a standard radiomics pipe-
line will facilitate the incorporation of radiomics into
daily practice. In this context, we suggest using an
open-source feature extraction software such as
Pyradiomics, extracting wavelet along with traditional
features, using at least three areas (intratumoral, en-
hancing part of the tumor and associated edema), us-
ing different MR sequences (T1, T2, FLAIR, T1+C,
DWI/ADC, MR perfusion, and MRS), using LASSO
for feature selection, and using SVM, LR, or RF for the
pipeline.

The limitations of this systematic review are as follows.

First, only three literature databases (PubMed, Scopus,

Machine Learning-Based Radiomics for
Glioma Grading: A Systematic Review

Embase) were included. Second, only published full-text
English language articles with available full text were in-
cluded. The conference abstracts were not included.
Third, only a few papers have reported the exact number
of patients in each grade, so we included the papers that
reported LGG versus HGG as well.

Conclusion

We reviewed the prior studies about radiomics geared
toward glioma grading. By implementation of our crite-
ria, 18 studies remained for the final review. Their results
appear promising for grade prediction from MR images
using the radiomics techniques. However, there is no
agreement about the radiomics pipeline, and the prior
studies are very heterogeneous regarding the software
used, the number of extracted features, MR sequences,
and machine learning technique. Only two studies have
implemented their model on external datasets, likely pro-
viding a more realistic estimation of grading prediction
by radiomics. All of the studies were retrospective in de-
sign, and many of them are based on small size datasets.
Before the clinical implementation of glioma grading by
radiomics, more standardized research is needed.
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