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Radiomics is an emerging discipline that aims to make intelligent predictions and derive
medical insights based on quantitative features extracted from medical images as a
means to improve clinical diagnosis or outcome. Pertaining to glioblastoma, radiomics
has providedpowerful, noninvasive tools for gaining insights into pathogenesis and thera-
peutic responses. Radiomic studies have yieldedmeaningful biological understandings of
imaging features that are often taken for granted in clinical medicine, including contrast
enhancement on glioblastoma magnetic resonance imaging, the distance of a tumor
from the subventricular zone, and the extent of mass effect. They have also laid the
groundwork for noninvasive detection of mutations and epigenetic events that influence
clinical outcomes such as isocitrate dehydrogenase (IDH) and O6-methylguanine-DNA
methyltransferase (MGMT). In this article, we review advances in the field of glioblastoma
radiomics as theypertain topredictionof IDHmutation status andMGMTpromotermethy-
lation status, as well as the development of novel, higher order radiomic parameters.
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T he fundamental premise of modern
oncology is built on tailoring therapy to
cancer vulnerabilities unveiled by analysis

of the surgically acquired specimens.1 While
surgical excision or biopsy is generally safe,
the risk associated with the procedure can be
significant, particularly in brain cancer.2 The
surgical risk is further magnified in situations
where serial biopsies are required due to regional
heterogeneity.3 Even in surgeries performed
without complications, patients are left with
discomfort and surgery-associated stress.4,5
Moreover, challenges related to spatial sampling
errors,6 intratumoral heterogeneity,7,8 and
timeliness of biopsy6,9 pose formidable obstacles
in surgical planning.

ABBREVIATIONS: 2HG, 2 hydroxyglutarate; ADC,
apparent diffusion coefficient; CE, contrast
enhancement; DKI, diffusion kurtosis imaging;
DSC, dynamic susceptibility contrast; IDH, isocitrate
dehydrogenase; LVd, lateral ventricle displacement;
MGMTp, MGMT promoter; MNI, Montreal Neuro-
logical Institute; PRC, precision-recall curve; rCBV,
relative cerebral blood volume; SVZ, subventricular
zone; SVZd, distance to the subventricular zone;
TCIA, The Cancer Imaging Atlas; VEGF, vascular
endothelial growth factor

Magnetic resonance imaging (MRI) has tradi-
tionally played roles limited to diagnostic and
postsurgical evaluation. rising field of radiomics
has began to expand these roles.10,11 Radiomics
refers to the systematic extraction and analysis of
features derived from medical images. Pertaining
to neuro-oncology, the association between
quantitative features and clinical outcome
and tumor physiology offers the promise of a
radiomic biopsy (dubbed a “radiopsy”12), with
potential for evidence-based clinical decision
making without surgery. Moreover, radiomics
leverages the spatial breadth of imaging to
capture information about regions beyond
the tumor borders and into the peritumoral
space, where surgical biopsies are not routinely
performed.13 Synthesis of radiomics with novel
physiological imaging platforms may offer
insights into molecular physiology invisible
to the standard analysis of surgical biopsy
specimens.14
In this context, there is mounting interest

in the clinical application of radiomics to
virtually every aspect of neuro-oncology that
involves imaging, with exponential growth in
the volume of peer-reviewed publications.15
From survival prognostication16 to diagnostic
determination to mutational profiling, the
voluminous literature prohibits an exhaustive
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review here. Instead, we focus our review on the prognostic utility
of radiomics in glioblastomas, the most common form of primary
brain cancer in adults.17 In particular, we examined radiomics
as it pertains to the prediction of isocitrate dehydrogenase
(IDH) mutation status and O6-methylguanine-DNA methyl-
transferase (MGMT) promoter methylation status. We further
discuss the development of higher order, survival-associated
radiomic features, including contrast enhancement (CE), distance
of a glioblastoma from the subventricular zone (SVZd), and
glioblastoma-associated mass effect. We define all relevant abbre-
viations used in this manuscript in Table.

GENERAL OVERVIEWOF RADIOMICS

Radiomics is a multistep process that can be applied to any
set medical images, including a spectrum of MRI modalities
involving both conventional (T1, T2, etc) and more advanced
imaging (diffusion tensor imaging, susceptibility-weighted
imaging, etc).18-20 These steps include image processing, image
segmentation, feature extraction, model building, and validation
(Figure 1A and 1B). In the image processing step, acquired images
are processed to correct for image distortion as well as removal
of features that are not of interest, such as the skull and the
superficial soft tissue. The remaining images are then projected
onto a standardized template in preparation for comparative
analysis. Image segmentation refers to delineation of the distinct
regions of this projected image into regions of interest, such
as regions of CE. This segmentation step can be done by

TABLE. List of Abbreviations

2-HG 2-Hydroxyglutarate

a-KG Alpha keto-glutarate
ADC Apparent diffusion coefficient
ASL Arterial spin labeling
CE Contrast enhancement
DCE Dynamic contrast enhanced
DKI Diffusion kurtosis imaging
DSC Dynamic susceptibility contrast-enhanced
DWI Diffusion weighted imaging
GLSZM Gray level size zone matrix
IDH Isocitrate dehydrogenase
IPVL Iterative probabilistic voxel labeling
LVd Lateral ventricle displacement
MET L-Methyl-11C-methionine
MGMT O6-methylguanine-DNAmethyltransferase
MGMTp MGMT promoter
PET Positron emission tomography
PRC Precision-recall curve
rCBV Relative cerebral blood volume
SVM Support vector machine
SVZd Subventricular zone distance
TCGA The Cancer Genome Atlas
TCIA The Cancer Imaging Atlas
VEGF Vascular endothelial growth factor

expert reviewers or by semi- or fully automated algorithms.21,22
Feature extraction refers to the extraction of image characteristics
and converting them into quantitative measures. These image
characteristics may be obvious to the human eye or difficult to
identify, even for expert reviewers. Mathematical models are then
constructed to determine association between image features
and outcomes of interest, such as survival. These models include
linear or logistic regressions as well as more complex models
developed in machine learning23 and deep learning models.24
Reproducibility of parameter associations is then tested through
internal cross-validation followed by validation through an
independent external cohort.

PREDICTIONOF IDHMUTATION

Recurrent mutations in the IDH genes define a subclass of
glioblastomas that exhibit distinct clinical course and therapeutic
response.25,26 In their native form, IDH proteins catalyze the
conversion of isocitrate into alpha-ketoglutarate.27 Oncogenic
mutations inactivate this enzymatic activity and confer a
neomorphic function of producing 2 hydroxyglutarate (2HG).27
High levels of 2HG, in turn, induce global methylation of the
genome resulting in altered gene expression and phenotype.28
There is great interest in imaging biomarkers that discriminate
IDH-mutated glioblastomas from their wild-type counterparts,29
since the benefit of medical and surgical intervention differs in
patients afflicted with these tumors.30 While the direct detection
of 2HG through MR spectroscopy holds tremendous promise
in IDH mutation detection, dedicated protocols and expertise
are required for implementation, which may not be available
to many centers. Moreover, optimal methods for detection (eg,
3T spectroscopy vs 7T spectroscopy, parameterization of MR
sequences, etc) remain an area of active investigation. In this
context, we have focused our review here on radiomic analysis
of MR features available on routine clinical imaging.
Using MR sequences commonly employed in brain tumor

imaging (T1, contrast-enhancing T1, and T2-weighted images),
Li et al18 extracted 1614 imaging features from 225 glioblastoma
patients. Among the various features tested, imaging features
that reflect peritumoral edema performed best for IDHmutation
discrimination using precision-recall curves (PRCs). More specif-
ically, gray level size zone matrix features, which create “zones”
based on the number of voxels sharing gray level intensities, repre-
sented the largest number of features used to successfully predict
IDH status. Using these features, a random forest algorithm was
trained to achieve a 96% prediction accuracy (area under the
curve: 0.9, F1-score: 0.78), and improved when patient age was
incorporated. Other studies reported similar detection perfor-
mance for IDH-mutated gliomas using these standard imaging
sequences.31-34

While dynamic susceptibility contrast (DSC)-MRIs are used
in select centers for brain tumor imaging, this clinical workflow
is not universal across all centers. Sudre et al35 studied

2 | VOLUME 0 | NUMBER 0 | 2021 www.neurosurgery-online.com

D
ow

nloaded from
 https://academ

ic.oup.com
/neurosurgery/advance-article/doi/10.1093/neuros/nyab124/6258466 by guest on 09 M

ay 2021



RADIOMICS IN GLIOBLASTOMA

FIGURE 1. General workflow describing the radiomic image processing steps. A, Illustration of image processing and image segmentation. B, Illustration
of features extraction and model building.

333 patients from 6 tertiary centers who underwent DSC-MRI
and extracted 29 radiomic features from normalized relative
cerebral blood volume (rCBV) maps. The tumor surface-to-
volume ratio (a measure of noncompactness) and variance
in rCBV were significantly lowered in IDH-mutated tumors.
Using these features, a random forest algorithm predicted IDH
mutation status with a specificity of 77% and a sensitivity of
65%. Similar results were reported by Kickingereder et al36 in
a study of 73 patients, where the authors noted that IDH-
mutated gliomas exhibited lower rCBVs relative to their wild-
type counterparts.36 Using a histogram for rCBV values, each
unit increase was associated with a decrease in the likelihood of
IDH mutation. The positive and negative predictive values of
this method were 89% and 78%, respectively.36 Other methods
of assessing tumor perfusion have also been explored as means of
IDH mutation detection and showed comparable performance
relative to DSC.37,38
Radiomic studies of diffusion-based MRI suggest the utility

of apparent diffusion coefficient (ADC) maps in IDH mutation
detection. In a study of 142 patients with high-grade gliomas,
texture features were extracted from T1 postcontrast, T2, and
fluid-attenuated inversion-recovery (FLAIR) MRIs as well as
ADC maps.39 A random forest model that incorporated features
derived from these images achieved a diagnostic accuracy of
82.2% across independent cohorts. In their analysis, kurtosis
(a measure of the flatness of an image’s distribution of the
intensity histogram) and skewness (a measure of an image’s
symmetry of intensity histograms) played a significant role in
IDH status determination, but were not shown to be as important
as wavelet based features. Similar results have been reported
in radiomic studies involving other forms of diffusion MRIs,
including diffusion kurtosis imaging (DKI).40-42 A support
vector machine (SVM) trained on the textural features of DKI
achieved an accuracy of 81% for IDH mutation detection in
gliomas.40 These results suggest that diffusion imaging alone is
insufficient to achieve IDH mutation detection in the clinical
setting.

While reasonable detection performances have been reported
for IDH mutation,43 the actual clinical performance will vary
depending on the prevalence of the mutation. For grade II and III
gliomas, where IDHmutations are more prevalent,25 the reported
performance may be sufficient for consideration of clinical trans-
lation. On the other hand, in glioblastomas, the most common
form of glioma, the prevalence of IDH mutation is estimated to
be less than 10%.25 As such, concrete progress measured by the
imbalance-sensitive PRCwill be needed before clinical translation
should be considered for this patient population.
In principle, detection performance can be improved by

multiparametric modeling that incorporates informative features
from across a variety of imaging modalities, including the
above-discussed MRI sequences, positron emission tomography
(PET),44-46 and ultrasound.47 However, the number of imaging
modalities that can be adopted during routine work-up for
gliomas will be limited by institutional clinical workflow and the
availability of select techniques.

PREDICTIONOFMGMT PROMOTER
METHYLATION

MGMT encodes an evolutionarily conserved DNA repair
protein that directly detoxifies cytotoxic DNA damage resulting
from the administration of temozolomide,48 the standard-of-
care chemotherapy for glioblastomas.49 In independent clinical
trials, the level of MGMT expression was inversely corre-
lated with clinical survival after temozolomide treatment.50-53
The expression of MGMT in glioblastomas is regulated both
transcriptionally54 and post-transcriptionally.55 In terms of
transcriptional regulation, methylation of the MGMT promoter
(MGMTp) region is associated with suppression of gene
expression. As such, MGMTp methylation confers an increased
likelihood of therapeutic response to temozolomide.50 Post-
transcriptionally, key miRNAs, including miR-181d56 and miR-
603,55 downregulate MGMT expression. In independent cohorts
of patients afflicted with MGMTp unmethylated glioblastomas,
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high levels of miR-181d and miR-603 were associated with
decreased MGMT expression and conferred improved clinical
survival in glioblastoma patients who underwent temozolomide
therapy.55

Diagnostic studies predicting MGMT used a variety of MR
modalities, including conventional MRI, diffusion weighted
imaging, DSC, and MR-PET.57-60 In terms of T1- and T2-
based radiomics, Korfiatis et al59 carried out a retrospective
analysis of 155 patients with known MGMTp methylation
status and compared the texture features derived from postcon-
trast T1 and T2 images. Imaging features that most discrimi-
natedMGMTpmethylation status capturedmeasures of intensity
uniformity and symmetry including cluster prominence and
cluster shade. An SVM-based classification predicted MGMTp
methylation status with 80% sensitivity and 81% specificity.59
These results were recapitulated by others.60,61 For instance,
Kanas et al57 reported that MGMTp unmethylated tumors tend
to exhibit more homogenous CE, while MGMTp methylated
tumors tend to exhibit ring CE, with central necrosis as well as
decreased peritumoral edema. While some studies reported that
MGMTp unmethylated glioblastomas tend to carry larger areas
of necrosis62 and be located in the right hemisphere63 or the
frontal lobe,64 conflicting results were also reported. Independent
studies have reported that MGMTp unmethylated glioblastomas
are more likely located in proximity to the SVZ.65,66
On diffusion imaging, MGMTp methylated glioblastomas

showed higher ADC values relative to their unmethylated
counterparts.67 Moreover, the MGMTp methylated glioblas-
tomas were more likely to harbor lowered relative cerebral
blood flow in studies involving DSC68 and arterial spin
labeling.66 Using PET imaging, MGMTp methylated glioblas-
tomas have shown increased FDG uptake while exhibiting
comparable MET uptake.69 The sensitivity and specificity of
discrimination using these modalities are largely comparable
to those reported for T1- and T2-based MRI.57,58,60,59,70 To
date, multimodality integration has not significantly improved
discriminatory capacity.58 A recent meta-analysis of high-quality
studies that aimed to predict MGMTp methylation status using
radiomic approaches showed a pooled sensitivity and speci-
ficity of 79% and 73%, respectively.71 As with IDH mutation
detection, reported performances lie below the understood
threshold of reliable detection needed to guide clinical decision
making.

MOLECULAR PHYSIOLOGYOF CONTRAST
ENHANCEMENT

Glioblastoma is the most common form of primary brain
cancer in adults and remains a major therapeutic challenge
in neuro-oncology.72 Molecular profiling of clinical specimens
derived from affected patients reveals significant intertumoral
heterogeneity. That is, specimens with similar histopathological
appearances nevertheless exhibit distinct molecular profiles.73

CE is a feature shared by most glioblastomas.11 There have
been several radiomic studies that investigated whether textural
elements of CE reflect aspects of tumor physiology. Classically, CE
on glioblastoma imaging is thought to reflect tumor-related alter-
ations in vascular permeability.74 Subsequent radiomic studies
have expanded on this understanding. In a study of 22 patients,
Diehn et al75 reported that an increased number of voxels with CE
in glioblastomas were associated with higher mRNA expression of
vascular endothelial growth factor (VEGF), a master regulatory
protein that governs vascular permeability. In a larger study of 52
patients, Pope et al76 noted higher VEGF expression in glioblas-
tomas that were completely enhancing relative to those that were
incompletely enhancing. Higher mRNA expression of VEGF in
glioblastomas rated as highly contrast enhancing was also noted
by Jamshidi et al77 in a study of 23 patients. While other corre-
lations with gene expression were noted, the VEGF finding was
the only one shared across the 3 studies.
An association between VEGF expression and CE was

confirmed in a fourth study that segmented 148 MRIs available
in The Cancer Imaging Atlas (TCIA).73 This study additionally
explored gene expression patterns associated with the various
radiomic features of CE, including mean normalized intensity
(CEi; Figure 2A), heterogeneity in CE (measured by the total
variance in CE, noted as CEh; Figure 2B), and the ratio of CE
voxel as a function of total tumor volume (CEr; Figure 2C).73
Correlative analysis suggests that high CEr is associated with gene
expression patterns suggestive of stressful metabolic conditions,
including hypoxia.

HIGHER ORDER RADIOMIC FEATURES

Two higher order radiomic features will be reviewed in this
section: SVZd and lateral ventricle displacement (LVd). These
features were developed based on insights gained through studies
conducted in the basic and clinical neurosciences.

Distance to the Subventricular Zone
During the development of the human brain, neuronal

precursor cells migrate radially from the stem cell niche in the
subventricular zone (SVZ).78 Neural precursor cells lose their
stem cell property of self-renewal and differentiate into distinct
cell types as they migrate, forming layers of cytoarchitectures.78,79
There is evidence that glioblastomas may arise from cell types
that differ in their radial distances from the SVZ and inherit the
intrinsic properties of these precursor cells. As such, SVZd may
be an imaging marker for the “stemness” of a tumor and for poor
clinical survival (Figure 3).

The irregular morphology of most glioblastomas presents a
significant challenge in the calculation of SVZd. Steed et al65
analyzed TCIA glioblastomas to show those in proximity to the
SVZ are more likely to harbor mRNA expression profiles that
indicate neural stem cell states. Accordingly, patients afflicted with
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FIGURE 2. A, Using a selected patient from The Cancer Genome Atlas, mean normalized intensity (CEi) is derived from
the ratio of mean voxel intensity in the contrast-enhancing region (green) to the median voxel intensity of blood vessels (red).
B, As a way to capture voxel intensity heterogeneity, CEh is derived from the Shannon entropy of the contrast-enhancing
region.C, CEr is defined as the ratio of the volume of contrast-enhancing tumor (red outline with blue stripes) to the volume
of the filled contrast-enhancing region (green). Reprinted from Steed TC, Treiber JM, Brandel MG, et al. Quantification
of glioblastoma mass effect by lateral ventricle displacement. Sci Rep. 2018;8:2827. Under the Creative’s Commons License
(http://creativecommons.org/licenses/by/4.0/).

FIGURE 3. A color-coded atlas brain showing how distances from the subven-
tricular zone (SVZ) within the lateral ventricle can be quantitatively deter-
mined. Glioblastoma centroids falling within the blue region represent those
arising closer to the ependymal surface, while those falling within the red region
represent those arising further away from the ependymal surface. Reprinted
from Steed TC, Treiber JM, BrandelMG, et al. Quantification of glioblastoma
mass effect by lateral ventricle displacement. Sci Rep. 2018;8:2827. Under the
Creative’s Commons License (http://creativecommons.org/licenses/by/4.0/).

SVZ proximal tumors exhibited poor survival relative to those
afflicted with SVZ distal tumors.
These findings suggest that SVZd may constitute an imaging

biomarker for glioblastomas that are enriched for stem-cell
properties. Moreover, therapies targeting these properties80

may demonstrate higher efficacy against SVZ proximal
glioblastomas.

Lateral Ventricular Displacement
The importance of mass effect as a prognostic imaging

biomarker is well recognized in clinical neurosurgery.81 Pertaining
to neuro-oncology, mass effect refers to the displacement of the
cerebrum secondary to tumor growth; it is a major cause of neuro-
logical morbidity and mortality.82 The extent of mass effect is
difficult to determine given interpatient differences in the volume
and compliance of the cerebrum.83 In fact, patients with compa-
rable glioblastoma tumor burden, as gauged by CE volume and
FLAIR hyperintensity, often exhibit significant differences in the
extent of mass effect.84
In clinical practice, mass effect is often noted as “midline

shift” or various forms of herniations.85 However, assessment
of these qualitative measures differs between clinicians86 and
is unduly influenced by variability in imaging protocols.87 To
address these shortcomings, LVd was developed as a higher
order radiomic measure of mass effect (Figure 4). LVd measures
the 3-dimensional vector displacement of the centroid of the
lateral ventricle volume in glioblastoma patients relative to the
same centroid in a standard Montreal Neurological Institute
(MNI) template brain.88 An analysis of the iterative probabilistic
voxel labeling segmented TCIA glioblastoma MRIs showed that
the LVd of glioblastoma patients is highly elevated relative to
550 nontumor control subjects.84 Expectedly, LVd poorly corre-
lated with CE volume and FLAIR hyperintensity, 2 variables
frequently used to approximate the glioblastoma tumor burden.
While no survival association was observed with the volume of
CE or FLAIR hyperintensity, a robust survival association was
observed between LVd and clinical survival, after controlling for
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FIGURE 4. Top row: using an automated segmentation method, T1-weighted contrast-enhancing (T1wCE) scans are segmented
into regions of interest (CSF, blood vessels, contrast-enhancing region, flair hyperintensity), including the lateral ventricle (LV). Bottom
row: through automated segmentation, an atlas brain (the Montreal Neurological Atlas template; MNI) is used to define a reference
CSF volume. Subsequently, each patient’s derived LV vector is then compared to this reference atlas LV vector to derive a magnitude
of net displacement. Reprinted from Steed TC, Treiber JM, Brandel MG, et al. Quantification of glioblastoma mass effect by lateral
ventricle displacement. Sci Rep. 2018;8:2827. Under the Creative’s Commons License (http://creativecommons.org/licenses/by/4.0/).

confounding variables, including age and Karnosfky performance
score.
To better understand the biology underlying differential LVd,

correlative analyses were performed to compare the mRNA
expression of high and low LVd glioblastomas. The analyses
indicated that glioblastomas with high LVd exhibited gene signa-
tures associated with cell growth, while glioblastomas with low
LVd showed signatures associated with invasion. Notably, LVd
and SVZd were independently associated with survival,84,89
consistent with the idea that the 2 parameters convey distinct
underlying physiological states.

DISCUSSION AND CONCLUSION

Here, we provided an overview of current and emerging
strategies in radiomics and reviewed their application in neuro-
oncology. Given the current state of glioblastoma radiomics, it
is not possible to definitively conclude which features are most
important for survival prognostication. To the extent that survival
prognostication requires synthesis of SVZd and LVd, it is likely
that optimal prognostication will require integration of multiple
informative imaging features. The prognostic interaction between
IDH mutation and MGMT promoter methylation90 further
supports this conclusion. While tools in machine learning are
available to delineate the relative importance of each prognostic
factors, such analysis has not been carried out using the features

described in this review and constitute an important direction of
future research.
It is important to note that survival prognostication represents

a small segment of the vast potential for radiomics to impact
clinical neurosurgery. Other applications include the differen-
tiation of glioblastoma from other pathologies,91,92 discrimi-
nation of glioma grades,93,94 identification of mutations and
amplifications,95 determining pseudoprogression versus tumoral
progression.96 In this context, radiomics holds tremendous
potential in advancing our understanding of the in vivo
physiology of brain tumors as they exist in the patient and
offers opportunities for optimizing clinical care of brain tumor
patients.
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