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KEY POINTS

� Chimeric antigen receptor T cells (CAR-T) cells are reengineered T cells that express a fusion pro-
tein targeting a specific glioblastoma (GBM) tumor antigen.

� CAR construct design andmanufacture process in the context of GBM leverages many of the same
development principles that were used in the development and approval process of CAR-T cells for
hematologic malignancies.

� The GBM tumor microenvironment presents numerous challenges to effective immunotherapy,
including a stressful metabolic environment and a markedly immunosuppressive cytokine
signature.

� In-human studies of CAR-T cell therapies demonstrate reasonable safety and tolerability and pre-
liminary evidence of antitumor activity and appropriate trafficking to tumor sites, but limited persis-
tence of these therapeutic agents and minimal durability of clinical response.

� Ongoing and emergent trials address novel frontiers in CAR-T therapeutic design for GBM,
including multiantigen targeting, lymphodepletion preconditioning, and in vivo visualization of
CAR-T trafficking, to improve therapeutic efficacy, reduce antigen escape and tumor recurrence,
and advance clinical development.
INTRODUCTION since 2005: (1) bevacizumab, a humanized anti–
Glioblastoma (GBM), the most common primary
malignant brain tumor in adults, is associated
with extremely poor survival outcomes and is a
universally fatal disease.1 Standard of care ther-
apy for newly diagnosed GBM involves maximal
safe resection, subsequent radiotherapy and con-
current temozolomide (TMZ; 75 mg/m2/d for
6 weeks), followed by maintenance TMZ (150–
200 mg/m2/d for first 5 consecutive days of a 28-
day cycle for six cycles),2,3 and is associated
with poor survival outcomes, especially for pa-
tients with residual or multifocal disease.3–5 The
advancing therapeutic landscape for GBM is
limited in scope, with only three novel therapies
receiving Food and Drug Administration approval
a University of Pennsylvania, 3600 Hamilton Walk, Stem
Templeton, Jr. M.D. Professor in Neurosurgery, Hospital o
adelphia, PA 19104, USA
* Corresponding author. Department of Neurosurgery
Stemmler Hall, Room 176, Philadelphia, PA 19104.
E-mail address: Zev.Binder@pennmedicine.upenn.edu
Twitter: @ZevBinder (Z.A.B.); @DrORourke2 (D.M.O.)

Neurosurg Clin N Am 32 (2021) 249–263
https://doi.org/10.1016/j.nec.2020.12.005
1042-3680/21/� 2021 Elsevier Inc. All rights reserved.
vascular endothelial growth factor (VEGF) mono-
clonal antibody treatment; (2) TMZ, an oral chemo-
therapeutic agent; and (3) a tumor-treating fields
device that interferes with aberrant cell prolifera-
tion. A growing evidence base implicates the
host adaptive immune response in the pathogen-
esis of GBM and overturns the prior characteriza-
tion of the central nervous system (CNS) as an
immune-privileged niche.6

Chimeric antigen receptor T cells (CAR-T) are an
innovative immunotherapy approach to GBM, in
which reengineered T cells express a fusion pro-
tein that targets a specific tumor antigen. When
the CAR-T cell has associated with its targeted an-
tigen, the reengineered T cell is activated and re-
sults in cytokine release, cytolytic degranulation,
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tumor cell killing, and T-cell proliferation.7 CAR-T
therapy development has been a watershed
moment in cellular therapy for relapsed or refrac-
tory hematologic malignancies. CD19-directed
CAR-T cells first received approval in 2017, with
two products, tisagenlecleucel (Kymriah) and axi-
cabtagene ciloleucel (Yescarta), delivering durable
clinical outcomes for patients with advanced acute
lymphoblastic leukemia and large B-cell lym-
phoma, respectively.8,9 Investigators are currently
working to recapitulate the success of CAR-T ther-
apies for solid tumors including GBM10; however,
there are unique challenges that are associated
with therapeutic delivery in CNS malignancies,
including bioavailability, immune cell trafficking,
durability of response, and a hostile tumor
microenvironment.11,12

CHIMERIC ANTIGEN RECEPTOR T CELLS
Chimeric Antigen Receptor T Cells Design
Overview for Glioblastoma

CAR-T cells involve the ex vivo reengineering of a
patient’s or donor’s peripheral T-cell population to
express a CAR tailored to a specific antigen that is
expressed on the surface of tumor cells.10,13 The
CAR construct itself includes multiple structural
and functional intracellular domains that confer
the reengineered T-cell population desirable ther-
apeutic attributes. These fusion proteins contain
an extracellular single chain variable fragment an-
tigen recognition domain, a transmembrane
domain, and an intracellular T-cell activation
domain.13

The intracellular domain of the CAR construct
contains the T-cell coreceptor CD3z and its immu-
noreceptor tyrosine-based activation motifs.
Following antigen recognition and endodomain re-
ceptor clustering, the activation signal is trans-
mitted to the T cell.13 CAR-T cell design has
evolved from its initial iterations to incorporate
novel design elements that enable more potent
costimulatory signaling. Second-generation CAR
constructs include a single costimulatory mole-
cule, such as 4-1BB or CD28 that is fused to
CD3z to deliver a more potent immuno-
therapy.12,14 Third-generation CARs contain two
costimulatory domains linked to CD3z. These cos-
timulatory domains improve CAR-T therapeutic ef-
ficacy and durability of response compared with
first-generation constructs.15

T-Cell Harvesting

The autologous CAR-T manufacturing process for
GBM generally reflects the same common steps
that apply to CAR-T design for nonsolid malig-
nancies.16 The patient undergoes leukapheresis
to harvest the peripheral blood mononuclear cells
that contain the T-cell population that serves as
the backbone of the reengineered immuno-
therapy. After cell washing, the apheresis product
can then undergo enrichment or depletion of
certain subpopulations.

Activation

To mimic T-cell activation in vivo, addition of
OKT3, an anti-CD3 monoclonal antibody, or inter-
leukin (IL)-2 is a common approach to stimulate T
cells.16 Coculture with lymphoblastoid cell lines,
which are Epstein-Barr virus–infected peripheral
bloodmononuclear cells, can also stimulate T cells
in what is termed the rapid expansion protocol.16

CD3/CD28 antibody coated beads and artificial
antigen-presenting cells represent emergent stim-
ulation protocols that can be used to reduce GBM
CAR-T manufacture time and are under current
investigation.17

Chimeric Antigen Receptor T Cells Construct
Delivery

Following stimulation, the T cells are transfected
using plasmids or transduced with retroviral or len-
tiviral vectors containing the CAR construct. Lenti-
viral vectors are beneficial because they can
transduce nondividing cells, excluding G-0
phase.18 In contrast, retroviruses only transduce
actively dividing cells and therefore rely on robust
ex vivo T-cell proliferation.16 A plasmid-based
approach, in which naked DNA is electroporated
into T cells, offers cost benefits compared with
viral transduction methods,19 yet is comparatively
limited by its low efficiency of stable transfection
into T cells.20 Transduction efficiencies for the viral
methods vary, with GBM CAR-T trials indicating a
range between 5% and 26% in a lentiviral vector
approach5 and 18% and 67% for a retroviral vec-
tor approach.21

Expansion

CAR-T cells are expanded using an ex vivo culture
medium that often contains cytokines and other
stimulating factors that encourage T-cell prolifera-
tion. This critical step can take place either before
or after the transfection or transduction of the
CAR-T construct and may vary by investigator.
Expansion can take place in a variety of settings,
including T-flasks, culture plates or bags, and
rocking bioreactors.22 The culture media contains
gamma-chain cytokines that support T-cell prolif-
eration, with IL-2, IL-7, IL-15, and IL-21 as com-
mon additions.12,23 The addition of support
cytokines and expansion methodology used is
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trial-dependent and may influence the phenotypic
distribution of the final infusion product.

Infusion

Following activation, transfection or transduction,
and expansion, the CAR-T product is often pheno-
typically characterized and infused into the pa-
tient.6 Lymphodepletion of GBM CAR-T patients
before infusion is an avenue that is of particular in-
terest. TMZ has been used as a lymphodepleting
preconditioning agent in a trial setting for GBM pa-
tients.12,24 Although it is hypothesized that lym-
phodepletion may yield benefits in terms of
in vivo CAR-T expansion and persistence,24 cur-
rent GBM CAR-T trials demonstrate no benefit of
chemotherapy preconditioning before infusion.5,25

CHIMERIC ANTIGEN RECEPTOR T CELLS
DELIVERY IN THE CENTRAL NERVOUS
SYSTEM

CAR-T delivery in the context of the CNS presents
unique challenges with respect to engraftment,
bioavailability, antitumor efficacy, and safety. The
blood-brain barrier (BBB) is a highly selective
physiologic boundary that connects brain capillary
endothelial cells with the surrounding luminal and
abluminal membranes6,11 and is a critical struc-
tural and functional determinant of immune traf-
ficking and immunotherapy delivery in the CNS.

The BBB, along with the glia limitans, formed by
the fusion of astrocytes processes that line the
basement membrane of the CNS, form a tightly
controlled barrier.26 The BBB specifically limits en-
try to activated T cells, but not to their naive coun-
terparts. Therefore, only in settings of
neuroinflammation or permissive signaling envi-
ronment can T cells cross the BBB and enter the
parenchymal tissue.26–28 Given the challenges of
trafficking CAR-T cells into parenchymal tissue,
many GBM CAR-T trials have focused on local
intracavitary and intraventricular delivery in favor
of intravenous delivery.

Intravenous Delivery

Intravenous delivery of GBM CAR-T products is a
viable approach even in the face of the unique
challenges that the CNS poses for therapeutic de-
livery and bioavailability. Because the BBB and
glia limitans are frequently dysregulated in the
context of GBM,29,30 systemic delivery may be a
viable option. O’Rourke and colleagues5 and
Ahmed and colleagues21 used intravenous deliv-
ery for their respective CAR-T trials. Both groups
tracked engraftment of the CAR-T product in the
tumor following intravenous delivery.
Intracavitary/Intratumoral Delivery

Multiple GBM CAR-T trials have successfully
demonstrated intracavitary/intratumoral delivery
as a means to overcome the structural and func-
tional boundary imposed by the BBB and glia lim-
itans. Brown and colleagues17 and Keu and
colleagues31 provide preliminary evidence that
intracavitary delivery appropriately localizes to
GBM resection sites. The [18F]FHBG PET-based
imaging assay that was used to track CAR-T1 cells
indicated that the intracavitary delivery of the
modified cytotoxic T lymphocytes trafficked to
intracranial tumor sites.31

Intraventricular Delivery

Intraventricular delivery represents a potentially
successful approach for a subset of GBM patients
with spinal involvement of disease. Brown and col-
leagues32 pursued intraventricular infusions
following six cycles of intracavitary delivery of the
IL13BBz–CAR T CAR in a 50-year-old patient
with recurrent GBM with leptomeningeal disease
because of the appearance of spinal metastatic le-
sions during the course of the initial intracranial in-
fusions. Subsequent intraventricular infusions
completely eliminated all metastatic lesions.32

Throughout the infusions delivered via a catheter
in the lateral ventricle, CAR-T1 cell numbers
detected in the cerebrospinal fluid seemed to be
directly associated with tumor burden and inflam-
matory cytokine levels.32

TUMOR MICROENVIRONMENT IN
GLIOBLASTOMA

There are many unique considerations for CAR-T
delivery, in addition to local delivery to the CNS,
which are relevant toGBMpatients. TheGBMtumor
microenvironment is an immunosuppressive and
metabolically stressful niche that impairs immuno-
therapeutic efficacy. There are many soluble immu-
nosuppressive factors, cytokines, and immune cells
that attenuate the antitumor response.11,33 GBM
cells secrete IL-6, IL-10, transforming growth fac-
tor-b, and other anti-inflammatory cytokines that
dampen cytotoxic antitumor immune responses.33

RegulatoryTcells, tumor-associatedmacrophages,
immunosuppressive-type macrophages, microglia,
and myeloid-derived suppressor cells also charac-
terize the anti-inflammatory condition associated in
GBM.34–36

Furthermore, the hypoxic and metabolically
stressful microenvironment is a hallmark feature of
GBM. Hypoxia has been shown to potentiate the
immunosuppressive effects of other tumoral anti-
inflammatory factors and contributes to the renewal
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of glioma-like stem cell population that may confer
chemotherapy and irradiation.37 Nutrient insuffi-
ciency is also characteristic of the dysregulated
metabolic state in GBM. T cells encounter a
glucose supply-demand mismatch in the GBM tu-
mor microenvironment, because the glucose-poor
niche does not provide sufficient glucose supply
to meet the high glycolytic activity of T cells needed
to maintain proliferation and effector capacity.11,34

In addition to dysfunctional glucose metabolism,
other metabolic substrates, including tryptophan,
arginine, lactate, and lysine, can have deleterious
effects on protein translation and T-cell function.38
SPATIAL AND TEMPORAL GLIOBLASTOMA
HETEROGENEITY

There are many forms of heterogeneity in the GBM
tumor microenvironment, including variation in cell
type, mitotic activity, vascular pattern, and necro-
sis.39 Common CAR-T targets for GBM, including
epidermal growth factor receptor (EGFR) variant
III (EGFRvIII), IL13Ra2, and human epidermal
growth factor receptor 2 (HER2), demonstrate het-
erogeneity at the level of the patient in spatial and
temporal dimensions.21,40,41 This intratumoral
variability presents a challenge to effective CAR-
T delivery. In EGFRvIII- and IL13Ra2-directed
CAR-T trials, investigators noted that target anti-
gen quantitative expression varied regionally
within the tumor5 and that CAR-T cell trafficking
to distant tumoral sites away from target intracra-
nial lesions is possible.31 Temporal heterogeneity
is also evident, with next-generation sequencing
of GBM patient lesions suggesting that there is se-
lective expansion or regression of tumor subpopu-
lations with unique molecular signatures when
treated with radiation or chemotherapy.42

Antigen escape is a phenomenon in which tumor
cells avoid CAR-T-directed killing by expressing
alternate forms of the target antigen. Loss of target
antigen has been documented in GBM CAR-T tri-
als for EGFRvIII- and IL13Ra2-directed CAR-T
constructs,5,32 which may serve as a mechanism
for decreased postinfusion expansion of the
CAR-T product and attenuated efficacy from a
monovalent CAR-T construct. Antigen escape
poses many challenges for effective CAR-T
design, because single-antigen targeting may be
insufficient to stimulate a durable CAR-T response
postinfusion.
TARGETS OF INTEREST IN GLIOBLASTOMA
IL13Ra2

IL13Ra2, a high-affinity IL-13 receptor, is an
attractive target antigen for GBM CAR-T therapy
given its upregulation in high-malignancy disease,
specificity for GBM cells, and limited expression in
normal brain parenchyma.11,43 Approximately
58% of World Health Organization grade IV gli-
omas have upregulation of this receptor, and this
overexpression has been linked with poor survival
outcomes.44

HER2

HER2 is another attractive target antigen for the
purposes of CAR design for GBM patients. HER2
encodes a transmembrane glycoprotein with intra-
cellular tyrosine kinase activity45 and is well-
characterized with respect to the pathogenesis
of breast cancer. Although HER2-positive GBM
is not common, initial studies suggested that
15% to 17% of GBM expressed the transmem-
brane protein by immunohistochemistry and that
expression is linked to poor survival out-
comes.46–48 A second-generation HER2-specific
CAR construct demonstrated strong antitumor ac-
tivity in an orthotopic xenogeneic mouse model.49

The same research group subsequently initiated
the first GBM CAR-T study that addressed
HER2-positive GBM patients with progressive
disease.21

EGFRvIII

EGFR is a receptor tyrosine kinase that is
commonly amplified or mutated in human
GBM.50 EGFRvIII is the most common variant of
EGFR in human tumors and results from the in-
frame deletion of exons 2 to 7 that creates a novel
glycine at the junction of exons 1 and 8.51,52 The
truncated variant leads to constitutive signaling in
the Ras-mitogen-activated protein kinase
pathway and is associated with more malignant
GBM.53 EGFRvIII is expressed in approximately
30% of newly diagnosed patients51 and has
been associated with mixed survival outcomes.
Although earlier studies suggested that EGFRvIII
was a poor prognostic indicator,53–55 more recent
and larger studies have not demonstrated any sig-
nificant predictive power associated with the
variant.56

CHIMERIC ANTIGEN RECEPTOR T CELLS
CLINICAL TRIALS FOR GLIOBLASTOMA
PATIENTS
IL13Ra2 Trials

The first human study of first-generation IL13Ra2-
directed CAR-T cells with repeated intracavitary
administration in three patients with recurrent
GBM provided promising results regarding the
safety and efficacy of the immunotherapy
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(Table 1).17 An IL-13-zetakine construct, an MHC-
independent CAR, recognizes IL13Ra2 using a
unique IL-13 ligand with a point mutation (E13Y)
to reduce binding affinity and attenuate off-target
reactivity to the more commonly expressed
IL13Ra2/IL4Ra complex. The CAR-T infusions,
delivered through a catheter/reservoir system,
had a favorable safety profile, with no dose-
limiting toxicities recorded. However, there were
two grade 3 headaches attributable to one sub-
ject, and a grade 3 neurologic event associated
with another patient that were possibly related to
CAR-T administration. A rapid inflammatory
response after T-cell infusion followed by necrosis
favored antitumor activity over progressive dis-
ease or previous treatment effect.

The City of Hope research group that oversaw
the first IL13Ra2 study followed up with a subse-
quent trial using a second-generation IL13Ra2-
directed CAR that incorporated at 4-1BB costimu-
latory domain in a 50-year-old GBM patient.32 The
patient presented with recurrent multifocal GBM
with leptomeningeal disease with unmethylated
O6-methylguanine–DNA methyltransferase
(MGMT) promoter, wild-type IDH1, and IL13Ra2
H-score of 100. The patient initially received six cy-
cles of intracavitary infusions; however, because
of progression at distal sites and the emergence
of spinal metastases, a catheter was placed to
enable intraventricular delivery. Following 10 cy-
cles of intraventricular infusions, all spinal metas-
tases were completely eliminated. In contrast
with the earlier study, the research group observed
a more favorable safety profile with the second-
generation construct, with no grade 3 or higher
adverse events observed and no dose-limiting
toxicities. Of note, the data indicated that
IL13Ra2-directed CARs may modulate the GBM
tumor microenvironment. There were significant
increases in proinflammatory cytokines
throughout the 7-day infusion cycle, including
interferon-g, tumor necrosis factor-a, IL-2, IL-5,
IL-6, IL-8, and host immune cell populations,
such as CD191 B cells and CD11b1CD151 granu-
locytes in the cerebrospinal fluid. Similar to their
previous trial, expansion and persistence of the
second-generation IL13Ra2-directed CAR in this
patient was limited in later infusions. After a sub-
stantial clinical response of 7.5 months following
the initiation of the intracavitary and intraventric-
ular infusions, GBM recurred at four novel sites.
Immunohistochemistry analysis confirmed low
IL13Ra2 expression, suggesting lower target anti-
gen expression may be associated with disease
recurrence at novel locations.

The localization of anti-IL13Ra2 CAR-T thera-
pies to the appropriate compartment within the
CNS is a critical therapeutic feature for antitumor
activity. Keu and colleagues31 developed a PET-
based visualization methodology using [18F]
FHBG, a fluorine-18 radiolabeled analogue of pen-
ciclovir, to monitor in vivo trafficking of HSV1-tk
expressing IL13Ra2-directed CAR-T cells. The
study provided preliminary evidence of appro-
priate cytotoxic T lymphocytes trafficking to tumor
sites; however, the investigators were not able to
confirm this hypothesis given noticeable false-
positive signals in preinfusion scans.
EGFRvIII Trials

Two in-human EGFRvIII-directed CAR trials have
been conducted to date that provide support for
further clinical advancement of CAR-T therapeu-
tics that target this oncogenic variant. A phase I
trial at the University of Pennsylvania with a single,
intravenous infusion of EGFRvIII-directed CAR-T
cells included 10 patients with
EGFRvIII1 recurrent GBM.5 Based on a preclinical
trial of an anti-EGFRvIII CAR that demonstrated
antitumor activity and minimal reactivity to human
skin grafts in immunodeficient mice,57 the
research group leveraged this construct for the
first in-human trial of an EGFRvIII-directed CAR.
Substantial tumor regression was not observed
in any patients based on MRI imaging. However,
one patient had residual stable disease for more
than 18 months postinfusion and all seven patients
reoperated on postinfusion demonstrated a
decrease or complete loss of the target antigen.
The poor prognostic characteristics associated
with the patient sample in this trial are of interest,
because 9 out of 10 patients had multifocal dis-
ease and all patients were MGMT promoter unme-
thylated, which has been implicated as a
predictive marker of poor survival outcomes.58

Most patients had a postinfusion resection,
enabling a comparative analysis of CAR-T cell traf-
ficking in the peripheral blood and the tumor site.
For two patients, CAR-T DNA sequence copies
in brain tumor specimens were 3 and 100 times
greater than their pairwise peripheral blood speci-
mens, suggesting CAR-T cell trafficking to the
appropriate compartment.

In contrast, a phase I dose-escalation trial for
patients with recurrent EGFRvIII1 GBM using a
third-generation construct incorporated lympho-
depletion and systemic IL-2 administration, similar
to protocols that have resulted in clinical re-
sponses for patients with melanoma and synovial
sarcoma.25 Eighteen patients ultimately received
the CAR-T infusion product that included 4-1BB
and CD28 costimulatory domains. There were no
objective responses by MRI imaging and most



Table 1
Summary of in-human CAR-T trials for GBM patients

Study,
Year

No. of
Patients

Target
Antigen CAR-T

Route of
Administration TME Response

Max Dose
(Cells) Safety and Tolerability Outcomes

Goff
et al,25

2019

18 EGFRvIII EGFRvIII-CD28-41BBz
(third generation)

Intravenous N/A 2.6 � 1010 2 DLTs. 1 patient
developed acute
dyspnea and severe
hypotension with
subsequent
treatment-related
mortality (grade 5). 1
patient developed
dyspnea that was
successfully managed
with CPAP.

Median OS: 6.9 mo.
Median progression-
free survival: 1.3 mo. 1
patient alive at 59 mo.
2 additional patients
survived >1 y.

O’Rourke
et al,5

2017

10 EGFRvIII EGFRvIII-4-1BB CD3z
Bulk T cells (second
generation)

Intravenous Increased
expression
of IDO1, FoxP3,
IL-10, PD-L1,
TGF-b

5 of 10 patients
with 10-fold
or greater
increase in IL-6
postinfusion

5 � 108 No DLTs. Grade 3–4
Possibly related
adverse events: left
ventricular systolic
dysfunction (n 5 1),
left-sided muscle
weakness (n 5 1),
facial muscle
weakness (n 5 1),
headache (n 5 1),
intracranial
hemorrhage (n 5 1),
seizure (n 5 2).

Median OS: 251 d. Post-
treatment EGFRvIII
loss in 5 out of 7
patients.
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Ahmed
et al. 21

2017

17 HER2 HER2-FRP5.CD28z
VST (EBV-CMVpp65-AD)
(second generation)

Intravenous N/A 1 � 108 No DLTs. Grade 2–4
Possibly related
adverse events:
headache (n 5 1),
seizure (n 5 2).

Median OS: 11.1 mo
(24.5 mo from
diagnosis), 1/16
patients partial
response (>9 mo), 7/16
patients stable disease
(8 wk–29 mo), 8/16
patients progressive
disease. Patients with
no salvage therapy
before infusion had
significantly longer
median OS (27.2 mo)
than those with
previous salvage
therapy (6.7 mo).

Keu
et al,31

2017

7 IL13 (E13Y)-
CD3z [18F]FHBG-HSV1-
TK-HPH- GR- deleted
CD81 CTLs (second
generation)

Intracerebral N/A 1 � 108 No DLTs. No major or
life-threatening
events related to [18F]
FHBG and/or CTL
infusions.

[18F]FHBG gene reporter
used in novel PET-
based imaging
approach to in vivo
CTL monitoring.
Survival between 4
and 59 following first
infusion of CTL
product.

Brown
et al,32

2016

1 IL13Ra2 IL13(E13Y)-41BBz-
CD19 t

Memory T cells (second
generation)

Intracavitary,
intra-
ventricular

Increased
CD-31 CD-141

CD-151, CD-191

immune cells
and 10-fold or
greater increase
in inflammatory
cytokines (IFN-g,
TNF-a, IL-2, IL-5,
IL-6, IL-8, IL-10)
and chemokines
(CXCL9, CXCL10,
CCR2, IL-1Ra)

10 � 106 No DLTs. No grade 3–4
possibly related
adverse events related
to CAR-T
administration.

Case report of 50-year-
old patient
demonstrating 7.5
clinical response,
including complete
elimination of spinal
metastases following
intraventricular
delivery of the CAR
construct. Disease
progression at 228 d.

(continued on next page)

C
A
R
T
C
e
lls

2
5
5



Table 1
(continued )

Study,
Year

No. of
Patients

Target
Antigen CAR-T

Route of
Administration TME Response

Max Dose
(Cells) Safety and Tolerability Outcomes

Brown
et al,17

2015

3 IL13Ra2 IL13(E13Y)-CD3z
CD81 CTLs (first
generation)

Intracavitary,
intratumoral

Transient
inflammatory
response and
increase in
necrotic volume
at tumor site,
confirmed by
elevated lactate
and lipid peaks
and a low
choline/
creatinine ratio

1 � 108 No DLTs. Grade 3
adverse events:
headache (n 5 1),
neurologic event
shuffling gait and
tongue deviation
(n 5 1).

Median postrelapse
survival:10.3 mo.
Significant decrease
in IL13Ra2 expression
vs pretreatment levels
(1 patient). No tumor
recurrence at border
of resection cavity (2
out of 3 patients)

Abbreviations: CMV, cytomegalovirus; CPAP, continuous positive airway pressure; CTL, cytotoxic T lymphocytes; DLT, dose-limiting toxicity; EBV, Epstein-Barr virus; IFN, interferon; OS,
overall survival; TGF, transforming growth factor; TME, tumor microenvironment; TNF, tumor necrosis factor; VST, virus-specific T cells.
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patients had progressive disease at the first
follow-up. With progression-free survival of
1.3 months, the investigators suggested that the
anti-EGFRvIII CAR-T product provided minimal
to no clinically meaningful benefit to patients,
even with notable persistence of the CAR1 cells
at the 1-month postinfusion timepoint for 14 of
the patients. Dose-limiting toxicities were associ-
ated with the highest dosage (�1010 cells), with
one patient developing acute dyspnea and pulmo-
nary edema and ultimately succumbing to severe
hypotension and the other developing severe dys-
pnea that was managed successfully with contin-
uous positive airway pressure. Refinement of
EGFRvIII-directed CAR-T therapy, with respect
to antitumor activity and its safety, may support
ongoing clinical advancement of bispecific and
trispecific CAR-T constructs that incorporate
EGFRvIII targeting as a part of the therapeutic
mechanism and anti-EGFRvIII antibody
development.59

HER2 Trials

The first in-human anti-HER2 CAR-T product for
GBM patients used a second-generation
construct using a CD28 costimulatory domain.21

Of note, the investigators expressed the CAR
construct in virus-specific T cells (VSTs) to facili-
tate adoption of the infusion product. These
VSTs not only provide antitumor activity, but also
receive a sufficient costimulatory signal following
native receptor engagement by latent virus anti-
gens presented by endogenous professional
antigen-presenting cells.21,60 The Baylor team
generated HER2-directed CAR-T cells that were
specific for cytomegalovirus, Epstein-Barr virus,
or adenovirus. Expansion, measured by inter-
feron-g Elispot assays, was not observed in vivo
in GBM patients, in contrast to the significant
expansion of VSTs in hematopoietic stem cell
transplant recipients who are extremely lympho-
depleted.61,62 With respect to persistence, the
CAR1 cells were detectable in the peripheral blood
for up to 12months. This is a notable increase from
persistence recorded in EGFRvIII- and IL13Ra2-
directed CAR-T trials in GBM patients and pro-
vides additional support for the exploration of
VST-based approaches to increasing CAR-T
longevity in vivo.

EMERGENT CLINICAL TRIALS AND FUTURE
DIRECTIONS

Currently, there are 16 trials that involve CAR-T
therapy as a treatment modality for GBM on
clinicaltrials.gov. Of these trials, seven are actively
recruiting patients, one trial is active and not
recruiting, and one trial has been terminated with
results (Table 2).

Exploration of attractive antigen targets that can
improve CAR-T engraftment, persistence, and ef-
ficacy is a prominent theme in emergent GBM
CAR-T clinical trials. Targets of interest include
more conventional IL-13Ra2 and HER2 and novel
antigens of interest, such as B7-H3 (CD276), an
antigen that is not normally expressed in CNS tis-
sue, but has enriched expression in GBM patients
(NCT04385173, NCT04077866). Erythropoietin-
producing hepatocellular carcinoma A2 (EphA2),
a receptor tyrosine kinase that is overexpressed
in GBM and is associated with poor out-
comes,66–68 is also a promising target. A phase I/
II trial explored the effectiveness and safety of an
anti-EphA2 CAR-T therapy in GBM patients; how-
ever, the study was recently withdrawn
(NCT02575261).

Combination therapy of CAR-T immunotherapy
used in conjunction with immune checkpoint
blockade and antiangiogenic therapy is an emer-
gent area in GBM therapeutic development. Upre-
gulation of immunosuppressive factors, including
programmed death-ligand 1 (PD-L1), IDO1,
FoxP3, and transforming growth factor-b, has
been implicated in the GBM tumor microenviron-
ment,12 demonstrating a role for checkpoint
blockade and other therapeutics that can poten-
tiate the host response through reversal of T-cell
exhaustion. An ongoing single-arm, open-label
study at The University of Pennsylvania builds on
a prior phase I study that established the safety
and tumor localization profiles of an EGFRvIII-
direct CAR (NCT02209376). The group is now
combining 2.0 � 108 cell doses of the anti-
EGFRvIII construct with 200-mg pembrolizumab,
a humanized antibody directed against pro-
grammed cell death protein (PD-1) following adju-
vant radiotherapy (NCT03726515). Strategies that
target the abnormal vascularization of the GBM
TME are also promising in the context of combina-
tion therapy.69 CAR-T administration in combina-
tion with bevacizumab, an anti-VEGF monoclonal
antibody, may counteract the immunosuppressive
effects modulated by VEGF, such as the recruit-
ment of regulatory T cells and myeloid-derived
suppressor cells and disrupted dendritic cell acti-
vation70 and has shown to strengthen the anti-
tumor efficacy of an anti-GD2 CAR-T therapy in a
preclinical study.71

In addition to a marked immunosuppressive
signature, the GBM tumor microenvironment also
presents challenges with respect to antigen
escape. Loss of target antigen represents the
paradox of effective CAR-T treatment; postinfu-
sion antigen loss is indicative of effective antitumor

http://clinicaltrials.gov


Table 2
Active trials of CAR-T cell therapies for glioblastoma

NCT#/Institution Study Name Phase
Target
Antigen ROA Comments

NCT04385173, Second
Affiliated Hospital of
Zhejiang University School
of Medicine, Hangzhou,
China

Pilot Study of B7-H3 CAR-T in
Treating Patients With
Recurrent and Refractory
Glioblastoma

I B7-H3 Intratumoral/
intracerebroventricular

No lymphodepleting
chemotherapy.
Locoregional
administration. Inclusion
criteria require B7-H3-
positive tumor by IHC with
H-score �50.

NCT04077866, Second
Affiliated Hospital of
Zhejiang University School
of Medicine, Hangzhou,
China

B7-H3 CAR-T for Recurrent or
Refractory Glioblastoma

I/II B7-H3 Intratumoral/
intracerebroventricular

Randomized parallel-arm
study to evaluate head-to-
head safety and efficacy of
B7-H3 CAR-T to
temozolomide alone in
relapsed/refractory GBM
patients.

NCT04045847, Xijing Hospital,
Xi’an, Shaanxi, China

CD147-CART Cells in Patients
With Recurrent Malignant
Glioma

I CD147 Intracavitary Estimated enrollment n 5 31
patients.

NCT04214392, City of Hope
Medical Center, Duarte,
California

Chimeric Antigen Receptor
(CAR) T Cells With a
Chlorotoxin Tumor-
Targeting Domain for the
Treatment of MPP21

Recurrent or Progressive
Glioblastoma

I MPP2 Dual delivery Recognition domain of CAR
derived from CTLX, a
natural peptide from the
nontoxic venom component
of death stalker scorpion
venom. Orthotopic
xenograft mice models have
demonstrated antitumor
activity of CTLX-directed
CAR therapy for MPP21

tumors.63

NCT04003649, City of Hope
Medical Center, Duarte,
California

IL13Ralpha2-Targeted
Chimeric Antigen Receptor
(CAR) T Cells With or
Without Nivolumab and
Ipilimumab in Treating
Patients With Recurrent or
Refractory Glioblastoma

I IL13Ra2 Intratumoral/intraventricular CAR-T combination with
immune checkpoint
blockade therapy
(nivolumab and
ipilimumab).
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NCT02208362, City of Hope
Medical Center, Duarte,
California

Genetically Modified T-cells in
Treating Patients With
Recurrent or Refractory
Malignant Glioma

I IL13Ra2 Intracavitary/intratumoral,
intraventricular

Published cohort of 3 patients
suggests second-generation
IL13Ra2 CAR has antitumor
activity.64

NCT03389230, City of Hope
Medical Center, Duarte,
California

Memory-Enriched T Cells in
Treating Patients With
Recurrent or Refractory
Grade III-IV Glioma

I HER2 Intratumoral/intracavitary,
intraventricular

Locoregional delivery of HER2-
directed CAR to the brain
for GBM patients.

NCT02664363, The Preston
Robert Tisch Brain Tumor
Center at Duke, Durham,
North Carolina

EGFRvIII CAR T Cells for Newly-
Diagnosed WHO Grade IV
Malignant Glioma (ExCeL)

I EGFRvIII Intravenous Dose-intensified
lymphodepletion
preconditioning to grade 3
lymphopenia with TMZ.
Dose-escalation study with
111In-labeled CARs.

NCT03726515, Abramson
Cancer Center of the
University of Pennsylvania,
Philadelphia, Pennsylvania

CART-
EGFRvIII 1 Pembrolizumab
in GBM

I EGFRvIII Intravenous Based on upregulation of anti-
inflammatory molecules
including PD-L1 in this
group’s previous study,5

pembrolizumab (PD-1
inhibitor) treatment added
in combination EGFRvIII-
directed CAR.65

Abbreviations: CTLX, chlorotoxin; IHC, Immunohistochemistry; ROA, Route of administration; WHO, World Health Organization.
Data accessed from clinicaltrials.gov on November 6, 2020.
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treatment of leptomeningeal disease and spi-
nal metastases and able to attenuate tumor
growth at sites distant to the point of
administration.

� A single study indicates that patients with no
salvage therapy before CAR-T administration
may have substantially longer median overall
survival compared with their counterparts
who did receive prior salvage therapy, sug-
gesting that prior disease course and treat-
ment history is relevant to a patient’s course.
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activity, but simultaneously impairs the honing
mechanism of CAR-T cells and enables tumor
escape, because the reengineered immune cells
have lost their target on the GBM tumor cell sur-
face that ensures appropriate localization,
engagement, and activation of the T-cell
construct. Bivalent and trivalent CARs that incor-
porate multiple well-characterized GBM antigen
targets including IL13Ra2, EGFRvIII, HER2, and
EphA2 are currently under investigation in preclin-
ical animal models.12 A preclinical trial at Baylor
College of Medicine, using a trispecific CAR
directed against IL13Ra2 and HER2 and EphA2
demonstrated significant antitumor activity and
broader therapeutic activity41 than a similar biva-
lent construct targeting IL13Ra2 and HER2 also
designed by the group.72 However, loss of target
antigen was common in surviving GBM cells sug-
gesting tumor escape.12,41,72

Ongoing and future trials that investigate the
safety, tolerability, and activity of CAR-T cells
that target novel antigens, invoke combination
therapy, and address GBM tumor microenviron-
ment considerations may provide new avenues
for therapeutic development. VSTs, lymphodeple-
tion regimens, and immune checkpoint blockade
represent a few of the emergent strategies that
are under investigation in active trials. Given the
high unmet clinical need for relapsed/refractory
GBM patients and increasingly well-
characterized role of the immune system in GBM
pathogenesis, clinical advancement CAR-T cell
therapies from preclinical models to pivotal-stage
trials is top-of-mind for clinicians and investigators
because these immunotherapies may substan-
tially improve clinical outcomes for this patient
population.
CLINICS CARE POINTS
� Persistence and expansion of CAR-T cells post-
infusion is limited in most patients, with lym-
phodepletion preconditioning and use of
VSTs as potential strategies to overcome this
limitation to durable therapeutic response.

� Dose-limiting toxicities with CAR-T adminis-
tration, although rare, can result in poten-
tially fatal complications including acute
dyspnea and severe hypotension and patients
should be closely monitored when titrating a
patient to higher CAR-T cell doses.

� Preliminary evidence suggests intraventric-
ular administration may be relevant for the
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