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Successful treatment of an adult patient with diffuse midline glioma
employing olaparib combined with bevacizumab
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Summary
Diffuse midline gliomas (DMGs), which are malignant, fast-growing and entail a poor prognosis, are a rare subtype of glial
tumor. DMGs harboring H3 K27-mutation are a novel entity with a poorer prognosis than the H3wildtype and are categorized as
a grade IV glioma. Histone-mutated DMGs characterized by a midline location occur more commonly in children and less
frequently in adults. Considering the DMG treatment is limited, there is an urgent need for effective therapeutic strategies.
Olaparib is a poly-adenosine diphosphate-ribose polymerase inhibitor, which has been reported to inhibit glioma in preclinical
and clinical trials. Olaparib plus bevacizumab has been successfully used in ovarian cancer. However, the application of olaparib
in DMGs has not been reported yet. Herein, we firstly reported that an adult DMG patient benefited from olaparib combined with
bevacizumab and achieved complete remission. The duration of response and overall survival was 8 months and 16 months
respectively. This report provides a promising treatment option for patients with DMG.
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Introduction

Diffuse midline glioma (DMG), a rare subtype of glial tumor,
is malignant, fast-growing and entails a poor prognosis [1].
Most DMGs, including historical diffuse intrinsic pontine gli-
omas (DIPGs), harbor the H3 K27 mutations [2, 3]. K27

mutations occur in the H3F3A and HISTIH3B/C genes, both
of which encode histone H3 [4]. However, H3 K27 mutations
are associated with a poorer prognosis compared with the H3
wildtype [5–7]. Given that DMGs with H3 K27M mutation
have unique molecular signature characteristics and clinical
features, they are recognized as a separate entity of central
nervous system tumors in 2016 World Health Organization
(WHO) Classification [1, 8]. Histone-mutated DMGs occur
more often in children than in adults, are characterized by a
midline location (such as thalamus, pons, brain stem, and spi-
nal cord), and are categorized as grade IV gliomas [9]. Despite
the numerous clinical trials in recent decades, the overall sur-
vival (OS) of DMG has not improved and treatment is limited;
effective therapeutic strategies are therefore urgently needed
[10].

Olaparib, a poly-adenosine diphosphate-ribose polymerase
(PARP) inhibitor, has been reported to inhibit gliomas in a
number of preclinical trials [11, 12]. The phase I/IIa study
OLA-TMZ-RTE-01 showed that combining olaparib with ra-
diotherapy and chemotherapy in glioblastoma can improve
survival outcomes [13]. Olaparib plus bevacizumab as main-
tenance therapy provided a significant progression-free sur-
vival benefit for patients with advanced ovarian cancer [14].
However, the clinical application of olaparib monotherapy or
combination therapy in DMGs has not yet been reported.
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Herein, we firstly reported that an adult DMG patient benefit-
ed from olaparib combined with bevacizumab and achieved
complete remission.

Case report

A 37-year-old female presented to Beijing Tiantan Hospital in
October 2019 with double vision and poor physical coordina-
tion for more than 2 weeks. Magnetic resonance imaging
(MRI) of the brain showed a pons tumor in the brainstem.
After elimination of surgical contraindications, the pons tumor
was removed under general anesthesia. Postoperative pathol-
ogy revealed the tumor to be a diffuse astrocytoma (WHO
Grade II) with slightly dense cells, H3K27M (−), IDH (−),
ATRX (+++), and ki-67 (10%). Next-generation sequencing
(NGS) 539-gene panel (Simceredx) profiling was performed
using postoperative tissue and H3F3B exon2 p.K27I (allele
frequency, AF 57.64%), as well as TP53 exon7 p.M237I (AF
80.27%) were identified.

The patient was admitted to our hospital 1 month after
surgery in November 2019 and underwent three-dimensional
conformal radiotherapy (58Gy/29F) for intracranial tumors
and concurrent temozolomide chemotherapy (75 mg/m2 per
day). After three 4-week cycles of 200 mg/m2 adjuvant tem-
ozolomide chemotherapy performed on days 1–5, a brain
MRI showed progress. Then olaparib (300 mg bid) combined
with bevacizumab (5 mg/kg, once every 28 days) were admin-
istered on April 15, 2020. After 1 month, the olaparib dosage
was halved due to grade II myelosuppression. Two months
later, a brain MRI showed significant lesion reduction;
4 months later, an MRI showed the pons tumor had disap-
peared, which was evaluated as complete remission.

However, the patient relapsed on December 22, 2020 and died
on February 1, 2021, with an OS of 16 months. The disease-
free survival and duration of response using olaparib plus
bevacizumab were 4 months and 8 months, respectively.
The MRI changes during treatment are shown in Fig. 1.

Discussion

In our case, there were 2 valuable points. First, the patient with
DMG responded to olaparib combined with bevacizumab and
achieved complete remission with an OS lasting 16 months.
Given the DMG treatment method is limited at present, there
is an urgent need to explore effective therapeutic strategies.
PARP inhibitors have been widely used in ovarian cancer,
breast cancer and prostate cancer [15]. Recently, multiple
studies on PARP inhibitors have indicated that therapeutic
responses are irrespective of BRCA1/2 status or homologous
recombination deficiency (HRD) [16–19]. This new evidence
may extend the clinical use of PARP inhibitors toward a wider
group of patients, especially those with BRCA1/2 wild-type.
Olaparib plus bevacizumab has been used in ovarian cancer
[14]. Hypoxia caused by antiangiogenic therapy can induce or
at least increase HRD, which means that bevacizumab may
increase HRD positive tumors [14, 20].

TP53 is a tumor suppressor gene in DNA damage pathway
by preventing cells from entering the DNA synthesis phase,
inhibiting cell division and proliferation, and allowing suffi-
cient time for DNA damage to be repaired; thus, TP53 muta-
tions might benefit from olaparib therapy. M237I is located in
TP53 DNA binding domain, which can result in the reduction
of TP53 transactivation activity [21]. TP53 has been reported
as the candidate biomarker of PARP inhibitor-mediated
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Fig. 1 Timeline of the patient’s postoperative treatments and changes observed in the brain magnetic resonance imaging during treatments
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radiosensitization [22]. A clinical trial (NCT02576444) is un-
derway for AZD1775 plus olaparib to treat patients with tu-
mors harboring TP53 mutations.

Second, we firstly identified a novel H3F3B K27I (the
same as K28I) mutation in an adult patient with DMG.
DMGs with H3 K27M mutation are a novel entity, to which
previous DIPG belongs, and the mean survival of this tumor is
only ∼9 months [23]. H3 K27M mutations are common in
adult midline gliomas, but survival may be similar or im-
proved if the mutation is present [24]. It is important to cor-
rectly identify H3 K27M-mutation for an accurate diagnosis,
prognosis, and treatment selection. Mutation-specific clinical
trials are ongoing (NCT03295396, NCT02717455, and
NCT03696355).

K27M mutation always occurrs in H3F3A gene or
HISTIH3B/C gene. K27I in H3F3A has also been reported
to be associated with a loss of trimethylation [25]. The
H3F3B gene, like H3F3A, also encodes histone H3.3 and is
expressed throughout the cell cycle. To our knowledge, this is
the first report to identify the novel H3F3B K27I mutation in
an adult patient with DMG by NGS, which may expand the
detected gene spectrum of patients with DMG. However, the
effect of the H3F3B K27I mutation on histone H3 and glioma
grade needs further study.

In conclusion, this is the first report of a patient with DMG
responding to olaparib combined with bevacizumab. The pa-
tient achieved complete remission and the OS lasted for
16 months. Our case report provides a promising option for
patients with DMG and provides direction for the design of
future clinical trials.
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