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An MRI-based radiomics signature as a pretreatment noninvasive
predictor of overall survival and chemotherapeutic benefits
in lower-grade gliomas
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Abstract
Objectives The aim of this study was to develop and validate a radiomics signature for predicting survival and chemotherapeutic
benefits of patients with lower-grade gliomas (LGG).
Methods Radiomics features were extracted from precontrast axial fluid-attenuated inversion recovery (FLAIR) and contrast-
enhanced axial T-1 weighted (CE-T1-w) sequence. Lasso Cox regression model was used for feature selection and radiomics
signature building. The radiomics signature was developed in a primary cohort that consisted of 149 LGG patients and was then
validated on an entirely new validation cohort that contained 66 LGG patients. A radiomics nomogram for the prediction of OS
was established by adding the radiomics to clinicopathologic nomogram which developed with clinical data.
Results A radiomics signature derived from joint CE-T1-w and FLAIR images showed better prognostic performance (C-index,
0.798) than signatures derived from CE-T1-w (C-index, 0.744) or FLAIR (C-index, 0.736) sequences alone. Multivariable Cox
regression revealed that the radiomics signature was an independent prognostic factor. One radiomics nomogram integrated the
radiomics signature from joint CE-T1-w and FLAIR sequences with the clinicopathologic nomogram outperformed the clini-
copathologic nomogram based on clinicopathologic data alone in predicting OS of LGG (C-index, 0.821 vs. 0.692; p < 0.001).
Further analysis revealed that patients with higher radiomics signature were prone to benefit from chemotherapy.
Conclusions The radiomics signature was independent with clinicopathologic data and was a noninvasive pretreatment predictor
for LGG patients’ survival. Moreover, it could predict which patients with LGG benefit from chemotherapy.
Key Points
• A radiomics signature derived from joint CE-T1-w and FLAIR sequences showed better prognostic performance than signa-
tures derived from either single imaging modality.

• The radiomics signature is an independent prognostic factor and outperformed clinicopathologic features in predicting overall
survival of LGG patients.

• The radiomics signature could help preoperatively identify LGG patients who may benefit from chemotherapy.
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Abbreviations
CE-T1-w Contrast-enhanced axial T-1 weighted

sequence
FLAIR Fluid-attenuated inversion recovery sequence
LGG Lower-grade gliomas
MGMT Oxygen 6-methylguanine

DNA methyltransferase
OS Overall survival
TMZ Temozolomide

Introduction

Gliomas are the most common primary malignant brain tu-
mors in adults. The lower-grade gliomas (LGG) comprised of
diffuse low-grade and intermediate-grade gliomas (the World
Health Organization (WHO), grade II and III gliomas [1–3]
have relatively favorable but highly variable prognosis [1].
While most of the patients survive a long time, there is still a
large subset of patients who have a very short lifespan [4, 5].
This results in the need for identifying high-risk LGG patients
with poor survival outcomes, for whommore intensified treat-
ment was needed. Moreover, existing studies have shown that
one group of patients does not benefit from the current guide-
lines recommend chemotherapy of glioma, represented main-
ly by temozolomide [6, 7]. Therefore, accurate identification
of potential LGG patients who may benefit from temozolo-
mide (TMZ) chemotherapy will contribute to more personal-
ized treatment. Although molecular biomarkers such as IDH1
mutation and 1p/19q codeletion appear to have the ability to
stratify survival of LGG more accurately [1, 8–12] and
confirming MGMT promoter methylation status could help
to predict the efficacy of chemotherapy [13, 14], the approach
to obtain this information is always invasive, expensive, and
not available until the end of some treatment course.
Therefore, developing noninvasive and preoperative bio-
markers will be of great importance for prognostic counseling
and treatment planning of patients in LGG.

Radiomics is an emerging methodology that extending ra-
diological images into comprehensive and quantitative fea-
tures, which may provide insights into personalized medicine
[15–18]. Most recently, a radiomics approach has been suc-
cessfully utilized in predicting the prognosis in response to
treatment for a variety of cancers [19–22]. Aerts et al demon-
strated that 440 radiomics features extracted from computed
tomography data of 1019 patients with lung or head-and-neck
cancer had prognostic value [23].

As for LGG, few studies have investigated the association
between radiomics features and survival [24, 25]. Zhou and
et al showed MR imaging data can be used to predict tumor

progression [24]. Liu and et al showed progression-free sur-
vival can be predicted noninvasively in patients with LGGs by
a group of radiomics features [25]. However, these studies
only used a few kinds of image modalities or extracted a small
number of radiomics features, which caused limited mining of
imaging data. In terms of TMZ chemotherapy response of
LGG, although there are few studies that have evaluated the
potential of MR radiomics features to predict MGMT meth-
ylation [26], a prognostic biomarker, no study has made effort
to predict how much benefit LGG patients would derive from
TMZ chemotherapy using radiomics features.

In this study, we will extract comprehensive radiomics fea-
tures from the FLAIR and CE-T1-w sequence and construct a
radiomics signature based on these features. We will test the
hypothesis that the radiomics signature is an independent
prognostic factor of LGG patients and investigate whether it
could be used to identify patients who might benefit from
temozolomide treatment. Our ultimate aim is to develop and
validate a radiomics signature for predicting survival and che-
motherapeutic benefits of patients with lower-grade gliomas.

Materials and methods

Patients

Ethical approval for this retrospective analysis was obtained
and the need to obtain informed consent from the patients was
waived. The primary cohort of this study comprised an eval-
uation of the medical records database of Linyi People’s
Hospital from February 2011 to November 2016 to identify
patients with histologically confirmed LGG who underwent
surgical resection. A total of 149 patients were consecutively
included in the primary cohort according to the following
inclusion and exclusion criteria. The inclusion criteria were
(a) newly diagnosed patients without any surgical history,
(b) both two MRI sequences (FLAIR and CE-T1-w) were
available before any treatment, (c) pathologically confirmed
typical histological-based WHO classification was available,
(d) MRI scans with diagnostic image quality, (e) the follow-up
time not less than 24 months, (f) TMZ was used as the thera-
peutic drug if chemotherapy was conducted. The exclusion
criteria were: (a) not undergoing surgery at Linyi People’s
Hospital or Qilu Hospital of Shandong University, (b) insuf-
ficient MRI quality to obtain measurements. From February
2016 to April 2017 at Qilu Hospital of Shandong University,
an independent validation cohort consisted of 66 patients
meeting the above criteria was enrolled. The patient recruit-
ment pathway, as well as the inclusion and exclusion criteria,
was presented in Fig. S1. Overall survival (OS) of all patients
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in two cohorts was calculated from the date of surgery until
death or last follow-up visit.

MRI acquisition and image preprocessing

Patients in two cohorts underwent pretreatment 3.0-T MRI
scans using the MR system in the same version (Magnetom
Verio, Siemens Healthineers) but with different parameters.
Detailed imaging acquiring parameters (slice thickness, voxel
size, and slice gap, etc.) used for each sequence in each cohort
were shown in Supplementary Material S1.

To reduce the discrepancy of imaging parameters that were
employed in different hospitals, a postprocessing pipeline in-
cluding bias correction, skull stripe, registration, and intensity
normalization was applied on all MRI scans. First, within-
patient registration was performed, in which the FLAIR and
CE-T1-w sequences of the same patient were aligned into the
same geometric space using the General Registrations
(BRAINS) Toolbox in 3D Slicer. In the second step, bias
correction was applied on FLAIR and CE-T1-w images to
compensate for intensity non-uniformities using N4 algorithm
implemented in “extrantsr” package. In the third step, to re-
move the effect of grey values’ skull on intensity normaliza-
tion in the next step, brain tissue was extracted from the rest of
the image using “fslr” package which wraps FSL commands
to use in R. Finally, accounting for scanner differences, inten-
sities of images were normalized using “WhiteStripe” pack-
age in Rwhich conducts white stripe normalization procedure.
An overview of the image postprocessing pipeline is shown in
Fig. 1a.

Segmentation and feature extraction

After within-patient image registration, tumor regions of in-
terest (ROI) were semi-automatically segmented slice by slice
using 3D Slicer (www.slicer.org) on FLAIR sequence,
because the FLAIR sequence is well accepted in
identifying tumor borders of lower-grade gliomas. The
ROI of each patient was saved in a label volume and
then placed on the CE-T1-w sequence (Fig. 1b). The
ROI segmentation was performed by two radiologists
(Xuejun Zheng and Rui Jing) with more than 10 years
of experience in brain MRI study interpretation. Both
two radiologists were blinded to the patient cohort, clin-
icopathological data, and survival. The interobserver
agreement of radiomics feature extraction was assessed
using the intraclass correlation coefficients (ICC) [27],
considering an ICC greater than 0.75 to represent good
agreement.

A large set of quantitative radiomics features were extract-
ed using the PyRadiomics [28], an open-source python pack-
age for the extraction of radiomics features from medical im-
ages. The images and ROI contours were resampled to a

spatial resolution of 1 × 1 × 6 mm using the “sitkBSpline”
interpolation and gray level was discretized with a bin width
of 25. In total, 1576 radiomics features were extracted per
patient (788 radiomics features were extracted from FLAIR
and CE-T1-w sequence, respectively). More detailed informa-
tion about the radiomics features can be found in
Supplementary Material S2.

Data analysis

Construction of the radiomics signature

The LASSO Cox regression algorithm was used to select the
most useful prognostic features in the primary cohort. The
features with nonzero coefficients were selected when the op-
timal model was determined by 5-fold cross-validation based
on minimum criteria. Weighted by their respective LASSO
coefficients, these selected features were then combined into
a radiomics signature. The predictive efficacy of the radiomics
signature was quantified by Harrell’s concordance index (C-
index) in both the primary and validation cohorts.

Validation of radiomics signature

To assess the potential association of radiomics signature with
OS, we divided the patients into high risk and low risk based
on the median value of individual radiomics signatures [29].
Patients whose radiomics signature larger than the threshold
were placed in high-risk groups. Survival curves of two
groups were evaluated using Kaplan–Meier methods and the
difference in the survival curves was tested using the log-rank
test in the primary and validation cohorts. Multivariate Cox
regression analysis was further performed to identify whether
the radiomics signature is an independent prognostic factor.

Assessment of the incremental value of radiomics signature

To demonstrate the incremental value of the radiomics signa-
ture to the clinical-pathologic risk factors for assessment of
OS in LGG patients, both a radiomics nomogram and a clin-
ical nomogram were developed in the primary cohort. The
clinical nomogram was constructed based on a multivariable
Cox regression which incorporated the independent clinico-
pathologic variables. The radiomics nomogram integrated the
radiomics signature and all the independent clinicopathologi-
cal risk factors in the clinical nomogram.

The incremental value of the radiomics signature to the
clinicopathological risk factors was assessed by comparing
the performance of the radiomics nomogram in respect of
calibration and discrimination with that of the clinical nomo-
gram. The calibration performance of two nomograms was
compared using calibration curves which assess the agreement
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between the observed survival and the predicted survival. The
discrimination performance was measured using C-index.

Investigation of the prediction ability of radiomics signature
for the chemotherapeutic benefits

Moreover, to explore the ability of radiomics signature to
predict chemotherapeutic benefits, we investigated whether
patients in high- and low-risk groups defined above could
benefit from postoperative TMZ chemotherapy. We first test-
ed the interaction effect between risk group and TMZ treat-
ment in a multivariable Cox regression adjusting other inde-
pendent clinicopathologic variables. A subset analysis was
then conducted to test the difference of survival between pa-
tients who received TMZ chemotherapy or not in each risk
subgroup. The corresponding Kaplan–Meier survival curves,
which compared the TMZ chemotherapy group with the no
chemotherapy group by risk group, were evaluated using
Kaplan–Meier methods and the difference in the survival
curves was tested using log-rank test in the low- and high-
risk subgroups separately. The interaction effect test and sub-
set analysis were performed in the primary cohort and validat-
ed in the validation cohort.

All statistical analyses were performed with R software,
version 3.5.2 (http://www.R-project.org). All statistical tests
were two-sided with a statistical significance of p < 0.05.

Results

Clinical characteristics of the patients

The clinical characteristics of the primary cohort and valida-
tion cohort are summarized in Table 1. No significant differ-
ences were found between the training and validation cohorts
in terms of age, gender, grade, radiotherapy treatment, chemo-
therapy treatment, seizure history, and survivors (p > 0.05).
More detailed characteristics between grade II and grade III in
two cohorts were presented in Supplementary Table S1.

Feature selection and radiomics signature building

The interobserver ICCs ranged from 0.796 to 0.928, indicating
favorable interobserver reproducibility of feature extraction. To
build the radiomics signatures derived from CE-T1-w sequence
and derived from the FLAIR sequence, thirteen features from
CE-T1-w sequence, and seventeen features from FLAIR se-
quence were selected with nonzero coefficients in the primary
cohort, respectively. To build the radiomics signature derived
from joint CE-T1-w and FLAIR sequence, twelve features from
CE-T1-w sequence and seventeen features from FLAIR se-
quence with nonzero coefficients were selected in the primary
cohort. Weighted by their respective LASSO coefficients, these
selected features were then combined into a radiomics signature

a

b

Fig. 1 Radiomics analysis pipeline for solid tumor. a Preprocessing
pipeline including within-patient registration, bias correction, brain ex-
traction, and intensity normalization. b (I) Tumor contours delineated on
FLAIR sequence was saved in a label volume and then placed on both the
post-processed FLAIR and CE-T1-w sequence. (II) Features quantifying
first-order, shape/size, and texture were extracted from within the defined

tumor contours on the original and wavelet filtered MRI images. (III)
Feature selection and radiomics signature building were performed using
LASSO logistic model in terms of prediction for short- versus long-term
survival. The prediction performance was assessed using ROC analysis
and waterfall plot
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derived from the respective sequence. The detailed information
of the optimum LASSO logistic regression model and the
radiomics signature calculation formula are presented in
Supplementary Materials S3.

Prognostic validation of the radiomics signature

In the primary cohort, the radiomics signature derived from
the CE-T1-w sequence yielded a C-index of 0.744 (95% CI:
0.673–0.814). The radiomics signature from the FLAIR se-
quence yielded a C-index of 0.736 (95% CI: 0.663–0.808).
The radiomics signature from joint CE-T1-w and FLAIR se-
quences yielded the highest C-index, which was 0.798 (95%
CI: 0.735–0.861). The consensus results were found in the
validation cohort; the radiomics signature derived from CE-
T1-w sequence, FLAIR sequence, and joint two sequences
yielded the C-index of 0.604 (95% CI: 0.480–0.728), 0.635
(95% CI: 0.511–0.759), and 0.678 (95% CI: 0.554–0.802),
respectively. Therefore, the radiomics signature derived from
joint CE-T1-w and FLAIR sequence was adopted in the next
analysis.

The median of the radiomics signature in the primary co-
hort was used to stratify patients into high-risk group
(radiomics signature ≥ - 3.002) and low-risk group (radiomics
signature < - 3.002). Then, the same threshold values were
applied to the validation cohort. Patients in the low-risk group
had a significantly favorable OS. The radiomics signature was
associated with the OS in the primary cohort (p < 0.001; HR =
8.376, 95% CI: 3.756–18.678) (Fig. 2a), and this finding was
confirmed in the validation cohort (p = 0.030; HR = 3.820;
95% CI: 1.135–12.854) (Fig. 2b).

Construction of clinical nomogram and radiomics
nomogram

We first constructed a multivariable Cox regression model
which included all the clinicopathologic variables with a
p value lower than 0.05 in the univariable Cox regression
model. The multivariable Cox regression analysis identified
age, histologic grade, and IDH1 mutation as independent risk
factors (Table S2). We first developed a clinicopathologic
nomogram based on this multivariable Cox regression model
(Fig. 3a). Next, we included the radiomics signature in the
multivariate Cox regression, which indicated that the
radiomics signature remained an independent prognostic fac-
tor even after adjusted clinicopathological variables
(Table S3). No significant difference was found in radiomics
signature between subgroups of each clinicopathological var-
iable (Table S4). A radiomics nomogram was then developed
by combining the radiomics signature and the significant clin-
icopathologic variables (Fig. 3c). The calibration curves for
the probability of survival at 1, 2, or 3 years after surgery
showed good agreement between the estimation with the clin-
icopathologic nomogram and actual observation (Fig. 3b).
The calibration curve of the radiomics nomogram demonstrat-
ed better performance (Fig. 3d).

The incremental value of the radiomics signature
when added to the clinical data

In the primary cohort, the radiomics nomogram that combin-
ing the radiomics signature overperformed the clinicopatho-
logic nomogram based clinicopathological risk factors alone

Table 1 Patient demographics for
the two cohorts Variable Level Primary cohort (n = 149) Validation cohort (n = 66) p

Age < 45 81 (54.36) 31 (46.97) 0.394

≥ 45 68 (45.64) 35 (53.03)

Gender Men 94 (63.09) 36 (54.55)

Women 55 (36.91) 30 (45.45) 0.303

Grade II 62 (41.61) 35 (53.03)

III 87 (58.39) 31 (46.97) 0.161

Radiotherapy No 55 (37.93) 22 (33.33)

Yes 90 (62.07) 44 (66.67) 0.625

Missing 4 0

Chemotherapy No 59 (39.60) 27 (40.91)

Yes 90 (60.40) 39 (59.09) 0.976

Seizure history No 96 (64.43) 42 (63.64)

Yes 53 (35.57) 24 (36.36) > 0.999

IDH1 mutation Wild type 73 (48.99) 24 (36.36)

Mutant 76 (51.01) 42 (63.64) 0.117

Unless otherwise specified, data are numbers of patients, with percentages in parentheses. Chi-squared test was
applied to testing the difference of each variable between two cohorts
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(C-index: 0.821; 95% CI: 0.768–0.874 vs. 0.692; 95% CI:
0.623–0.762). When tested in the validation cohort, the
radiomics nomogram also yielded a better prediction accuracy
(C-index: 0.763; 95% CI: 0.639–0.887) than the clinicopath-
ologic nomogram (C-index: 0.675; 95% CI: 0.553–0.797).

The prediction ability of radiomics signature for the
chemotherapeutic benefits

Furthermore, we investigated whether patients in the high- and
low-risk groups could benefit from postoperative chemotherapy.
A significant interaction effect between radiomics signature and
chemotherapy on OS in patients with LGG was found after ad-
justed age, histologic grade, and IDH1mutation, which indicated
that the benefit from TMZ chemotherapy was superior among
patients with high-radiomics signature (primary cohort: HR
0.126 (0.060–0.267), p < 0.001, p = 0.029 for interaction; and
validation cohort: HR 0.031 (0.007–0.144), p < 0.001, p = 0.042
for interaction; Table 2) than among those with low-radiomics
signature. The corresponding Kaplan–Meier survival curves,
which comprehensively compared TMZ chemotherapy with no
chemotherapy treatment by risk group, are shown in Fig. 4. The
log-rank test results from the subset analysis within each
radiomics signature-based risk group revealed that chemotherapy
significantly increased OS in the high-radiomics signature group
(primary cohort: p < 0.001; and validation cohort: p < 0.001), but
had no significant effect in the low-radiomics signature group
(primary cohort: p = 0.994; and validation cohort: p = 0.583).
Consequently, these results suggested that the radiomics signa-
ture could successfully identify patients with LGG who tend to
benefit from chemotherapy.

Discussion

In this study, we extracted more comprehensive features than
previous studies from FLAIR and CE-T1-w sequence, which

enable more deep mining of radiologic images. A radiomics
signature based on those features was developed as a novel
prognostic factor for LGG patients. We then integrated it with
traditional clinicopathological prognostic factors to construct a
radiomics nomogram as a novel approach for estimating the
overall survival of LGG patients. This nomogram was trained
on a primary cohort and sufficiently validated on an entirely
new, consistent validation cohort. Furthermore, we demonstrat-
ed that the radiomics signature is an effective tool for identify-
ing patients who might benefit from temozolomide treatment.

Radiomics applies advanced computational methods to ex-
tract high-throughput features from routinely acquired imaging
data, which noninvasively evaluate tumor heterogeneity and
provides important insights into tumor microenvironment [17,
30]. To our knowledge, there have been few radiomics-based
models for LGG prognosis, with only three studies in this area
[24, 25, 31]. However, previous studies are limited by few
image modalities, few features, or lacking independent consis-
tent validation cohort. In the current study, we demonstrated the
radiomics signature from joint CE-T1-w and FLAIR sequences
achieved better prognostic performance than the radiomics sig-
nature from either CE-T1-w or FLAIR sequences alone.
Compared with the other two similar studies, our signature
using radiomics feature of multi-sequence MRI showed higher
prognostic efficiency. And more importantly, we validated our
radiomics signature in an entire newly independent and consis-
tent cohort, which ensured the robustness of our results.

We then incorporated the radiomics signature with clinico-
pathologic risk factors into a radiomics nomogram which pro-
vided better estimation of overall survival for LGG patients
than either the radiomics signature or clinicopathologic
nomogram-based clinicopathological risk factors alone. A no-
mogram is a graphical representation of a statistical model that
could provide individualized survival probability estimation.
Several previous studies have made effort to develop a prog-
nostic nomogram for LGG patients. The most recent one was
developed by Gittleman et al, in which tumor grade, age at

Fig. 2 Kaplan–Meier plot for OS
of patients stratified by the value
of radiomics signature.
Significantly favorable survival in
high-risk patients compared to
lower risk patients was found in
the primary cohort (a) and the
validation cohort (b)

1790 Eur Radiol (2021) 31:1785–1794



Table 2 Treatment interaction with the radiomics signature for overall survival

Radiomics signature Chemotherapy No chemotherapy HR (95% CI) p p value for interaction

Primary cohort (N = 149)

High risk 37 38 0.126 (0.060–0.267) < 0.001 0.029

Low risk 21 53 0.993 (0.193–5.121) 0.994

Validation cohort (N = 66)

High risk 27 20 0.031 (0.007–0.144) < 0.001 0.042

Low risk 12 7 0.515 (0.046–5.742) 0.589

95% CI, 95% confidence interval

Fig. 3 Use of the constructed the clinical-pathologic nomogram and
radiomics nomogram to estimate the OS for LGG, along with the assess-
ment of the model calibration. a Clinical-pathologic nomogram. To use
the nomogram, locate an individual patient’s value on each variable axis
and draw a line upward to the points axis to determine how many points
were received for each variable value. Then, sum the numbers and locate
it on the total points axis. A line is drawn downward to the survival axes
to determine the likelihood of 1-, 2-, or 3-year survival. b The calibration

curve of clinical-pathologic nomogram for predicting patient survival at
1-, 2-, 3-year survival which presented with the red, blue, purple line,
respectively. Nomogram predicted probability of OS is plotted on the x-
axis while the actual OS is plotted on the y-axis. A closer lining with the
diagonal dotted line represents a better estimation. c Radiomics nomo-
gramwhich was constructed with integrating the radiomics signature with
the clinical-pathological nomogram. d The calibration curve of the
radiomics nomogram
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diagnosis, Karnofsky Performance Status (KPS), and molec-
ular subtype were included [2]. The molecular subtype in the
Gittleman nomogramwas defined based on IDHmutation and
1p/19q codeletion status, which is in accordance to the sug-
gestion of the TCGAResearch Network and theWHO [1, 32].
Indeed, our nomogram will be more relevant if it includes
these molecular biomarkers. However, 1p/19q codeletion
was not available in our dataset because it still has not been
widely tested for LGG patients in most hospitals in China. In
addition, KPS was excluded due to its wide variability of
measurement by different observers. We also excluded vari-
ables related to radiotherapy or chemotherapy, as their use in
clinical practice was less consistent among patients. Hence,
our radiomics nomogram included almost all the variables in
the Gittleman nomogram exception to postoperative 1p/19
codeletion and KPS, and added radiomics signature and sei-
zure which has traditionally been identified as a prognostic
factor. We demonstrated that it was an effective tool for pro-
viding individualized survival probabilities for newly diagno-
sis LGG patients rather than a group estimate based on spe-
cific patient-level characteristics and validated its robustness
in an independent cohort.

According to the current guidelines [33], almost all the
LGG patients who have undertaken surgery were recommend-
ed to undertake following adjuvant chemotherapy represented
mainly by temozolomide. However, existing studies showed
that one group of patients does not benefit from the current
guidelines recommending chemotherapy, represented mainly
by temozolomide [6, 7, 34]. A large part of patients gave up
chemotherapy due to their poor economic condition and un-
certainty about their benefit from chemotherapy. Thus, accu-
rately assessing the response to chemotherapy of patients will
be helpful for treatment decisions. AlthoughMGMTpromoter
methylation has important clinical significance in screening
potential patients who may benefit from TMZ chemotherapy
[35, 36], confirming MGMT status requires a large tissue
sample in an invasive way and is always not available before

surgery. In the current study, we demonstrated that the
radiomics signature is not only a prognostic tool for LGG
patients but also could be used as a tool for assessing the
response to temozolomide chemotherapy. After discretizing
the radiomics signature into two levels with a threshold of -
3.002, we found a significant interaction effect between
radiomics signature and chemotherapy on OS in patients with
LGG. The temozolomide treatment provided a better survival
benefit to LGG patients classified as high-radiomics signature
but did not present a significant effect on the prognosis of
those classified as low-radiomics signature. This finding indi-
cated that those patients with high-radiomics signature have
relatively unfavorable prognosis but a clearer benefit from
temozolomide treatment at the same time. For this subgroup
of patients, undertaking chemotherapy is more essential.
Therefore, further use of the radiomics signature provides a
preoperative and low-cost tool for assessing whether LGG
patients will benefit from temozolomide chemotherapy and
should be useful to clinicians for counseling patients and their
families regarding treatment decisions. Interestingly, our
study suggests that the radiomics signature we constructed is
both a prognostic tool for LGG patients and a tool for
assessing the response to temozolomide chemotherapy, which
is similar to the findings in a previous study performed in
gastric cancer [21, 37].

Potential reasons for this observation are as follows: first,
the radiomics features take in important archetypal imaging
characteristics associated with MGMT methylation and thus
the response to treatment. Previous studies have reported that
certain radiological characteristics on MR images such as tu-
mor necrosis and tumor location are associated with MGMT
promoter methylation [38, 39]. Second, radiomics features are
able to assess tumor heterogeneity and reflect tumor micro-
structure and cancer biological processes associatedwith treat-
ment response. For example, tumor hypoxia, one of the major
reasons for chemotherapy treatment failure, will result in low-
er blood supply and thus may reduce the effectiveness of drug

Fig. 4 Kaplan–Meier plot for OS
of patients stratified by the
chemotherapy status and the
radiomics signature. Significantly
favorable survival in high-risk
patients compared to lower risk
patients was found in the primary
cohort (a) and the validation co-
hort (b)
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transportation [40, 41]. Hypoxic regions usually have lower
enhancement than other regions of solid tumors. Previous
studies showing high correlation between genomic expression
of hypoxia and the enhancing region on Gd-T1w MRI scans
[42]. Although the hypotheses about the relationship between
radiomics signature and chemotherapy are preliminary and
need to be prospectively evaluated in future radiogenomics
studies, our present findings provide an effective preoperative
tool to aid in making treatment decisions at low cost.

We recognize that there are some limitations in our study,
which mainly come from the experimental design of retro-
spective analysis. Firstly, the primary cohort contains 149 pa-
tients with LGG from a single center. Although our nomo-
gram was validated in a completely independent cohort with
significant results, it is undeniable that our study requiresmore
patients from multiple centers to validate the reproducibility
and applicability of the results. In addition, our radiomics
analysis is based on the most common structural MR images
such as CE-T1-w and FLAIR, and it is necessary to further
add MRI sequences such as dynamic susceptibility contrast,
susceptibility-weighted imaging, and diffusion kurtosis imag-
ing in future studies to further improve the predictive perfor-
mance. Secondly, our follow-up was not long enough to get
the endpoint of all patients, which may limit the power of our
models. Future work will keep following up all the current
censored patients. Finally, the biological process of radiomics
features we extracted deserves further exploration. We hy-
pothesized that the relationship between radiomics signature
and temozolomide chemotherapy may be closely related to
MGMT promoter methylation. However, due to our retro-
spective study design, MGMT methylation status was not
available in our study cohort and further radiogenomics study
is required.

In conclusion, a radiomics signature for predicting overall
survival of LGG patients has been built. Our results demon-
strated radiomics features extracted from multi-modalities
baseline MRI scans were able to identify patients of LGG
may have poor survival. Additionally, the radiomics signature
we constructed has the potential to screen LGG patients who
may benefit most from temozolomide chemotherapy. These
findings should be useful in improving treatment strategies
and clinical management of patients with LGG.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-020-07581-3.

Funding This study has received funding from the Shandong Province
Major Sc ience and Technology Innovat ion Pro jec t (No
2018CXGC1210).

Compliance with ethical standards

Guarantor The scientific guarantor of this publication is Fuzhong Xue.

Conflict of interest The authors of this manuscript declare no relation-
ships with any companies, whose products or services may be related to
the subject matter of the article.

Statistics and biometry One of the authors has significant statistical
expertise.

Informed consent Written informed consent was waived by the
Institutional Review Board.

Ethical approval Institutional Review Board approval was obtained.

Methodology
• retrospective
• diagnostic or prognostic study
• multicenter study

References

1. The Cancer Genome Atlas Research Network (2015)
Comprehensive, integrative genomic analysis of diffuse lower-
grade gliomas. N Engl J Med 372:2481–2498

2. Gittleman H, Sloan AE, Barnholtz-Sloan JS (2020) An indepen-
dently validated survival nomogram for lower-grade glioma. Neuro
Oncol 22:665–674

3. Li Y, Liu X, Xu K et al (2018) MRI features can predict EGFR
expression in lower grade gliomas: a voxel-based radiomic analy-
sis. Eur Radiol 28:356–362

4. Bent MJ, Wefel JS, Schiff D et al (2011) Response assessment in
neuro-oncology (a report of the RANO group): assessment of out-
come in trials of diffuse low-grade gliomas. Lancet Oncol 12:583–
593

5. Bent MJ (2014) Practice changing mature results of RTOG study
9802: another positive PCV trial makes adjuvant chemotherapy part
of standard of care in low-grade glioma. Neuro Oncol 16:1570–
1574

6. Weller M, Bent MJ, Tonn JC et al (2017) European Association for
Neuro-Oncology (EANO) guideline on the diagnosis and treatment
of adult astrocytic and oligodendroglial gliomas. Lancet Oncol 18:
e315–e329

7. Stupp R (2019) Drug development for glioma: are we repeating the
same mistakes? Lancet Oncol 20:10–12

8. Cairncross G, Wang M, Shaw E et al (2013) Phase III trial of
chemoradiotherapy for anaplastic oligodendroglioma: long-term re-
sults of RTOG 9402. J Clin Oncol 31:337

9. Abrunhosa-Branquinho AN, Bar-Deroma R, Collette S et al (2018)
Radiotherapy quality assurance for the RTOG 0834/EORTC
26053-22054/NCIC CTG CEC.1/CATNON intergroup trial “con-
current and adjuvant temozolomide chemotherapy in newly diag-
nosed non-1p/19q deleted anaplastic glioma”: individual case re-
view analysis. Radiother Oncol 127:292–298

10. Baumert BG, Hegi ME, Bent MJ et al (2016) Temozolomide che-
motherapy versus radiotherapy in high-risk low-grade glioma
(EORTC 22033-26033): a randomised, open-label, phase 3 inter-
group study. Lancet Oncol 17:1521–1532

11. Houillier C, Wang X, Kaloshi G et al (2010) IDH1 or IDH2 muta-
tions predict longer survival and response to temozolomide in low-
grade gliomas. Neurology 75:1560–1566

12. Bent MJ, Brandes AA, Taphoorn MJB et al (2013) Adjuvant pro-
carbazine, lomustine, and vincristine chemotherapy in newly diag-
nosed anaplastic oligodendroglioma: long-term follow-up of
EORTC brain tumor group study 26951. J Clin Oncol 31:344–350

1793Eur Radiol (2021) 31:1785–1794

https://doi.org/10.1007/s00330-020-07581-3


13. Weller M, Tabatabai G, Kastner B et al (2015) MGMT promoter
methylation is a strong prognostic biomarker for benefit from dose-
intensified temozolomide rechallenge in progressive glioblastoma:
the DIRECTOR trial. Clin Cancer Res 21:2057–2064

14. Everhard S, Kaloshi G, Crinière E et al (2006)MGMTmethylation:
a marker of response to temozolomide in low-grade gliomas. Ann
Neurol 60:740–743

15. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are
more than pictures, they are data. Radiology 278:563–577

16. Limkin EJ, Sun R, Dercle L et al (2017) Promises and challenges
for the implementation of computational medical imaging
(radiomics) in oncology. Ann Oncol 28:1191–1206

17. Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics:
extracting more information from medical images using advanced
feature analysis. Eur J Cancer 48:441–446

18. Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the
bridge between medical imaging and personalized medicine. Nat
Rev Clin Oncol 14:749–762

19. Zhang B, Tian J, Dong D et al (2017) Radiomics features of
multiparametric MRI as novel prognostic factors in advanced na-
sopharyngeal carcinoma. Clin Cancer Res 23:4259–4269

20. McGarry SD, Hurrell SL, Kaczmarowski AL et al (2016) Magnetic
resonance imaging-based radiomic profiles predict patient progno-
sis in newly diagnosed glioblastoma before therapy. Tomography
2:223–228

21. Jiang Y, Chen C, Xie J et al (2018) Radiomics signature of com-
puted tomography imaging for prediction of survival and chemo-
therapeutic benefits in gastric cancer. EBioMedicine 36:171–182

22. Huang Y, Liu Z, He L et al (2016) Radiomics signature: a potential
biomarker for the prediction of disease-free survival in early-stage
(I or II) non—small cell lung cancer. Radiology 281:947–957

23. Aerts HJWL, Velazquez ER, Leijenaar RTH et al (2014) Decoding
tumour phenotype by noninvasive imaging using a quantitative
radiomics approach. Nat Commun 5:4006

24. Zhou H, Vallières M, Bai HX et al (2017) MRI features predict
survival and molecular markers in diffuse lower-grade gliomas.
Neuro Oncol 19:862–870

25. Liu X, Li Y, Qian Z et al (2018) A radiomic signature as a non-
invasive predictor of progression-free survival in patients with
lower-grade gliomas. Neuroimage Clin 20:1070–1077

26. Wei J, Yang G, Hao X et al (2019) A multi-sequence and habitat-
based MRI radiomics signature for preoperative prediction of
MGMT promoter methylation in astrocytomas with prognostic im-
plication. Eur Radiol 29:877–888

27. Shrout PE, Fleiss JL (1979) Intraclass correlations: Uses in
assessing rater reliability. Psychol Bull 86:420–428

28. van Griethuysen JJM, Fedorov A, Parmar C et al (2017)
Computational radiomics system to decode the radiographic phe-
notype. Cancer Res 77:e104–e107

29. Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-
informatics tool for biomarker assessment and outcome-based cut-
point optimization. Clin Cancer Res 10:7252–7259

30. Gold S, Bloom J, Hale GR et al (2018) Ability of multiparametric
magnetic resonance imaging (MRI) to predict prostate tumor het-
erogeneity on targeted biopsy. J Clin Oncol 36:113–113

31. Qian Z, Li Y, Sun Z et al (2018) Radiogenomics of lower-grade
gliomas: a radiomic signature as a biological surrogate for survival
prediction. Aging (Albany NY) 10:2884–2899

32. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World
Health Organization Classification of Tumors of the Central
Nervous System: a summary. Acta Neuropathol 131:803–820

33. National Comprehensive Cancer Network (2020) NCCN
Guidelines Version 1.2020 Central Nervous System Cancers.
National Comprehensive Cancer Network, Houston. Available
via https://www.nccn.org/professionals/physician_gls/pdf/cns.pdf.
Accessed 20 Jun 2020

34. Liu R, Solheim K, Polley M-Y et al (2009) Quality of life in low-
grade glioma patients receiving temozolomide. Neuro Oncol 11:
59–68

35. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silenc-
ing and benefit from temozolomide in glioblastoma. N Engl J Med
352:997–1003

36. Levin N, Lavon I, Zelikovitsh B et al (2006) Progressive low-grade
oligodendrogliomas. Cancer 106:1759–1765

37. Jiang Y, Yuan Q, Lv W et al (2018) Radiomic signature of 18 F
fluorodeoxyglucose PET/CT for prediction of gastric cancer surviv-
al and chemotherapeutic benefits. Theranostics 8:5915–5928

38. Eoli M, Menghi F, Bruzzone MG et al (2007) Methylation of O6-
methylguanine DNA methyltransferase and loss of heterozygosity
on 19q and/or 17p are overlapping features of secondary glioblas-
tomas with prolonged survival. Clin Cancer Res 13:2606–2613

39. Drabycz S, Roldán G, de Robles P et al (2010) An analysis of image
texture, tumor location, and MGMT promoter methylation in glio-
blastoma using magnetic resonance imaging. Neuroimage 49:
1398–1405

40. Endrich B, Vaupel P (1998) The role of microcirculation in the
treatment of malignant tumours: facts and fiction. In: Molls M,
Vaupel P (eds) Blood perfusion and microenvironment of human
tumors. Springer, Berlin Heidelberg New York

41. H€ockel M, Knoop C, Schlenger K et al (1993) Intratumoral
pO2predicts survival in advanced cancer of the uterine cervix.
Radiother Oncol 26:45–50

42. Diehn M, Nardini C, Wang DS et al (2008) Identification of non-
invasive imaging surrogates for brain tumor gene-expression mod-
ules. Proc Natl Acad Sci U S A 105:5213–5218

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

1794 Eur Radiol (2021) 31:1785–1794

https://www.nccn.org/professionals/physician_gls/pdf/cns.pdf

	An...
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Patients
	MRI acquisition and image preprocessing
	Segmentation and feature extraction
	Data analysis
	Construction of the radiomics signature
	Validation of radiomics signature
	Assessment of the incremental value of radiomics signature
	Investigation of the prediction ability of radiomics signature for the chemotherapeutic benefits


	Results
	Clinical characteristics of the patients
	Feature selection and radiomics signature building
	Prognostic validation of the radiomics signature
	Construction of clinical nomogram and radiomics nomogram
	The incremental value of the radiomics signature when added to the clinical data
	The prediction ability of radiomics signature for the chemotherapeutic benefits

	Discussion
	References


