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A B S T R A C T   

Glioblastoma (GBM) is considered one of the most common malignant brain tumors, occurring as over 15% of all 
primary central nervous system and brain neoplasms. The unique and standard treatment option towards GBM 
involves the combination of surgical resection followed by radiotherapy (RT) and chemotherapy (CT). However, 
due to the aggressive nature and heterogeneity of GBMs, they remained difficult to treat. Recent findings from 
preclinical studies have revealed that disruption of the redox balance via using either oxidative or anti-oxidative 
agents in GBM presented an effective and promising therapeutic approach. A limited number of clinical trials 
substantially encouraged their concomitant use with RT or CT. Thus, treatment of GBMs may benefit from 
natural or synthetic antioxidative compounds as novel therapeutics. Despite the presence of variegated in vitro 
and in vivo studies focusing on safety and efficacy issues of these promising therapeutics, nowadays their 
translation to clinics is far from applicability due to several challenges. In this review, we briefly introduce the 
enzymatic and non-enzymatic antioxidant defense systems as well as potential signaling pathways related to the 
pathogenesis of GBM with a special interest in antioxidant mechanisms. In addition, we describe the advantages 
and limitations of antioxidant supplementation in GBM cases or disease models as well as growing challenges for 
GBM therapies with antioxidants in the future.   

1. Introduction 

Glioblastoma (GBM) is one of the most common malignant brain 
tumors that can constitute over 15% of all primary central nervous 
system and brain neoplasms (Thakkar et al., 2014). GBM has a 3.2/100, 
000 incidence rate adjusted for average age that most common disease 
occurrence (Ostrom et al., 2019). Although GBM usually occurs in the 
brain, it can also be seen in the spinal cord, cerebellum and brainstem. 
GBMs were known to be originated primarily from glial cells. However, 
GBMs can be derived from a various number of cell types that show stem 
cell-like features (Blissitt, 2014). These types of cells are at a different 
phase of the differentiation that produces glial or neuronal cells and 
phenotypic differentiations are determined by signaling pathway mod-
ifications instead of cell type origins (Phillips et al., 2006). Although 
GBM is a common disease for 64-year-olds on average, it can be seen in 
people of all ages, including children and is more common in men than 

women (Ellor et al., 2014). When GBMs occur without a known origin or 
precursors, are classified as primary tumors but there are also secondary 
GBM that originate from lower grade tumors, differentiating into GBM. 
Generally, GBMs emerge as primary tumors and these types of GBMs 
present difficulty in prognosis, and are commonly seen in older patients 
(Wilson et al., 2014). 

According to the Cancer Genome Atlas project, 200 human tumor 
samples were analyzed and nearly 600 associated genes were identified 
(Parsons et al., 2008). This project uncovered the complex genetic 
profile of GBM and revealed commonly activated sets of signaling 
pathways related to GBM. These pathways were shown to commonly 
include the retinoblastoma pathway, the receptor tyrosine kinase/R-
as/phosphoinositide 3-kinase signaling pathway and the tumor protein 
p53 pathway. Moreover, these pathways were shown to have crucial 
properties for cell proliferation and survival. Pathway alteration was 
investigated to reveal GBM’s survival properties like cell-cycle 
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checkpoint, apoptosis and senescence escape mechanisms (Chen et al., 
2012). Also, the different genetic alterations were shown to result in an 
either primary or secondary glioma. For instance, a mutation in phos-
phate and tensin homolog (PTEN) or overexpression of epidermal 
growth factor receptor (EGFR) results in primary GBMs, while mutation 
in P53 or isocitrate dehydrogenase 1 (IDH1) produce secondary GBMs 
(Chen et al., 2012; Young et al., 2015). 

GBM progression is closely related to tissue microenvironment and 
gliomagenesis. A pro-inflammatory microenvironment that leads to 
changes in redox homeostasis promotes gliomagenesis (Feng et al., 
2015). Therefore, some alternative therapies have focused on the 
development of new approaches that can regulate the redox state in the 
glioblastoma microenvironment or stimulate ROS production (Manda 
et al., 2015). The main aim of this review is to procure convenient data 
about the anti-GBM effects of natural or synthetic antioxidants on 
different signaling pathways in the carcinogenesis of GBM. Here we 
assess the potential benefits or limitations of antioxidant use towards the 
prevention and treatment of GBM. We generated the data from 
biomedical literature by use of antioxidant, glioblastoma, in vitro, ani-
mal model, clinical trial as keywords for scanning in the PubMed data-
base. We have searched noteworthy scientific articles or reviews from 
the years 1979–2021 to create this study. 

2. Antioxidant defense systems 

The antioxidant defense system comprises different functional 
groups that can be classified into three lines of defense. The first defense, 
preventive antioxidants, function in preventing the formation of new 
free radicals. The antioxidants in this group are enzymes such as su-
peroxide dismutase (SOD), catalase (CAT), and glutathione peroxidase 
(GPX); proteins that bind metals such as ferritin and ceruloplasmin; and 
minerals such as Se, Cu, and Zn. The antioxidants in second-line defense 
scavenge different free radicals. Glutathione, albumin, vitamins C and E, 
carotenoids, and flavonoids are radical scavenging antioxidants. Third 
line antioxidants including lipases, proteases, DNA repair enzymes, 
transferases, and methionine-sulfoxide reductases are responsible for 
repairing the damage in biomolecules induced by free radicals (Fig. 1) 
(Irshad and Chaudhuri, 2002; Ramírez-Expósito and Martínez-Martos, 
2019; Shetti et al., 2009; Sindhi et al., 2013). 

The imbalance between the level of free radicals and antioxidant 
systems leads to oxidative stress. Disruption of the balance between ROS 
and antioxidant levels can rearrange defense mechanisms in cells, pro-
moting excessive cell proliferation and tumorigenesis. Antioxidant de-
fense systems prevent oxidative stress by detoxifying the deleterious 
effects of ROS. Therefore, it is thought that they may be beneficial in 

disorders associated with oxidative stress. Mammalian cells have been 
protected by developing various antioxidant mechanisms to resist the 
harmful actions of ROS and cellular oxidative stress (Aoyama et al., 
2008). Antioxidants consist of different types of molecular groups. 
Several endogenous metabolites, water or lipid-soluble low molecular 
weight substances and enzymes such as SOD, CAT, GR and GPx have 
antioxidant functions in the cell (Fig. 2). 

2.1. Non-enzymatic antioxidant defense system 

Glutathione (GSH) is the most abundant low molecular weight thiol 
and plays a role in keeping the balance of cellular redox state (Chuang 
et al., 2003; Guha et al., 2011). Glutathione primarily exists in reduced 
form as GSH in the cell. However, some is present as GSSG in the form of 
oxidized disulfide. The level of oxidized form (glutathione disulfide, 
GSSG) is increased by oxidative stress, resulting in harmful effects in the 
cellular system (Salazar-Ramiro et al., 2016). Therefore, low GSH level 

Fig. 1. The antioxidant defense system comprises different functional groups that can be grouped into three lines of defense.  

Fig. 2. Enzymatic and non-enzymatic antioxidants.  
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or GSH/GSSG ratio is closely related to susceptibility to oxidative stress 
and carcinogenesis while high GSH levels elevate the antioxidant po-
tential of various tumor cells, increasing their resistance to oxidative 
stress (Traverso et al., 2013; Marengo et al., 2016). 

GSH and the GSH-related enzyme system can significantly affect the 
sensitivity to chemotherapeutic agents in patients with primary and 
recurrent glial tumors (Backos et al., 2012). Studies have shown that a 
change in the enzyme system related to GSH and an increased GSH level 
may lead to drug resistance in UWR-2 human malignant astrocytoma 
cells and different human medulloblastoma cell lines including Daoy, 
D283 Med, D341 Med, D384 Med, D425 Med, and D458 Med cells 
(Ali-Osman et al., 1989; Friedman et al., 2002). In addition, in vitro 
studies on UWR-2 cells revealed a relationship between chemothera-
peutics and cellular GSH content (Ali-Osman et al., 1989, 1990). In fact, 
in an in vitro study, alantolactone, a sesquiterpene lactone, is considered 
a promising agent for glioblastoma therapy due to its ability to suppress 
proliferation of human glioblastoma cell lines such as U-87, U-373, and 
LN-229, induce cell death and decrease GSH levels (Khan et al., 2012). 

Vitamin E, vitamin C and carotenoids are among the antioxidant 
foods consumed with the diet. They also have antioxidant properties as 
well as anti-inflammatory properties like other bioactive phytochemi-
cals. Phytochemicals consist of various bioactive groups including 
phenolic acids and their derivatives, flavonoids and different types of 
coumarins and tannins (Liu, 2004). Phenolic antioxidants like curcumin, 
resveratrol and genistein have recently been attracting attention in 
promising trials for future cancer prevention purposes towards the 
colorectal adenomas and carcinomas, gastric and esophageal cancers 
(Gescher et al., 2001; Gullett et al., 2010). These phenolic chemicals 
have both antioxidant and anti-inflammatory activities (Djuric et al., 
2001; Leu and Maa, 2002; Brisdelli et al., 2009). 

The potential therapeutic effect of resveratrol has been studied in 
many types of cancer, including glioma-type brain tumors and many 
inhibitory properties have been demonstrated, such as blocking the 
activation of carcinogens and inducing their detoxification, thus pre-
venting ROS damage and attenuating inflammatory responses (Aggar-
wal et al., 2004; Fulda and Debatin, 2006; Shankar et al., 2007; Gagliano 
et al., 2010). It has been shown to induce various responses to resver-
atrol in human U-251 glioma cells, depending on the sulfonation activity 
associated with the brain (Gagliano et al., 2010). It has also been shown 
that its combination with the alkylating agent temozolomide increases 
the efficacy of CT for glioblastoma-initiating cells from GBM patients 
(Herst et al., 2012; LI et al., 2016). Resveratrol has been shown to be 
valuable in personalized treatment of GBMs due to findings from in vitro 
studies using human LN-229 and U-251 GBM cell lines (Sun et al., 2012). 
Also, epigallocatechin-3-gallate (EGCG) in combination with temozo-
lomide elevates the potency of therapies for brain tumors in orthotopic 
mouse glioblastoma (using U-87, U-251, and LN-229 cells) models (Chen 
et al., 2011). Curcumin exhibits antitumorigenic potential via sup-
pressing the formation of B16F10 mouse melanoma cells generated 
brain tumors in mice and it may block proteins involved in the initiation 
of protective signals (Purkayastha et al., 2009). 

In vivo anticarcinogenic properties of oleuropein and hydroxytyrosol 
were investigated on rat C6 astrocytoma spheroid implantation glioma 
model and their antioxidant and non-enzymatic effects were analyzed 
via the use of biochemical biomarkers. According to the results both 
molecules could inhibit lipid peroxidation and protein oxidation in 
cultured rat C6 glioma cells and C6 rat glioma model (Martínez-Martos 
et al., 2014). Cellular antioxidant and methylation metabolism is asso-
ciated with the transsulfuration pathway that modify homocysteine, an 
intermediate of the methionine cycle, to cysteine, by inhibiting gluta-
thione synthesis. For instance, N-acetylcysteine can neutralize muta-
genic molecules and prevent cancer progression, lipoic acid can regulate 
glutathione biosynthesis and taurine can enhance regeneration in 
oxidant induced injuries by sequestering cytotoxic agents (Mates, 2012). 

2.2. Enzymatic antioxidant defense systems 

Endogenous defense mechanisms are formed by various enzyme 
systems that catalyze reactions that neutralize free radicals. In this way, 
they protect the cells from damage caused by free radicals. Three major 
classes of antioxidant enzymes, superoxide dismutase (SOD), gluta-
thione peroxidase (GPx) and catalase (CAT) are important detoxifying 
enzyme systems. 

SOD functions by quenching superoxide radical (O2
− ). Superoxide is 

the cardinal ROS generated from different origins, so its degradation by 
SOD is of primary significance for every cell. SOD is found in three 
different forms: copper/zinc SOD or SOD1, manganese SOD or SOD2, 
and extracellular SOD or SOD3. The role of SOD in cancer has been 
discussed with different aspects with recent studies. Since SOD is 
localized in different cells, each SOD may be specialized for a different 
function. SOD1 is known to be closely related to cancer. The loss of 
SOD1 elevates the level of ROS, which causes DNA impairment and 
promotes tumorigenesis. In addition, antioxidants such as SOD1 are 
needed to prevent excessive cellular damage and apoptosis because 
cancer cells have higher ROS levels. In early studies, SOD2 expression 
was shown to be reduced in tumors, which led to SOD2 being considered 
a tumor suppressor (Oberley and Buettner, 1979). However, since the 
recent results show heterogeneity, it is thought that SOD2 activity may 
vary depending on the stage/tumor type (Hempel et al., 2011; Dhar and 
St Clair, 2012). Finally, the role of SOD3 in cancer is less understood. 
Since it is extracellular localized, its effect on pancreatic ductal adeno-
carcinoma occurs through the tumor microenvironment (Che et al., 
2016). 

Catalase is a peroxisomal enzyme that reduces hydrogen peroxide to 
water. Catalase failure may result in increased ROS levels and oxidative 
damage. Catalase has a protective and anti-apoptotic function by elim-
inating ROS (Jeong and Joo, 2016). Results from several studies inves-
tigating the relationship between catalase and cancer provided 
conflicting explanations. Catalase activity may provide resistance to 
oxidative stress induced by ascorbic acid in cultured U-251, U-87 and 
U-13898 human glioblastoma cells (Klingelhoeffer et al., 2012). 

GPx is another group of enzymes that can convert hydroperoxides 
into water. The presence of an active GPx is a key factor determining 
susceptibility to oxidative stress. Despite the presence of catalase ac-
tivity in cells, ROS can cause increased cell death. This is due to 
decreased or a lack of detectable GPx expression, indicating their de-
pendency for GPx for detoxification of free radicals (Dokic et al., 2012a). 
In a study made on patients with GBM and transitional meningioma, it 
has been shown that levels of GPx and glutathione reductase (GRx) 
decreased significantly (Tanriverdi et al., 2007). In GBM cells, lack of 
GPx1 expression and activity was demonstrated and it has been high-
lighted that GPx1 is a critical antioxidant enzyme for modulation of 
oxidative damage in GBM cells (Dokic et al., 2012b). 

3. The advantages and limitations of antioxidant use against 
GBM: from preclinical perspectives 

There is a constant demand for new treatments to prevent cancer, a 
disease that seriously affects human life globally. The interest of 
research on cancer treatment is beginning to tend with naturally derived 
antioxidant compounds as they are thought to have less toxic side effects 
comparing to existing treatments, such as the use of chemotherapeutic 
agents (Greenwell and Rahman, 2015). Plant metabolites with antioxi-
dant properties can be shown as naturally occurring sources that are 
researched for their anticancer activities. With the success of these 
metabolites converted into essential drugs for cancer treatment, they 
stand out as new technologies to further develop the antioxidant drug 
industry (Wall-Medrano and Olivas-Aguirre, 2020). With the develop-
ment of pharmaceutical technologies, nanotechnological drug systems 
that control the release of plant-based antioxidant drugs, research 
application methods and the aim to increase anticancer activities have 
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been established (Sivaraj et al., 2014). According to the current 
knowledge, oxidative DNA damage is the origin of the first stage of 
carcinogenesis. For instance, reactive oxygen species (ROS) can create 
changes in pyrimidine and purine structures and cause breaks in DNA 
what is called mutagenicity. However, dietary antioxidants like carot-
enoids, vitamin E or flavonoids can prevent these mutagens that stim-
ulate carcinogenicity by enhancing gap-junctional communication, 
inhibiting protein kinase C activity and modulating phase I and II 
xenobiotic detoxification, respectively (Elliott, 2005; Moon et al., 2006; 
Aggarwal et al., 2010). Also, other studies showed that different anti-
oxidant applications like curcumin, resveratrol, fish oil and selenium 
yeast restored tumor inhibited CD4+/CD8+ T cell proliferation, 
increased apoptosis, memory T cells and Treg cell expansions (Yang 
et al., 2008; Bhattacharyya et al., 2010; Wang et al., 2013; Sahu et al., 
2016). Moreover, it is important to maintain oxidation and anti-
oxidation homeostasis to keep healthy biological systems. There is also a 
reality for the double-edged effect of antioxidants besides oxidant 
molecules. Physiologic concentrations of external antioxidants are 
necessary to keep redox balance for healthy cells. On the other hand, 
excessive doses of antioxidants can obstruct and distort redox balance 
which gives rise to cytotoxic or genotoxic either (Bouayed and Bohn, 
2010; Olivier et al., 2021). 

Although there have been many literature data about anticancer 
properties of several natural or synthetic antioxidant sources in cell 
culture and animal studies (Togar et al., 2015; Cacciatore et al., 2017; 
Özgeriş et al., 2017; da Nóbrega et al., 2018; Emsen et al., 2016; 2018; 
2019; Koc et al., 2018; Turkez et al., 2018; 2019; Yazici et al., 2020; 
Özdemir et al., 2020; Colapietro et al., 2020; Pathak et al., 2020), there 
has not been a single natural polyphenol with antioxidant properties 
that was registered or approved for clinical use as an anti-GBM drug 
(Greenwell and Rahman, 2015; Paller et al., 2016). It was also reported 
that dietary antioxidant use didn’t show a consistent result in clinical 
trials and needed to be investigated in a wider spectrum of GBM patients 
(DeLorenze et al., 2010). There are several reasons for the difficulties in 
using natural antioxidants in the pharmaceutical industry. If plant spe-
cies are used as an anticancer source, it would be difficult to extract and 
used as an anticancer drug candidate for companies. There are several 
complexities for this case that one of the most important difficulties is 
the lack of patentability of plant extracts. Also, production periods, 
batch consistency and variation in compositions make the natural 
antioxidant industry challenging. Moreover, standardization in active 
ingredients for naturally obtained antioxidants makes it difficult to 
produce on large scales. Another obstacle for the natural antioxidant 
industry is the lack of information about the exact constituent and 
composition of plant sources resulted from variation in climate change, 
soil quality and cultivation techniques (Mustapa et al., 2015; Tung-
munnithum et al., 2018; Oyenihi and Smith, 2019). Furthermore, 
different in vitro cell line models are used to stimulate the GBM disease 
environment and physiology. One of the most common cell line models 
is a rat glioma cell line (C6) which has been called the gold standard for 
GBM studies (Giakoumettis et al., 2018). C6 cell line models for GBM 
studies are generally used to investigate various biological properties of 
brain tumors, such as tumor invasion and migration, growth factor 
regulation and production tumor growth, angiogenesis, and blood-brain 
barrier deterioration (Hacioglu et al., 2021; Kacar et al., 2021; Kar et al., 
2021). In this regard, the variability of medium and/or serum compo-
nents due to batch may give rise to low reproducibility of generated in 
vitro data. Moreover, the several growth factors like glial growth factor 
and transforming growth factor β1 in the content of serum may incline 
unwanted binding features and ostensible activation or inactivation 
properties by the antioxidant molecules (Ledur et al., 2017). 

4. The efficacy of concomitant application of certain 
antioxidants in patients with GBM in clinical trials 

There are a limited number of studies for assessing the efficacies of a 

concomitant administration of antioxidants in patients with glioblas-
toma treated with several RT and CT strategies. These previous studies 
were summarized in Table 1. Melatonin, a natural chrono-biotic com-
pound, is known for its strong immune-boosting, anti-inflammatory and 
antioxidant properties. The co-administration of melatonin was sug-
gested to reduce side effects by chemotherapeutics, enhanced the 
cytotoxic action by chemotherapeutic agents and decreased drug dos-
ages in GBM cases. Indeed the patients with GBM who received RT (60 
Gy) plus melatonin (as 20 mg/daily orally) led to higher survival as 
compared to patients treated with RT alone (Lissoni et al., 1996). 
Moreover, the combined use of melatonin and Aloe vera (1 ml twice/-
day) enhanced the percent 1-year survival in GBM patients with 
advanced solid tumors in comparison to patients treated with only 
melatonin (Lissoni et al., 1998). Similarly to melatonin and A. vera, oral 
lycopene (8 mg/daily) supplementation with RT provided significant 
potential therapeutic benefit in the clinical trial (Puri et al., 2010). 
Again, the clinical use of trans sodium crocetinate (0.25 mg/kg), a 
synthetic small-molecule exhibiting antioxidant feature, along with the 
temozolomide (TMZ, 75 mg/m2) and RT (2 Gy) (Gainer et al., 2017). On 
the contrary, the co-application of beta carotene, a natural retinol 
(vitamin A) precursor, with mitomycin-C and RT (60 Gy) was found to 
be unprofitable in GBM cases (Stewart et al., 1997). Clinical trials 
revealed that antioxidants did not produce additional side effects along 
with the undesirable effects of RT or CT. In addition, a study was con-
ducted to investigate the survival effects of dietary intake of antioxidant 
vitamins and nutrients in 814 glioblastoma multiforme patients. The 

Table 1 
Gene pathways that related to the GBM formation and possible oxidant or 
antioxidant molecules that could ameliorate effects of the gene cascade on the 
disease pathology.  

Gene pathways Mechanism Mode of 
Action 

Compound 

Isocitrate 
dehydrogenase 
(IDH) 

Oxidative 
stress 

Inactivation diethylamine NONOate, 
S-nitrosothiols, 
3-morpholinosydnomine N- 
ethylcarbamide superoxide 
dismutase, 
spermine NONOate, 
oxalomalate, 
peroxynitrite, 
hydrogen peroxide, 
potassium superoxide 

Acid ceramidase 
(ASAH1) 

Antioxidant Inhibition desipramine, 
benzoxazolone carboxamide 

Notch pathway Antioxidant Inhibition quercetin, 
epigallocatechin-3-gallate 
(EGCG), 
crocin 

Platelet-derived 
growth factor 
(PDGF) 

Antioxidant Inactivation Delphinidin, 
(− )-epigallocatechin-3- 
gallate, 
Lutein, 
caffeoyl-prolyl-histidine 
amide 

Vascular 
endothelial 
growth factor 
(VEGF) 

Antioxidant Inhibition ellagic acid, 
gallic acid, 
tangeretin, 
baicalein, 
nobiletin, 
baicalin 

PI3K/AKT/mTOR 
pathway 

Antioxidant Inhibition delphinidin, 
resveratrol, 
apigenin, 
neferine, 
plumbagin 

Epidermal growth 
factor receptor 
(EGFR) 

Antioxidant Inhibition benzimidazole, 
quinoxaline derivatives, 
silibinin 

Sonic hedgehog 
(SHH) signaling 
pathway 

Antioxidant Inhibition cyclopamine, 
sulforaphane, 
quercetin  
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results of this study did not show a consistent relationship between di-
etary antioxidant/vitamin supplements and survival (Il’yasova et al., 
2009). The application of antioxidants for elevating the efficacy of 
anti-GBM treatment can be considered safe. But their therapeutic po-
tencies or contributions could be different due to different causal factors 
involving bioavailability, BBB permeability, mode of action, interaction 
with drugs as well as preferred application dosages. 

5. Potential signaling pathways associated with pathogenesis of 
GBM: focusing on antioxidant mechanisms 

It is already known that the pathogenesis of GBM is closely related to 
genetic background and gene expression alterations. Different factors 
like cellular and environmental can differentiate gene expression pat-
terns and disease-related pathways greatly (Montemurro, 2020; Su et al., 
2018). Thus, it has great importance to investigate and discuss various 
pathways and gene families that can result in cellular transformation 
and GBM formation. In this section, potential genes that are related to 
GBM occurrence and treatment for the disease through these genes were 
discussed. 

One of the potential genes that can cause GBM formation is the 
isocitrate dehydrogenase (IDH) gene which plays an important role in 
the citric acid cycle enzymatic reactions. There are three different iso-
forms of the IDH enzyme (IDH1, IDH2, and IDH3). Two of these enzymes 
(IDH2 and IDH3) are located in the matrix of mitochondria and one of 
them (IDH1) is positioned in the cytoplasm and peroxisome. IDH1 and 
IDH2 enzymes convert NADP+ and isocitrate into carbon dioxide, 
NADPH and α -ketoglutarate (α-KG) via the oxidative decarboxylation 
reaction (Fedøy et al., 2007). This multistep process is reversible and 
begins with isocitrate oxidation from oxalosuccinate and decarboxy-
lated oxalosuccinate finalized to α-KG which is used for enzyme co-
factors (Kaminska et al., 2019). Secondary glioblastoma analyses have 
been shown that IDH mutations exist in all of the cancer cases but, rarely 
found in 22 human GBM samples (Parsons et al., 2008). These mutations 
can include a gain or loss of function of enzymatic activity of IDH which 
may result in the accumulation of isocitrate (loss of function) or 2-hy-
droxyglutarate (2-HG) (gain of function) that lead to carcinogenesis 
(Cohen et al., 2013; Turkalp et al., 2014). Treatment of GBMs through 
IDH genes is generally focused on inhibition of the gene to prevent 
over-accumulation of 2-HG molecules that prevent the growth of the 
U-87 glioma cells (Popovici-Muller et al., 2018). Thus, there have been 
extensive studies to discover IDH gene inhibitors to prevent tumori-
genesis (Rohle et al., 2013; Di Stefano et al., 2015; Dang and Su, 2017; 
Huang et al., 2019). The previous study has claimed that nitric oxide 
(NO) donors like diethylamine NONOate, S-nitrosothiols, 3-morpholino-
sydnomine N-ethylcarbamide (SIN-1)/superoxide dismutase and sper-
mine NONOate have been shown to inactivate IDH activity through 
oxidative stress in a time and dose-dependent manner (Yang et al., 
2002). Another oxidative molecule, oxalomalate, has been shown to 
inhibit cytosolic IDH activity and it has been called a competitive in-
hibitor of the IDH enzyme (Yang and Park, 2003). Also, various oxida-
tive agents such as peroxynitrite, hydrogen peroxide and potassium 
superoxide have been shown in several studies to block the activity of 
IDH enzyme through oxidative mechanisms (Lee et al., 2001, 2003). 

Furthermore, ceramide signaling has been shown to be an important 
player in tumorigenesis formation in GBM. In the pathway, acid 
ceramidase (ASAH1) metabolizes ceramides and produces free fatty 
acids and sphingosine. It is known that sphingosine-1-phosphate (S1P) 
enhances proliferation and cell survival of U-87 and pediatric glioblas-
toma (SJGBM2) cells which can increase cancer risk (Doan et al., 2017). 
On the other hand, ceramides have been shown to activate cell death 
and senescence mechanisms in pancreatic and breast cancers and leu-
kaemias (Morad and Cabot, 2013). GBM analyses have shown that gli-
oma cells have more concentration of S1P than ceramide which lowers 
the apoptotic cell death ratios and increases cell proliferation to enable 
glioma cells for spreading freely. Also, ASAH1 gene differentiation has 

been analyzed to increase glioblastoma malignancy status of U-87 cells 
and allow them to have higher concentration; spread in the nearby tissue 
(Nguyen et al., 2018). Desipramine, an antidepressant drug with anti-
oxidant properties, was shown to have an inhibitory effect on ASAH1 
enzyme inhibition (Elojeimy et al., 2006; Vircheva et al., 2012). Another 
ASAH1 inhibitor, benzoxazolone carboxamide, was also claimed to have 
antioxidant properties because of benzoxazolone ring structure (Bach 
et al., 2015; Verma and Silakari, 2018). 

The other candidate gene family that can be used for gene-based 
GBM therapy is the Notch signaling component. Notch signaling is of 
crucial importance in cell proliferation, differentiation and apoptosis in 
the central nervous system (CNS), and any abnormality in the pathway 
mechanism can lead to carcinogenesis and GBM formation (Miele et al., 
2006). In the Notch pathway, four main receptor plays important role in 
tumorigenesis. Notch-1 can show oncogenic or tumor suppressor prop-
erties with respect to tissue type and it has been shown to be closely 
related to glioma progression and malignant phenotype (Yan et al., 
2019). Previous studies have shown that targeting the Notch pathway 
for GBM treatment can prevent in vitro and in vivo tumor growth and 
progression because stem-like glioma cells have been investigated to 
express notch signaling genes extensively (Fan et al., 2009). Also, tar-
geting Notch pathway players like Hes1, Hey 2 and Hey 3 inhibitors 
have been shown to be effective for stem cell pool loss, differentiation 
and cell growth arrest in human glioblastoma neurosphere lines 
including HSR-GBM1A, HSR-GBM1B, GBM-DM140207, 
GBM-KK190156 and JHH551(Ying et al., 2011). Different antioxidant 
molecules such as quercetin, epigallocatechin-3-gallate (EGCG) and 
crocin have been proved to inhibit Notch signaling cascade in animal 
model of diabetic nephropathy and hepatocellular carcinoma (HCC) as 
well as Atoh1/GFP transgenic mice via affecting various elements in the 
pathway (Gu et al., 2015; Salama et al., 2019; Amin et al., 2020). 

Platelet-derived growth factor (PDGF) has turned out to be an 
important target for GBM treatment because the PDGF pathway can 
enhance survival and proliferation in all grades of human gliomas 
(Pearson and Regad, 2017). In healthy glial cells, PDGF ligands bind to 
its receptor (PDGFRα and PDGFRβ) which is a receptor tyrosine kinase 
(RTK) placed on the cell surface and start the transduction cascade. After 
interacting with a ligand, the receptor is dimerized and phosphorylates 
tyrosine residues on several subunits. This phosphorylation leads the 
downstream cascade elements that finally reach the genome and acti-
vates DNA synthesis and cellular proliferation (Nazarenko et al., 2012; 
Heldin, 2013). Besides, an autocrine PDGF loop is enhanced in GBM that 
must be inactive in healthy brain cells. Also, several in vitro and in vivo 
studies have shown overexpression of PDGF ligands in GBM and 
mutated, amplified and modified PDGF receptors have been investigated 
in GBM tumors that the receptor plays a crucial role in tumorigenesis 
(Popescu et al., 2015; Westermark, 2014; Cantanhede and de Oliveira, 
2017). Inhibition of PDGF signaling cascade was shown to be an 
important target for the anticarcinogenic property. Delphinidin, a di-
etary anthocyanidin and an antioxidant were shown to have an in vitro 
inhibitory effect on the PDGF pathway through PDGFR blockade (Lamy 
et al., 2008; Chen et al., 2019). Various antioxidant molecules like 
(− )-epigallocatechin-3-gallate, lutein and caffeoyl-prolyl-histidine 
amide were shown to inhibit PDGF signaling cascade (Chen and 
Zhang, 2003; Kwak et al., 2014; Lo et al., 2012). 

Studies have shown that another important candidate target for GBM 
treatment is vascular endothelial growth factor (VEGF) which is a 
cytokine used for activating angiogenesis and restoring oxygen supply 
through new blood vessels growth. In the case of hypoxia, the VEGF 
signaling pathway is activated so that the pathway is called hypoxia- 
inducible signaling. Activation of VEGF signaling stimulates the tyro-
sine kinase pathway and finally enhances the angiogenesis process (Apte 
et al., 2019). VEGF pathway also has an important role in enhancing 
angiogenesis in GBM to promote survival from external stress and 
functional optimization for the environment. The vascular sources are 
crucial for maintaining the glioblastoma tumor growth and receive 
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supplements from the bloodstream (Jhanwar-Uniyal et al., 2015). Thus, 
it can be an effective strategy that preventing angiogenesis via the in-
hibition of the VEGF pathway for anticancer treatment. Several VEGF 
pathway inhibitors have been shown to be effective for treatments of 
various cancer types including metastatic colorectal and medullary 
thyroid cancers, neuroendocrine tumors, and GBM (McIntyre and Har-
ris, 2015; Zirlik and Duyster, 2018). Although VEGF inhibitor therapies 
have been shown beneficial and widely used for cancer treatments, drug 
resistance mechanisms and overall survival advantages haven’t been 
comprehensively studied yet. Moreover, anti-VEGF treatment combi-
nation with immunotherapy, receptor tyrosine kinase inhibitors (TKIs), 
cytotoxic drugs and RT approaches have been shown promising results 
against GBM using in vitro (GL-261 mouse glioma cells) and in vivo 
(intracerebral GBM mouse models) approaches and surgical tissue 
samples from patients with recurrent glioblastoma (Lu et al., 2012; 
Okuda et al., 2017; T. T. Liu et al., 2018). Several antioxidant molecules 
were shown to have an inhibitory effect on the VEGF signaling. For 
instance, ellagic acid, a natural phenolic antioxidant, was shown to have 
inhibitory function against PDGF-induced phosphorylation and migra-
tion in U-87 cell cultures (Priyadarsini et al., 2002; Labrecque, 2005). 
Also, several other antioxidant plant phenolics as gallic acid, tangeretin, 
baicalein, nobiletin, and baicalin were investigated to exert an inhibi-
tory effect against VEGF signaling (HE et al., 2015; 2016). 

One of the most important intracellular pathways that have a vital 
role in cell cycle regulation is the PI3K/AKT/mTOR pathway. Phos-
phatidylinositol 3-kinases (PI3Ks), key elements of the pathway have 
been shown to phosphorylate serine/threonine-specific protein kinase 
(AKT) and active its function. Activated AKT stimulates the mammalian 
target of rapamycin (mTOR) which has been found to elevate glial cell 
proliferation through activation of ribosomal protein S6 kinase (S6K) 
and eukaryotic translation initiation factor 4 E binding protein 1 
(E4BP1) (Conciatori et al., 2018; Mecca et al., 2018). In addition, 
overstimulated the PI3K/AKT/mTOR pathway has been analyzed to be 
responsible for GBM aggressiveness and reduction of cancer patient’s 
survival rate (Lino and Merlo, 2011; Mantamadiotis, 2017). The phos-
phate and tensin homolog (PTEN) is an effective candidate that can be 
used against GBM disease by inhibiting the PI3K pathway. Also, PTEN 
blocks AKT activity through its lipid phosphatase property (Janbazian 
et al., 2014). For GBM cases, the PTEN gene has been shown to be 
inactivated because of the mutations. Double mutations in the PTEN 
alleles are sufficient to enhance uncontrolled cell proliferation and 
tumorigenesis. Also, reports have been investigated that PTEN activity 
makes U-87 and U-251 glioma cells sensitive against RT and CT (Lester 
et al., 2017; Romano and Schepis, 2012). Thus, the PTEN gene cascade is 
thought to be a good candidate for GBM treatment and therapy. Ac-
cording to the literature data, antioxidants like delphinidin, resveratrol, 
apigenin, neferine and plumbagin showed excellent inhibitory effect on 
the PI3K/AKT/mTOR pathway in the aspect of different mechanisms 
(Jiang et al., 2009; Poornima et al., 2013; Li et al., 2014; Chamcheu 
et al., 2017; Yang et al., 2018; Turkez et al., 2021). 

Moreover, the epidermal growth factor receptor (EGFR) is also a 
transmembrane RTK which is activated via the binding extracellular 
signals like transforming growth factor-α or epidermal growth factors. In 
health glial cells, the inactive monomer form of receptor turns into a 
homodimer active form and induces the tyrosine kinase activity of the 
intracellular domains. This activation starts a series of transduction 
cascades that ultimately result in cell proliferation, DNA synthesis, 
adhesion and migration (Ohgaki and Kleihues, 2007; Wee and Wang, 
2017). EGFR mutations have been found to be an important factor for 
GBM pathogenesis and EGFR amplification has been shown to be the 
main player for primary GBMs. Generally, tyrosine kinase inhibitors 
(TKIs) have been utilized for the EGFR targeting against GBMs because 
of the challenging complexity of the signaling pathway (Kraus et al., 
2002; Halatsch et al., 2004; Padfield et al., 2015). On the other hand, 
several antioxidant molecules were investigated to have an inhibitory 
effect on the EGFR signaling such as benzimidazole, quinoxaline 

derivatives and silibinin in in vitro experimental HCC, breast and colon 
cancer models (Kim et al., 2011; Li et al., 2011; Ahmed et al., 2020). 

The last but not the least important candidate pathway for GBM 
therapy is the sonic hedgehog (SHH) signaling pathway. In healthy glial 
cells, signaling cascade start with binding and inhibiting of SHH 
glycoprotein to patched 1 protein and co-receptors for activation of 
Smoothened (SMO) protein. After the activation of SMO, it leads to 
targeting of glioma-associated transcription factors (GLIs) to the nucleus 
and enhancing angiogenesis, proliferation, stem cell self-renewal and 
epithelial-to-mesenchymal transition. Overactivity of SHH cascade leads 
to stem cell transformation into glioblastoma stem cells through 
Patched1 or SMO mutation (Gupta et al., 2010; Takezaki et al., 2011). 
Various studies showed that different antioxidant molecules like 
cyclopamine, sulforaphane and quercetin have inhibitory properties 
against SHH signaling cascade (Rodova et al., 2012; Zhao et al., 2014; 
Guo et al., 2020). Gene pathways associated with the formation of GBM 
and oxidative mechanisms were summarized in Table 2 and natural 
antioxidants that were investigated against GBM in non-clinical studies 
were shown in Table 3. 

6. Challenges for GBM therapies with antioxidants 

Oxidative stress could take two opposite roles in cancer-targeted 
therapies. First, high ROS levels can induce apoptosis or apoptotic- 
related mediators for antitumor therapy. Second, reduction in ROS 
concentration by anti-oxidative factors could lead to the promotion of 
tumorigenesis. Therefore, oxidative stress and related signaling pose a 
great challenge for anticancer therapies (Sosa et al., 2013; Mortezaee, 
2018). Indeed, tumor cells are susceptible to any changes in intracellular 
redox states, particularly to the concentration of ROS (Lu et al., 2017). 
ROS can have both pro-tumoral and anti-tumoral effects via inhibiting 
or activating tumor-promoting mediators (Kim et al., 2008; Liu et al., 
2008). The moderate ROS level produced by cancer cells induces hyp-
oxia, and numerous studies have demonstrated that this process plays a 
key role in the progression of cancer (Albini et al., 2018; Biancur and 
Kimmelman, 2018; Fels et al., 2018; Joseph et al., 2018; Tan et al., 2018; 
Tzeng et al., 2018). By contrast, high ROS concentration could suppress 
the release of hypoxic mediators from tumor cells (Biancur and Kim-
melman, 2018; Y. Y. Liu et al., 2018). Interestingly, hypoxia could act as 
an inhibitor of ROS production via modulating the immune system for 
regression of tumor (Fig. 3) (Biancur and Kimmelman, 2018). 

Most studies have suggested that disruption of the redox balance in 
cancer is a promising therapeutic strategy via using either oxidative or 

Table 2 
The summary of outcomes from clinical trials of GBM cases using antioxidant 
supplementation.  

Antioxidant Treatment 
type 

Patient 
number in 
clinical 
trial 

Outcome Reference 

Melatonin RT plus 
melatonin 

30 Prolonged survival 
time, improved the 
life quality 

Lissoni 
et al. 
(1996) 

Beta carotene CT plus RT 
plus beta 
carotene 

11 No benefit Stewart 
et al. 
(1997) 

Melatonin 
and Aloe 
vera 

Melatonine 
plus A.vera 
plus RT 

50 Stabilization of 
disease, increased 
survival percent 

Lissoni 
et al. 
(1998) 

Lycopene Lycopene 
plus RT plus 
PT 

50 Elevated survival 
percent 

Puri et al. 
(2010) 

Trans sodium 
crocetinate 
(TSC) 

TSC plus RT 
plus TMZ 

50 Combatted hypoxia 
in tumor tissue, 
increased survival 
percent, improved 
the life quality 

Gainer 
et al. 
(2017)  
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anti-oxidative therapies. These therapies should be able to specifically 
target cancer cells without affecting non-cancer cells or tissues around 
the tumor. Also, the activity of tumor suppressor cells within the tumor 
microenvironment is needed to be maintained in patients receiving such 
approaches (Farhood et al., 2019). 

For a long time, antioxidants are known as free radical destroyers 
and beneficial dietary nutrition. But in last years, it has been begun to be 

believed that antioxidants could raise carcinogenesis in various situa-
tions (Watson, 2013). Detailed studies are required on their ability to 
threaten the human intestinal microbiota at the colon level, their 
bio-transformation, the extremely low bioavailability of natural anti-
oxidants, their ability to cause problems with their adsorption and 
application capacity in circulating metabolites by certain tissues (Russo 
et al., 2017). Moreover, there should be a clear line between cancer 
prevention and treatment to understand the best-suited use of antioxi-
dants for carcinogenesis. Thus, it is important to understand possible 
mechanisms for the specific antioxidants in cancer treatment and their 
anticarcinogenic properties for cancer prevention to make it possible for 
constituting a comprehensive description of the use (Seifried et al., 
2003). Also, another concern about antioxidants is raised because of 
their bioactivity levels. Their natural structures make them difficult to 
modify chemically and increase their anticancer activity in lower con-
centrations. Because of this situation, the application of antioxidants in 
higher concentrations could lead to toxicological features against low 
anticarcinogenic effects (Forman et al., 2014). 

7. Future directions for Anti-GBM therapy with antioxidants 

Although therapeutic approaches for the GBM treatment have been 
advancing increasingly, survival rates have not been expanded suffi-
ciently. It has become clearer than ever that improved therapeutic ap-
proaches and novel strategies should be integrated into the GBM 
treatment. Recent advancements explored novel approaches in various 
areas like precision oncology, immunotherapy and single-cell ap-
proaches. Besides, the accumulation of information about the GBM 
mechanism and the relationship between disease formation and genetic 
background made it possible to understand the true nature of the disease 
comprehensively. Thus, it would be possible to increase survival rates 
for patients with fewer side effects by using this information. Also, 
integrating other factors like the immune system, blood-brain barrier 
and solid tumor structures into therapy could solve the most important 
problems for the disease. Multiple-sided therapies for GBM treatment 
could be more efficient than traditional anticancer treatments like im-
mune therapy and antioxidant integration or pathway targeted oxidant 
application and RT. Also, it is known that the positive impact of different 
antioxidants on immunological response in various carcinomas. Immu-
notherapy and antioxidant combined treatments have been a promising 
application for GBM tumorigenesis. Not only life expansion is one of the 

Table 3 
Natural antioxidant that have anticarcinogenic effects against glioblastoma 
investigated in non-clinical studies.  

Antioxidants Anticarcinogenic properties Reference 

Andrographolide Blocks cell cycle Lo et al. (2012) 
Berberine Enhances apoptosis Liu et al. (2015) 
Betulinic acid Enhances apoptosis Schmidt et al (1997) 
Deoxypodophyllotoxin Blocks cell cycle and enhance 

apoptosis 
Guerram et al. (2015) 

Ginsenoside Inhibits cell cycle and 
angiogenesis 

Wu et al. (2011) 

Icariin Enhances apoptosis and inhibits 
cell proliferation 

Yang et al. (2016) 

Jaceosidin Blocks cell cycle and enhance 
apoptosis 

Khan et al. (2012) 

Mistletoe lectins Gene expression regulation Schötterl et al (2017) 
Oridonin Enhances apoptosis Lin et al. (2015) 
Plumbagin Blocks cell cycle and enhance 

apoptosis 
Khaw et al. (2015) 

Procyanidins Prevents invasion HE et al. (2015) 
Quercetin Inhibits cell proliferation Michaud-Levesque 

et al. (2012) 
Resveratrol Blocks cell cycle Yuan et al. (2012) 
Rutin Inhibits angiogenesis and cell 

migration 
Freitas et al. (2011) 

Saponin-1 Blocks cell cycle and enhance 
apoptosis 

Li et al. (2013) 

Saponin-6 Blocks cell cycle and enhance 
apoptosis 

JI et al. (2016) 

Saponin-B Blocks cell cycle and enhance 
apoptosis 

(Wang et al., 2013) 

Shikonin Inhibits invasion and migration 
and 

(Li et al., 2014) 

Silibinin Enhances apoptosis Chakrabarti and Ray, 
(2015) 

Thymoquinone Inhibits autophagy Racoma et al. (2013) 
Trichosanthin Inhibits cell proliferation (J et al., 2015) 
γ-Mangostin Enhances Apoptosis HF et al. (2010)  

Fig. 3. Pro- and anti-tumoral effects of oxidative stress. Cancer cells and cancer associated fibroblasts (CAFs) are directed to tumorigenesis by oxidative stress. On the 
contrary, oxidative stress could target macrophages, regulatory T cells (Tregs) and cancer cells for inhibition of cancer (Gagliano et al., 2010). 
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most important factors to choose a treatment option, but also elevating 
the quality of life for the patients remains another crucial component 
that needs to be considered intensively. Integrating antioxidants into 
GBM therapies probably would decrease anticancer agent dose and 
treatment intervals so that the patient life standard would be expanded 
in parallel with survival rates. 
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