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The cancer stem cell (CSC) model posits that tumors contain subpopula-

tions that display defining features of normal stem cells including self-re-

newal capacity and differentiation. Tumor cells exhibiting these features

are now considered to be responsible for tumor propagation and drug

resistance in a wide variety of cancers. Therefore, the identification of

robust CSC markers and characterization of CSC-specific molecular signa-

tures may lead to the identification of novel therapeutics that selectively

abolish this clinically relevant cell population while preserving normal tis-

sue. Brain tumor researchers have been at the forefront of the CSC field.

From initial in vitro cell sorting experiments to the sophisticated bioinfor-

matic technologies that now exquisitely resolve primary brain tumors at a

single-cell level, recent glioma and medulloblastoma (MB) studies have

integrated developmental state with genomic and transcriptome data to

identify the spectrum of cell types that may drive tumor progression. This

review will examine the last two decades of CSC studies in the field. Semi-

nal discoveries, emerging controversies, and outstanding questions will be

covered with a particular focus on MB, the most common malignant pri-

mary brain tumor in children.

Introduction

The CSC model of tumor heterogeneity has undergone

a significant evolution over the past two decades. Orig-

inally fuelled by studies in leukemia demonstrating

that only a rare subpopulation of cells could re-estab-

lish tumor growth following transplantation into

immunodeficient mice [1,2], current CSC theory posits

that these ‘stem-like’ cells ultimately drive tumorigene-

sis. Operationally, these cells are defined by their self-

renewal capacity, or ability to reconstitute a xenograft

representing the original tumor in serial transplanta-

tion assays at clonal density [3]. In this model, only

the CSCs are able to generate new tumors following

long-term passage in immunodeficient animals. Daugh-

ter cells generated by CSCs may be highly proliferative

but have limited self-renewal capacity and are ulti-

mately unable to maintain tumor growth long-term.

Thus, CSCs or ‘cancer-initiating cells’ were originally

believed to sit atop of the tumor hierarchy. Indeed,
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CSCs are a caricature of normal stem cell developmen-

tal paradigms (Fig. 1A), as they exhibit self-renewal

capacity and differentiation capabilities, albeit in an

aberrant fashion. In many cancer models, CSCs have

been shown to be particularly aggressive and are major

drivers of therapy resistance through mechanisms such

as enhanced DNA repair and drug efflux [3,4]. Yet,

despite the obvious clinical implications of these

tumor-propagating cells (TPCs), some cancers, such as

melanoma [5], do not adhere to the CSC model or

exhibit a ‘shallow’ hierarchy in which a larger propor-

tion of the cell population exhibits tumorigenic capac-

ity. In fact, the CSC model has generated significant

controversy attributed to the disparities in frequency,

tumor-initiating capacity and proliferative potential of

CSCs, the cell surface markers used to isolate putative

CSC populations, and the choice of animal model for

in vivo studies. While originally thought to be rare,

quiescent, and adherent to a ‘hardwired’ unidirectional

hierarchy, it has become increasingly clear that tumor

stem and progenitor cells exhibit phenotypic plasticity

and can transition in response to stimuli from the

microenvironment (Fig. 1B).

This conceptual CSC shift has been driven by recent

technological advancements in lineage tracing and sin-

gle-cell RNA sequencing (scRNA-seq). Studies on

brain tumors that integrate cellular states with under-

lying genotypes have been at the forefront of the sin-

gle-cell biology movement [6–10]. For example,

different classes of adult glioma exhibit unique cellular

hierarchies, with highly aggressive isocitrate dehydro-

genase (IDH)–wild-type glioblastomas (GBMs)

exhibiting four malignant highly plastic cellular states,

all of which can contribute to tumor growth [9]

A

B

C

Fig. 1. Classical and updated models of

cancer stem cell hierarchies in malignant

tumors. (A) Classic neurodevelopmental

hierarchical model in which neural stem

cells give rise to gradually more restricted

progeny including neurons,

oligodendrocytes, and astrocytes. Emerging

evidence has demonstrated additional

complexity and plasticity within this

hierarchical organization [114,115]. (B)

Classic unidirectional, hardwired model of

cancer stem cells (CSCs) (left) and updated

plasticity model (right) in which CSCs are

not necessarily quiescent or rare. Paracrine

signals and interactions with the tumor

microenvironment or niche contribute to

neoplastic progression. (C) Updated view of

4 cellular states in glioblastoma (GBM) as

described by Neftel et al. [9]. Cellular states

were defined as oligodendrocyte precursor

(OPC)-like, neural progenitor cell (NPC)-like,

astrocyte (AC)-like, and mesenchymal

(MES)-like, with different stem/progenitor

cell markers exhibiting significant bias

toward a particular state. Arrows depict

cellular plasticity.
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(Fig. 1C). The most abundant cellular state within a

given tumor dictates the results of bulk profiling and

thus the previous classification of these GBMs into

multiple subtypes [11]. However, this cellular composi-

tion does not apply to all gliomas, demonstrating that

a ‘one-size-fits-all approach’ no longer works when

considering the influence of putative CSCs across dif-

ferent classes of brain tumors.

More recent scRNA-seq studies in the malignant

pediatric brain tumor MB elucidated the developmen-

tal origins of the different MB subgroups with some

exhibiting a higher proportion of either undifferenti-

ated or differentiated cells [12–15]. These studies have

undoubtedly paved the way for additional work that

will examine the cellular makeup at a single-cell level

before and after treatment, as well as in matched pri-

mary and recurrent patient samples.

The last two decades have seen significant gains in

the understanding of the extensive inter- and intratu-

moral heterogeneity in the most malignant and devas-

tating brain tumors. This review will provide an

overview of the initial studies that led to the isolation

of putative brain tumor stem cells using traditional cell

sorting-based technologies, the controversies involved

with interpreting these data, and the evolution of the

CSC model in the era of single-cell genomics. While

the review will primarily focus on MB CSC studies,

specific publications pertaining to glioma models are

highlighted for context when appropriate, as the uti-

lization of several techniques emerged in parallel for

multiple types of brain cancers. For more detailed and

comprehensive summaries of the CSC model in glio-

mas, I refer to the excellent reviews by Mitchell et al.

[16], Gimple et al. [17], and Suva and Tirosh [10].

The origin of the CSC model in brain
tumors

Our current definition of a CSC emerged from studies

in the mid-late 1990s focusing on hematopoietic malig-

nancies [1,2]. In what would soon become ‘gold stan-

dard’ assays in the CSC field, these experiments

demonstrated that a reservoir of undifferentiated, low-

cycling cells could recapitulate the entire tumor upon

retransplantation into immunodeficient mouse models.

Fluorescence-activated cell sorting (FACS) was based

on a CD34+/CD38� cell surface marker profile

enriched for tumor-initiating capacity [1,2]. This

pioneering work was followed by a plethora of studies

demonstrating the existence of cell subpopulations

with similar characteristics in solid malignancies [18–24],
including brain tumors [25,26]. While the idea that

aggressive brain tumors such as MB arise from a more

primitive precursor cell was originally proposed more

than 100 years ago [27,28], the advancement of cell

sorting-based technologies enabled this concept to be

tested more rigorously both in vitro and in vivo. For

example, Singh et al. [25] adopted neurosphere assays

originally performed with neural stem cells (NSCs)

[29–31] to demonstrate that MBs contained a subpop-

ulation of cells that exhibited self-renewal capacity and

differentiation, defining features of stem cells and pro-

liferative potential. These putative brain CSCs were

found exclusively in the fraction expressing the cell

surface marker CD133 [25]. Subsequent studies pro-

vided further support for this model by demonstrating

that only injection of CD133+ brain tumor cell frac-

tions from MB and both adult and pediatric GBM

patient samples were capable of initiating tumor

growth in NOD SCID mice [26]. This subpopulation

also had clinical relevance, as CD133+ glioma cells

were more resistant to ionizing radiation [32] and

chemotherapy [33]. Moreover, CD133 expression was

also correlated with an overall poor survival [34,35].

While these initial studies certainly galvanized the

brain tumor CSC field, issues with choice of cell sur-

face markers, culture methods, and in vivo models cre-

ated significant controversy. First, CD133 is expressed

in a variety of cell types including normal stem cells

and differentiated epithelial cells, and is not restricted

to the putative CSC population [36]. In addition, the

CD133 antibodies being utilized to isolate CSCs recog-

nize two different epitopes (AC133/AC141), which

were thought to be glycosylated [37,38]. This had

many researchers questioning whether the CSC pheno-

type was associated with the glycosylation status of

CD133 or the CD133 protein itself [37,38]. Interest-

ingly, Kemper et al. [39] showed that CSC differentia-

tion is accompanied by a loss in the AC133 epitope

but not the CD133 protein, and this was attributed to

differential glycosylation and epitope masking. Com-

bined with the limited knowledge of the specific bio-

logical roles of CD133, these findings suggested that

researchers should proceed with caution when inter-

preting CD133-based results, particularly for putative

CD133-negative populations. This point is highly rele-

vant, as several studies have challenged the notion that

tumor-initiating capacity is limited to the CD133+ cell

fraction in brain tumors [40–43]. For example, Chen

et al. [41] showed that a primitive CD133- subset of

GBM cells could generate highly aggressive GBM and

could subsequently give rise to CD133+ cells. Further

complicating FACS-based studies of brain tumor

CSCs was the requirement for enzymatic dissociation

of tumor cells and short or extended culture to assess

self-renewal over subsequent passage. Tumorspheres
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grown in serum-free conditions have been shown to

best recapitulate the genotypic and phenotypic changes

observed in primary tumors compared with cells

grown in adherent serum-containing cultures [44].

However, the specific cell culture conditions vary

between laboratories, and so, it is not surprising that

published CSC studies often yield entirely different

results. This is especially problematic for researchers

working with MBs, as patient-derived tumor cells are

notoriously difficult to adapt to cell culture.

CSC markers and mouse models of
medulloblastoma

While CD133 has been used to isolate putative CSCs

from primary human patient samples and cell lines,

studies in mouse models, particularly for MB, have

demonstrated that other markers enrich for tumori-

genic cell subpopulations [45,46]. This has been most

well-studied in Sonic Hedgehog (SHH) mouse models

of the disease. For example, Read et al. [46] showed

that CD133+ cells isolated from a patched homologue

1 (Ptch+/�) model of SHH MB did not form tumor-

spheres or generate tumors when transplanted in vivo.

However, these tumors could be propagated by a pro-

genitor cell fraction that expressed the cell surface

marker CD15 and the transcription factor atonal

homolog 1 (Atoh1) [46]. Similarly, Ward et al. [45]

demonstrated that CD15+ stem-like cells, rather than

progenitors, isolated from Ptch+/� SHH MB mouse

models exhibit tumor-initiating capacity. In both cases,

these fractions contained actively proliferating cells. In

line with a stem or progenitor cell of origin, deletion

of Ptch1 in either granule neuron progenitors (GNPs)

or NSCs leads to the development of SHH MB

[47,48], demonstrating that mutations in distinct cells

of origin can still converge to generate the same cancer

phenotype.

Additional studies provided evidence for rare subsets

of either unipotent nestin + progenitors [49] or Sox2+
stem cells [50] as the SHH MB cell of origin. Elegant

work by Vanner et al. [50] further refined these studies

using a combination of transplantation experiments

and fate mapping to demonstrate that a smaller pro-

portion of the larger CD15+ cell fraction, namely a

rare, quiescent, SOX2+ cell subset, drives tumor prop-

agation and is resistant to both chemotherapy and

SHH pathway inhibition. However, SOX2 is highly

expressed in human SHH MB patient samples relative

to the other MB subgroups, particularly in adolescent

and adult cases, suggesting that it may play specific

roles in tumor development for these age-groups [51].

The high levels also suggest that in human SHH MB

tumors, the SOX2+ cell population is likely heteroge-

neous and can be further dissected. Indeed, our labo-

ratory has shown that cells exhibiting another marker,

the low-affinity CD271/p75 neurotrophin receptor

(p75NTR), are nearly exclusive to primary SHH MB

patient tumors, are associated with a stem/progenitor

cell phenotype in human cell models, and are sensitive

to MAPK pathway inhibition [52–54]. Interrogation of

additional primitive cell markers and stem cell regula-

tors will likely yield a combination of factors enabling

further deconstruction of these heterogeneous, yet

highly clinically relevant, cell subpopulations across

both mouse and human model systems. Some evidence

exists for the enrichment of putative CSCs in aldehyde

dehydrogenase (ALDH+) cells [55] or the side popula-

tion [56] (based on efflux properties of ATP-binding

cassette transporters and delineated by Hoechst 33342

exclusion using flow cytometry) in highly aggressive

brain tumor models. However, the results are contro-

versial, particularly for the side population [57,58], and

limited studies exist on the specific relevance to MB

CSCs. Collectively, these studies underscore the issues

surrounding CSC identification, frequency, and quies-

cence in solid tumors. While rarity and quiescence are

not prerequisites for defining CSCs, the cellular com-

position and the cell cycle parameters of each subpop-

ulation must be considered in the design of drug

screens and combination therapy studies both in vitro

and in vivo. For example, a high-throughput com-

pound screen designed to target proliferative popula-

tions would fail to eradicate a putative quiescent CSC

subset. Moreover, assessments of drug synergy are

complicated by the fact that combinations of drugs

could be abrogating the same or different cell popula-

tions in heterogeneous cell cultures grown in stem cell-

enriched conditions. Recent conceptual evolution of

the CSC model to incorporate cellular plasticity and

bidirectional cell state transitions [3] would require

consideration of both concurrent and sequential com-

binatory therapy to accommodate initial debulking fol-

lowed by targeting of the residual drug-resistant

population in animal models. Some of these challenges

have been overcome by the advancements in sequenc-

ing technologies that facilitate comprehensive evalua-

tion of both inter- and intratumoral heterogeneity in

primary human tumor samples.

Medulloblastoma heterogeneity in the
molecular era

While MB CSC characterization studies using tradi-

tional sorting strategies and lineage tracing were ongo-

ing, intensive molecular profiling of large MB patient
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sample cohorts was being conducted in parallel and

gaining significant momentum. Indeed, early gene

expression array profiling studies [59–62] led to the

stratification of MB into 4 consensus molecular sub-

groups [63] that exhibit different genomic alterations,

gene expression profiles, and response to treatment:

Wingless-related integration site (WNT), SHH, Group

3, and Group 4 [59,63,64]. These initial studies paved

the way for large-scale next-generation sequencing

(NGS) on primary MB samples that provided deep

insight into their biological complexity [65–67]. WNT

and SHH MB tumors are aptly named for the signal-

ing pathways that are constitutively activated in these

subgroups. With an excellent > 95% 5-year survival

rate, WNT MBs have the best prognosis, very rarely

metastasize, and are characterized by somatic muta-

tions in CTTNB1 encoding b-catenin [63]. SHH

tumors account for 30% of all MBs, have an interme-

diate prognosis, and are commonly associated with

infants (< 3 years) and adults. However, TP53 muta-

tions confer a poor prognosis in older children with

SHH MB tumors and constitute a very-high-risk form

of this molecular group [68]. Group 3 tumors account

for a quarter of MB cases, are associated with MYC

amplification, and exhibit the worst prognosis, while

Group 4 MBs represent the most common subgroup

and exhibit cyclin-dependent kinase (CDK6) and

MYCN amplifications [63]. Further analysis of molecu-

lar features and clinical trends among these groups has

resulted in additional substructure and classification of

the MB subgroups into multiple subtypes [69–71].
These studies underscore the highly heterogeneous nat-

ure of MB that was once considered a single disease

entity. For a full, comprehensive overview of the

extensive multi-omic bulk tumor analyses on MB

patient samples, see the excellent review by Hovestadt

et al. [72].

From a clinical perspective, molecular subgroup-

ing/subtyping has improved risk stratification, thus

providing opportunities to intensify therapy for the

very-high-risk Group 3 MB patients and reduce ther-

apy for lower-risk groups such as WNT [73]. Sequenc-

ing SHH MBs has revealed mechanisms of resistance

to SHH pathway inhibitors that are not predicted to

work in younger patients, as their tumors frequently

harbor mutations in downstream SHH pathway genes

such as SUFU or MYCN [74–77]. Despite concerted

efforts to improve therapy, over 30% of MB patients

die, while survivors are left with the long-term physical

and cognitive side effects associated with chemother-

apy and radiation [64,78].

The knowledge gleaned from over a decade of geno-

mic, epigenomic, transcriptome, and even proteomic

[79,80] MB studies has certainly paved the way for

functional studies that will fully characterize the mech-

anistic role of newly identified genes/pathways both

in vitro and in vivo. Yet, putative rare CSC fractions

are inevitably missed in bulk sequencing data. Aber-

rant stem/progenitor cell signatures are associated with

tumor growth, drug resistance, metastasis, and/or poor

prognosis in MB [81], as well as a variety of other can-

cers [4,82]. However, these profiles are less likely to be

captured when sequencing the highly heterogeneous

tumor in its entirety. This would require a single-cell

approach.

Convergence of the CSC hierarchical
model and functional genomics:
lessons learned from gliomas and
emerging concepts in
medulloblastoma

Traditional sorting-based CSC technologies and bulk

sequencing studies evolved separately, but their con-

vergence in the last 5 years has provided unprece-

dented insight into the complexity and intratumoral

heterogeneity across a variety of brain tumors. Indeed,

the recent surge of large-scale functional genomics

studies has renewed interest in delineating the cell of

origin for adult and pediatric cancers, including

embryonal brain tumors such as MB. In particular,

scRNA-seq has enabled a much deeper understanding

of the transcriptomes representing early neurodevelop-

mental hierarchies and how the signaling pathways

driving these hierarchies may be hijacked in brain

tumors [10,13–15].
Studies on malignant gliomas have been at the fore-

front of single-cell analyses in brain tumors and will

be discussed first for context. Initial characterization

of a glioma cellular hierarchy was published in 2016

for IDH mutant oligodendrogliomas, which are associ-

ated with 1p/19q co-deletion [6]. This was quickly fol-

lowed by work with another class of IDH mutant

gliomas, astrocytomas (TP53 and ATRX mutant) [7],

which together demonstrated that IDH mutant glio-

mas are hierarchically driven by a cycling population

of neural progenitor cells (NPCs) at the apex, which

constitute a small portion of the overall cell popula-

tion. The proportion of undifferentiated cells is even

higher in the aggressive histone H3 lysine 27-to-me-

thionine mutant (H3K27M) midline pediatric gliomas,

as these tumors are driven by a cycling oligodendro-

cyte precursor-like cell (OPC) that accounts for

approximately 80% of the tumor [8]. In contrast,

IDH–wild-type adult GBMs are characterized by four

plastic and highly malignant cellular states including
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an NPC-like, OPC-like, astrocyte-like (AC-like), and a

mesenchymal-like state (MES-like) [9]. Unlike other

gliomas, proliferative compartments were observed in

all four states, and multiple states were able to gener-

ate tumors in mice. In these elegant studies, the

authors also examined the expression of previously

defined brain CSC markers across the four cellular

states, with each marker showing significant bias

toward one particular state (Fig. 1C) [9]. For example,

CD133 expression is highest in the OPC-like cell state.

This provides an explanation for the wide variation in

CD133 levels observed across GBMs depending on the

proportion of that particular cellular state in a given

tumor. Several additional scRNA-seq studies in GBM

have further interrogated the CSC phenotypes [83,84]

and their reversible state transitions [85] and have

unveiled additional complexity within the stem cell

compartments including identification of an invasive

cell phenotype [86,87].

Following in the footsteps of the comprehensive

glioma studies, several research groups recently applied

scRNA-seq technologies to primary patient MBs [13–15].
Vladoiu et al. [13] analyzed eight patient samples rep-

resenting SHH, Group 3 and Group 4 MBs, and the

other posterior fossa tumors, ependymoma, and pilo-

cytic astrocytoma, by scRNA-seq. Not surprisingly,

SHH MBs contained tumor cells in different states

along the GNP lineage spectrum and were in agree-

ment with the heterogeneity observed in mouse models

of the disease (Fig. 2) [50]. Consistent with experimen-

tal evidence [88–90] and the more aggressive nature of

Group 3 MBs, Vladoiu et al. [13] also demonstrated

that this subgroup contains a mixed population of

malignant cells with divergent differentiation along the

cerebellar lineages, thus suggesting a more undifferen-

tiated cerebellar stem cell of origin (Fig. 2). Group

4 MB tumors were most closely aligned with the

unipolar brush cell (UBC) lineage, a glutamatergic

neuronal cell population that arises from the upper

rhombic lip [91] (Fig. 2). Similarly, Hovestadt et al.

[15] employed scRNA-seq to characterize 25 patient

samples representing all 4 MB subgroups in addition

to patient-derived MB xenografts. The authors also

determined that SHH MBs exhibit various cell pheno-

types along the GNP lineage. However, they also

defined a continuum of transcriptional states or

‘metaprograms’ for Group 3 and Group 4 MBs that

account for overlapping signatures traditionally com-

plicating classification based on bulk profiling (Fig. 2)

[69,70,92]. Approximately 90% of Group 3 MB tumor

cells expressed an undifferentiated cell metaprogram

characterized by translation/elongation factor and

ribosome genes [15]. In contrast, Group 4 MBs were

associated with a neuronal differentiation metapro-

gram and the UBC lineage [15]. Finally, Jessa et al.

[14] demonstrated that WNT MBs match to the lower

rhombic lip pontine mossy fiber lineage in the brain-

stem consistent with previous experimental evidence

from mouse models (Fig. 2) [93]. Collectively, these

recent MB scRNA-seq studies support the notion that

embryonal brain tumors are diseases of dysregulated

early brain development. However, we have yet to

translate the results into targeted therapies that specifi-

cally abrogate CSCs/progenitors. As such, clinicians

remain limited to cytotoxic chemotherapy and radia-

tion that can lead to extensive cognitive and physical

delays. To identify more nuanced treatment options, it

is important to assay the effects of targeted therapies

beyond cell growth and survival.

Integrating genomics and stem cell
biology in search of novel targeted
therapies

In the last 5 years, we have gained tremendous insight

into the heterogeneity and complexity of malignant

brain tumors. Further advancements in single-cell-

based technologies for assessment of the epigenome,

transcriptome, and proteome will enable even more

comprehensive analyses of rare or quiescent cell popu-

lations that may drive disease progression. Validation

of identified cellular states and hierarchies using gold

standard in vitro and in vivo stem cell assays combined

with comparisons of these profiles before and after

treatment will be essential. For example, in a multidis-

ciplinary tour de force by Zhang et al. [12], the

authors identified an OLIG2+ cell population in mouse

models of SHH MB that drives tumor initiation and

also re-emerges at relapse. They further demonstrated

that this population is associated with HIPPO-YAP

and AURORA-A/MYCN signaling, and co-targeting

these pathways significantly improved survival in vivo

[12]. The hierarchical relationship between OLIG2+
cells and the SOX2+ stem cells previously identified as

SHH MB drivers [50] will need to be further explored

along with a deeper assessment of the clinical relevance

of these subpopulations in human models of the dis-

ease. Of particular importance will be the analyses of

these cell populations in relapsed models of MB. While

SHH MB subtype classification typically holds follow-

ing treatment, divergence of dominant clones after

therapy suggests that novel agents will be needed to

abrogate this emerging cell population [94]. This is

underscored by the fact that specific subsets of stem-

like cells within the SOX2+ cell population are resis-

tant to treatment with vismodegib, a SHH pathway
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antagonist [95]. Recent advances demonstrating the

utilization of cerebrospinal fluid-derived circulating

tumor DNA for characterization and monitoring of

MB [96,97] and detection of residual disease may open

up new opportunities for real-time tracking of CSC

populations during treatment.

In addition to appropriate mouse models, it will also

be important to validate the findings of large-scale

scRNA-seq studies in biologically relevant human

brain tumor models including cell lines, low passage

cultures from primary tumors, patient-derived xeno-

grafts, organoids [98], or even humanized stem cell

models of MB [99,100]. Recent work by Ballabio et al.

demonstrated that cerebellar organoids can be used to

model Group 3 MB and to test the effect of specific

genes in modulating tumor growth [98]. Our labora-

tory recently employed scRNA-seq to assess hetero-

geneity in stem cell-enriched tumorsphere cultures

from several newly established Group 3 MB cell lines

[101]. These tumorspheres mirrored the specific undif-

ferentiated ‘metaprogram’ associated with Group

3 MB patient samples [15] (Fig. 3) and were character-

ized by translation/protein synthesis genes, thus

underscoring the strength of stem cell-enriched in vitro

cultures in modeling primary patient tumor pheno-

types. This is particularly important for molecular dis-

section of rare, but heterogeneous, fractions of brain

tumor CSCs. For example, comprehensive analyses of

> 69 000 enriched CSCs derived from GBM patient

samples revealed a high degree of inter- and intratu-

moral heterogeneity along with characterization of a

new cellular CSC subset exhibiting an inflammatory

wound response signature [102]. However, given that

matched tumors, cell cultures, and xenografts in brain

tumors such as GBM exhibit divergent methylation

and gene expression profiles [103], future MB studies

will continue to benefit from integrative approaches

that combine bioinformatic data from primary samples

and both in vitro and in vivo models. Alternatively,

transformed human embryonic stem cell-derived neural

precursors [100], as previously demonstrated by my

group, as well as various induced pluripotent stem

cell-derived neuroepithelial stem cell (NES) models

[99,104], have emerged as powerful resources for

studying the genetic and molecular mechanisms driving

tumorigenesis. This includes NES models from Gorlin

Fig. 2. Proposed cell of origin for each medulloblastoma subgroup based on scRNA sequencing. Schematic representations of putative cells

of origin for each of the 4 medulloblastoma (MB) subgroups based on compiled evidence from Hovestadt et al. [15], Vladoiu et al. [13], and

Jessa et al. [14]. WNT MBs are most closely aligned with the mossy fiber neuron lineage derived from the lower rhombic lip (LRL). SHH

MBs exhibit features of progenitors and more differentiated cells along the granule neuron progenitor (GNP) lineage of the cerebellum.

Group 3 and Group 4 MBs exhibit a continuum of phenotypes in which prototypical MYC-amplified Group 3 MBs are predominantly

associated with an undifferentiated neuronal progenitor or cerebellar stem cell state. Both Vladoiu et al. [13] and Hovestadt et al. [15] have

demonstrated that Group 4 MBs are most closely associated with a unipolar brush cell (UBC) of origin and have a more differentiated

phenotype. Various intermediate states exist in between.
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syndrome (PTCH1+/�) patients who are predisposed

to MB [104]. Application of barcoding technology to

assess clonal evolution in xenotransplantation assays

of GBM [105] and MB will inevitably shed further

light on CSC dynamics in the most biologically rele-

vant human model systems. Moving forward, we also

have to consider the co-dependent relationship

between CSCs and the tumor microenvironment

including the vasculature and immune system [106]

with further assessments of how future targeted thera-

pies can disrupt the tumor-promoting ecosystem as a

whole. Exploiting the immune system to specifically

attack CSCs based on cell surface receptor profiles

(i.e., CD133) has gained momentum, particularly in

GBM models [107–110], and could also be applied in

the most relevant MB models.

Conclusions

The last decade has witnessed an explosion of multi-

omics publications comprehensively characterizing the

lineage hierarchies in malignant brain tumors. Follow-

ing the path of gliomas in adults and children, recent

studies in MB and other brain tumors [111] have added

to the ever-growing list of cancers to be resolved at the

single-cell level. These studies may predict the efficacy

of novel targeted therapies, as in principle, elimination

of a CSC population that initiates tumor progression

would have immense clinical benefit. That being said,

validations in vitro and in vivo are still essential. This is

underscored by recent work demonstrating that func-

tional screens can identify more treatment options than

sequencing alone [112]. Moreover, not all brain tumor

CSCs are created equal and must therefore be

approached in a context-dependent manner. The unique

challenges associated with the CSC plasticity model

would also suggest that eradicating one CSC-like cell

state would merely be compensated for by another

exhibiting unique molecular dependencies within the

tumor mosaic. Thus, future treatment regimens must

consider how to eradicate or even differentiate all CSC-

like cell states, and whether combination therapies

would be administered in a concurrent or sequential

fashion to minimize relapse. With recent advances in

digital spatial profiling applications, we can now utilize

fixed tissue to assess protein/RNA abundance in situ

[113] creating more opportunities to determine the

impact of treatments on putative CSCs within the com-

plex cellular ecosystem in vivo. In this molecular and

multi-omics era of brain tumor CSC biology, we are

now much closer to the implementation of targeted

therapies that will ultimately improve survival and

enhance the quality of life for brain tumor patients.
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