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Abstract
Purpose  CNS malignancies are currently the most common cause of disease related deaths in children. Although brainstem 
gliomas are invariably fatal cancers in children, clinical studies against this disease are limited. This review is to lead to a 
succinct collection of knowledge of known biological mechanisms of this disease and discuss available therapeutics.
Methods  A hallmark of brainstem gliomas are mutations in the histone H3.3 with the majority of cases expressing the muta-
tion K27M on histone 3.3. Recent studies using whole genome sequencing have revealed other mutations associated with 
disease. Current standard clinical practice may merely involve radiation and/or chemotherapy with little hope for long term 
survival. Here we discuss the potential of new therapies.
Conclusion  Despite the lack of treatment options using frequently practiced clinical techniques, immunotherapeutic strate-
gies have recently been developed to target brainstem gliomas. To target brainstem gliomas, investigators are evaluating the 
use of broad non-targeted therapy with immune checkpoint inhibitors. Alternatively, others have begun to explore adoptive 
T cell strategies against these fatal malignancies.
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Introduction

Pediatric brainstem gliomas (pBSGs) are the most malignant 
pediatric brain tumors, and diffuse intrinsic pontine glioma 
(DIPG) is the most common brainstem glioma in pediat-
ric patients, constituting 80% of all brainstem tumors [1]. 
DIPG cannot be surgically removed because of its infiltra-
tive nature within a developing brainstem and, therefore, 
necessitates a therapeutic treatment option. While many 
combinatorial therapies have been tested in clinical trials, 
radiation therapy with concurrent and adjuvant temozolo-
mide remains the current standard of care [2]. With limited 
treatment options, pBSGs constitute the leading cause of 
pediatric brain tumor-related fatalities [3] with a median 
survival of 10 months and a 2 year survival rate of less than 
10% from clinical diagnosis [4, 5].

Recent neurosurgical advancements in stereotactic biop-
sies have provided patient-derived tumor samples for pri-
mary cell cultures and genomic studies. Modern genomic 

sequencing has revealed recurrent somatic mutations of 
the histone H3 genes (HIST1H3B and H3F3A) encoding 
p.Lys27Met that result in the global reduction of H3K27 
trimethylation (H3K27me3) and inhibition of Polycomb 
Repressive Complex-2 (PCR2) methyltransferase [6–10]. 
Exclusively arising in pediatric high-grade gliomas (HGGs), 
these mutations predominate in midline structures, such as 
the brainstem, and are the hallmark mutations of pBSGs [7]. 
Other frequent somatic mutations in ACVR1, PDGFRA, and 
other histone H3 genes, ATRX and TP53, have been found in 
the genomic landscape of DIPG [11, 12, 6].

Although clinicians once believed pBSGs genetically 
resembled adult glioblastoma (GBM), these reoccurring 
mutations distinguish pBSG from its adult counterpart and 
may provide therapeutic targets for future research [13]. Cur-
rent clinical trials are testing the efficacy of histone deacety-
lase inhibitors, BET inhibitors, Cdk4/6 inhibitors, and other 
small molecule inhibitors target these somatic mutations. 
Despite numerous emerging therapies, significant progress 
to prolong the median survival in pediatric patients has yet 
to be shown. Radiation therapy remains the only treatment 
modality for pBSGs that reduces symptomatic progression 
and prolongs progression-free survival [14–16].
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Clinical Diagnosis

The clinical presentation of pBSGs is determined by 
patient age, tumor growth rate, and tumor location within 
the brainstem [17, 18]. The median age of onset is approxi-
mately 6–7 years of age with younger pediatric patients 
having a lower median survival and are associated with 
more aggressive BSGs [19, 20]. Because of its rapid pro-
gression, patients with BSGs typically experience symp-
toms for less than a month prior to diagnosis [4]. At clini-
cal diagnosis, patients may present with several symptoms 
including cranial neuropathy, deficits in vision, and ataxia 
[5]. Pediatric patients presenting with similar symptoms 
will undergo a MR imaging to diagnose the brainstem 
lesion. Depending on the tumor subtype, pBSG MR imag-
ing findings will usually depict a pontine enlargement at 
the epicenter that can occupy more than 50% of the pon-
tine cross-sectional area with DIPG potentially extending 
into the medulla [21–23]. Upon analysis, DIPG and other 
pBSG are hyperintense on T2-weighted and hypointense 
on T1-weighted images [24, 25].

Currently, stereotactic biopsies are not utilized in the 
U.S. standard care for DIPG patients. The genesis of non-
invasive imaging replaced prognostic biopsies with MR 
imaging to diagnose and classify BSGs [26]. Physicians 
preferred diagnostic imaging over biopsies because of the 
minimized the risk to cause neurological damage and the 
additional histological data provided by biopsies would not 
influence future treatment of the patient due to limited treat-
ment options. This aversion to prognostic biopsies created a 
dearth of brainstem tumor tissue, which inhibited compre-
hensive sequencing analysis of pediatric midline gliomas in 
the past. However, the development of the stereotactic head-
frame in the 1980s used MRI target coordinates to precisely 
extract a portion of the tumor sample with a side-aspirating 
biopsy needle, which resulted in a mortality rate of 0.7% 
[27–29]. While biopsies of the pons provided little informa-
tion with heightened risk decades ago, stereotactic biopsies 
have provided valuable immunohistochemical diagnoses 
that can determine future treatment courses [30]. The deci-
sion of obtaining biopsy at the moment of diagnosis remains 
contentious. However, as investigation into the therapeutic 
targets of DIPG progresses, clinicians may begin implement-
ing stereotactic biopsies into the U.S. standard care of DIPG.

pBSG H3K27M Mutations

Recent molecular and genetic data have found distinct 
genetic alterations that distinguish pBSGs from their 
adult counterpart and indicate that these tumors may 

arise from unique biological origins [13, 31]. Recurrent 
identification of histone H3 mutations in DIPG samples 
have revealed that both genetic and epigenetic alterations 
may drive DIPG tumorigenesis [6, 7, 31, 32]. Modern 
genomic sequencing has revealed high-frequency histone 
mutations in the H3 variants H3.1 and H3.3 that alter chro-
matin remodeling factors in pBSG. Somatic mutations in 
proteins that control the chromatin remodeling pathway 
often drive tumorigenesis [33]. These somatic mutations 
in histone H3 result in two mutually exclusive, distinct 
amino acid exchanges: a lysine 27 to methionine substi-
tution (K27M) in variant H3.3 (H3F3A gene) and H3.1 
(HIST1H3B and HIST1H3C genes) or a replacement of 
glycine by either arginine or valine (G34R/V) found exclu-
sively in the variant H3.3 [6, 9, 32]. While G34R/V arise 
in pHGGs located in the cerebral cortex and are mainly 
associated with pGBM, the H3.3-K27M and H3.1-K27M 
mutations predominate exclusively in the midline that give 
rise to pBSGs [11]. Although the exact biological origin 
and repercussions of H3K27M are currently unknown, its 
high occurrence in DIPG elucidates its possibility of being 
an oncogenic driver mutation. Recent studies have found 
that 80% of DIPG tumors contain the characteristic K27M 
mutation in H3F3A and/or HIST1H3B [6, 7, 9, 32], which 
establishes p.LysMet as a potential molecular target for 
treatment (Fig. 1).

K27M mutations, in both the H3F3A gene that encodes 
histone H3.3 and the HIST1H3B/C genes that encode histone 
H3.1, substitute a lysine residue on the amino-terminal tail of 
H3.3, which biochemically inhibits polycomb repressor com-
plex 2 (PRC2) [34]. Inhibition of PRC2 is dependent on the 
H3 tail contacting and altering the EZH2 subunit of PRC2, 
which can interfere with the role of PRC2 in gene silencing 
for stem cell differentiation and has been implicated in sev-
eral cancers [35]. In humans, PRC2 comprises the substrate 
necessary for H3K27 trimethylation (H3K27me3) forma-
tion, while also inhibiting H3K27 acetylation (H3K27ac) 
[36]. Therefore, pBSGs with H3K27M mutations display 
a significant decrease in global H3K27me3 and a less dra-
matic increase in H3K27ac [9, 10, 37]. In fact, H3K27me3 
reduction can be observed in 95% of DIPG, which is a more 
recurrent hallmark of pBSGs oncogenesis than the H3K27M 
mutation itself [34]. The dormancy of global trimethylation 
levels from other histone marks including H3K4, H3K9, 
and K3K36, indicates that the reduction of trimethylation 
levels is specific to the H3K27M mutation [9]. Acetylation 
and methylation of histone H3 at Lys 27 regulate its expres-
sion [36, 38]. Specifically, H3K27me3 is liked to chromatin 
structuring and gene repression, especially in genes associ-
ated in the development and differentiation of pluripotent 
stem cells [39]. This affinity for a neural precursor cell popu-
lation in addition to the location-specific development of 
DIPG could indicate that H3K27M mutations may originate 
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during neurological development. Novel findings have found 
a pontine precursor-like cell population that are Nestin+ and 
Vientin+ in the pediatric ventral pons region where DIPG 
develops, providing a possible DIPG cell of origin [40]. This 
cell population predominates during infancy and middle 
childhood, which overlaps with the median onset of DIPG 
as previously described [40].

pBSG Mutations (Non‑H3K27M Mutations)

While current findings depict H3K27M mutation as the 
defining DIPG mutation, whole-genome sequencing has 
revealed several non-histone genetic alterations present in 
DIPG. Recent sequencing has revealed a recurrent, acti-
vating mutation in activin A receptor type I (ACVR1), 
which has been found in 20–30% of DIPGs [11, 32, 41]. 
ACVR1 encodes for ALK2, a type I bone morphogenic 
protein (BMP) receptor known to phosphorylate SMAD1, 
SMAD5, and SMAD8 (SMAD1/5/8) in order to activate the 
BMP–TGF-β signaling pathway found in primary DIPG cul-
tures [36]. Aberrant activation of BMP signaling can disrupt 
its regulation of cell proliferation in healthy tissues [42]. 
While somatic mutations in ACVR1 have only recently been 
sequenced from DIPG tissue, they are the same germline 
mutations associated with fibrodysplasia ossificans progres-
sive (FOP), an autosomal disorder of skeletal malformations 
which transforms soft connective tissue into bone tissue [43, 
44]. Patients presenting with clinical features of FOP had 
identical heterozygous 617G➔A mutations (R206H) on 
codon 206, which is located at the end of the highly con-
served glycine and serine activation domain [43]. Specifi-
cally, the R206H mutation induces a stronger gain of func-
tion when compared to its counterpart ACVR1 mutants [45].

As expected, when DIPG cells were transfected with the 
p.R206H ACVR1 mutation, cells had greater activation of 
signaling through phosphorylated SMAD1/5/8 pathways 
without the presence of its ligand [36, 45]. Moreover, 
in vitro expression of p.R206H mutation has been shown 
to activate STAT3 signaling, a cell cycle and oncogenic 
promoter, and increases tumor incidence in combination 
with PDGFA signaling [46]. Occurring in less than 1% 
of other cancers, somatic mutations in ACVR1 are highly 
specific to DIPG and coincide with wild-type TP53 and the 
less prominent HIST1H3B mutation [31, 36]. DIPG cells 
expressing the Gly328Val ACVR1 had higher levels of 
phosphorylated SMAD1/5 when compared to those cells 
with wild-type ACVR1 [32].

As the second most frequent mutation found in DIPG, 
loss-of-function p53 mutations in the TP53 gene were 
found in a majority of pBSGs mutant for H3.3-K27M 
[31]. These mutations arose with the same frequency 
in H3.3 wild-type DIPGs, indicating that the p53 muta-
tional frequency does not proportionally increase with 
H3K27M mutations [31]. Although the p53 mutation has 
been sequenced in over 50% of human cancers, its numer-
ous targets involved in apoptosis, DNA repair, and cell 
cycle arrest have greatly complicated the developmfent of 
novel antitumor therapies for specific downstream targets 
[47]. TP53 mutations confer resistance to p53-dependent 
apoptosis and allow tumor cells to acquire cross-resistance 
to the cytotoxic effects of conventional chemotherapy [48, 
49]. In a study analyzing TP53 mutational frequency in 
pHGGs, malignant gliomas in children >3 years of age 
more closely resembled gliomas of young adults associ-
ated with elevated TP53 mutations when compared with 
tumors in children <3 years of age [10]. This finding coin-
cides with other DIPG investigations that suggest distinct 

Fig. 1   Overview of H3K27 and its Epigenetic Modification. In nor-
mal neurological development, genes that regualte stem cell differ-
entiation are silenced by the polycomb repressor complex 2 (PRC2). 
To repress these genes, the EZH2 subunit catalyzes the PCR2-medi-

ated H3K27 trimethylation by binding to histone H3 tail, a common 
site for post-translational modification. However, in the H3K27M, 
the lysine substitute inhibits EZH2 binding which prevents PCR2-
dependent methylation and results in aborrant gene activation
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molecular pathways of tumorigenesis depend on patient 
age [13, 31, 50].

The pBSG genomic landscape contains a PDGFRA locus 
amplification, which is present in 40% of the pBSGs with 
H3.3-K27M mutations [31]. PDGFRA is a receptor that 
stimulates cell signaling pathways involved in cell differen-
tiation and is the predominant target of focal amplification 
in pBSGs. In relation to glioblastoma (GBM), PDGFRA 
is a defining feature in the Proneural glioma subtype that 
may arise from a neural stem cell [51, 52]. In the clinical 
setting, PDGFRA amplification transpires at a higher fre-
quency in irradiation-induced tumors, suggesting that this 
genetic alteration contributes to childhood and adolescent 
tumorigenesis [53]. Moreover, PDGFRA locus amplification 
was found exclusively in tumors with H3.3-K27M muta-
tions, indicating a possible downstream target of the defining 
mutation [34]. This evidence promotes the hypothesis that 
pBSGs may arise from a neural precursor cell origin.

Emerging Epigenetic Therapies

The recurrent genetic alterations found in a majority of 
DIPG tissue suggest an epigenetic mechanism for DIPG 
oncogenesis. Therefore, new therapies are being investigated 
to epigenetically modify the DIPG landscape to prevent or 
reverse tumor progression. Because global hypomethylation 
of H3K27 is the most common alteration found in DIPG, 
treatments that restore basal levels of H3K27 methylation 
may confer therapeutic benefit [54]. Reversing histone 
H3K27 demethylation can be achieved by inhibiting the 
K27 demethylases JMJD3 and UTX [55–57]. In a trans-
formative study, GSKJ4, a cell permeable derivative of the 
H3K27 demethylase inhibitor GSKJ1, was shown to mark-
edly increase K27 methylation which resulted in increased 
apoptosis of in vitro cells expressing H3K27M and displayed 
in vivo antitumor efficacy [54]. Interestingly, GSKJ4 dis-
plays sensitivity to K27M tumor cells with limited effec-
tiveness against wild type glioma cells or cells expressing 
the H3.3 G34V variant [58]. These findings suggest that the 
antitumor efficacy of GSKJ4 is specific for K27M tumors.

Additionally, H3K27M was associated with elevated 
levels of acetylated H3K27 (H3K27ac) [10, 59, 60]. This 
epigenetic modification can be therapeutically targeted by 
inhibiting histone deacetylases (HDACs) [61]. HDACs 
remove acetyl groups from histone proteins which is asso-
ciated with closed chromatin structure that prevents tran-
scription. A chemical screening in multiple patient-derived 
DIPG cultures found that a particular HDAC inhibitor, pan-
obinostat, reduced DIPG cell viability, prolonged survival, 
and synergized with GSKJ4 [62]. However, unlike GSKJ4, 
the activity of panobinostat was similar in both H3.3K27M 
and H3.3-WT cells. Panobinostat was verified to inhibit 

DIPG cell proliferation in vitro and, while it increased lev-
els of H3 acetylation in the pons of tumor-bearing animals 
and restored H3K27 trimethylation, it did not correlate to an 
increased survival [63–65].

One of the difficulties translating HDAC inhibitors into 
clinic has been to confirm adequate penetration of the blood 
brain barrier (BBB) without causing adverse toxicity given 
the necessity of histone acetylation in healthy tissue. Cur-
rently, there are multiple clinic trials evaluating the efficacy 
of panobinostat and other HDAC inhibitors in DIPG patients 
(NCT03893487, NCT02717455, and NCT03566199). 
NCT03893487 is an early phase I clinical trial investigat-
ing the BBB perforation capability of fimepinostat, a small 
molecule that inhibits the activity of HDAC. NCT02717455 
is also in its phase I to determine the dose-limiting toxic-
ity and profile of panobinostat for patients with recurring 
DIPG. Both phase I clinical trials administer the HDAC 
inhibitor orally and, because of the BBB functional integ-
rity, will have to balance drug permeability and toxicity. 
Convention-enhanced delivery (CED) represents a method 
of drug delivery by inserting catheter directly into the pons 
which reduces toxicity and avoids the BBB by infusing low 
amounts of water-soluble panobinostat directly into the brain 
parenchyma [66]. An ongoing clinical trial (NCT03566199) 
has developed a water-soluble formulation of panobinostat 
by encapsulating it in nanoparticles which they administer 
intratumorally by CED and are currently in a phase II study.

Immunotherapy

Directing the host immune system to induce potent anti-
tumor responses has seen significant advances in prolonging 
patient survival in recent decades. However, this immuno-
logic benefit has not currently translated into clinical trials 
for DIPG partly because of the immunosuppressive environ-
ment of the pons maintained to prevent inflammation [67, 
68]. Despite these challenges of harnessing the host immune 
system to target DIPG, checkpoint inhibitors and adop-
tive T cell immunotherapy (ACT) have become promising 
approaches to mediate response in both early and advanced 
stages of the disease.

Immune checkpoint inhibitors (ICI) block co-inhibitory 
pathways that are activated by tumor cells to suppress T 
cell response against the malignancy which results in pro-
longed immune response in the tumor microenvironment. 
In particular, the programmed cell death (PD-1) pathway 
has been implicated in the pathogenesis of pediatric glio-
mas [69–71]. PD-1 is expressed on the surface of T cells to 
regulate their effector function which acts as a hardwired 
break for the adaptive immune system to prevent adverse 
cytotoxicity. However, cancer cells have hijacked this path-
way by overexpressing the ligand of PD-1 (PD-L1) to evade 
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cytotoxic T cell function in the TME [72]. Monoclonal 
antibody therapies that block the PD-1/PD-L1 pathway can 
sustain the immune response against the malignancy [73] 
and extend median survival of HGGs when combined with 
radiation [74].

Despite its early promise, many cancer patients develop 
resistance to the treatment or do not derive therapeutic ben-
efit [75–77]. Retrospective analyses conducted on anti-PD1 
therapy used to treat DIPG have shown to neither confer 
efficacy by itself [78] nor enhance the survival benefit of 
re-irradiation [79]. Still, clinical trials are being conducted 
to treat young children with recurrent gliomas by using anti-
PD-1 monoclonal antibodies. NCT02359565 is a phase I 
clinical trial testing the efficacy of pembrolizumab, an 
anti-PD-1 antibody, for patients with DIPG or other HGGs, 
while NCT03690869 is implementing the PD-1 inhibitor 
REGN2810 in conjunction with radiation to treat relapsed 
CNS tumors.

In addition to checkpoint inhibition, ACT has seen prom-
ising advances in the treatment of malignant gliomas [80, 
81]. ACT is the isolation and expansion of tumor-reactive T 
cells ex vivo which are infused back into the patient (Fig. 2).

As a promising form of ACT, chimeric antigen receptor 
(CAR) T cells have had great success in treating refractory 

B cell malignancies, which has not translated well into solid 
tumor models [82, 83]. CAR T cells work by antigen-spe-
cific direct killing of cells. It has been shown that multi-
ple antigen-targeting is more effective than single antigen. 
CAR T cells produced through gene editing software such as 
TALEN and CASPER. New antigens associated with high-
grade gliomas may provide suitable targets for CAR T cells 
including the membrane protein B7-H3 (PD-L1) [84–86] 
or the disialoganglioside GD2 that is highly expressed in 
midline gliomas [87]. In a preclinical study, GD2-directed 
CAR T cell therapy mediated a potent antitumor response 
in mice bearing patient-derived diffuse midline glioma 
orthotopic xenograft models and was well-tolerated [87]. 
This finding has been translated in an ongoing clinical trial 
(NCT04099797) to determine the adequate dosing of a C7R-
GD2 CAR T cell therapy, an anti-GD2 CAR T cell modified 
with the CR7 gene to provide a constant supply of cytokines 
to the T cell.

Fig. 2   Generation of CAR 
T cells targeting BSGs. The 
develoopment of CAR T cell 
therapy begins with the collec-
tion of a patient’s peripheral 
blood mononuclear cells. The 
cells are enriched for a T cell 
susbset, such as a CD3+ popula-
tion, and subseqently expanded 
and activated ex vivo using 
costimulatory ligands such as 
CD28. Activated T cells are 
then genetically modified by 
electroporation or viral vectors, 
such as lentiviral or retroviral 
vectors, to deliver the CAR 
gene. Then, the CAR T cells 
are actived against the specific 
tumor target and expanded 
ex vivo using costimulatory 
ligands before administration to 
the patient
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Summary

pBSGs are a subset of highly aggressive cancers that cur-
rently have limited treatment options with DIPG repre-
senting the leading cause of pediatric brain cancer fatali-
ties. Although no therapies for DIPG or other pBSGs have 
been shown to consistently extend survival beyond that 
of radiation therapy, advancements in understanding its 
epigenetic dysregulation, despite the scarce availability of 
tumor tissue, may signify the possibility for future thera-
peutic breakthroughs. Recent research characterizes DIPG 
as biologically distinct from adult high-grade gliomas with 
hallmark mutations that contribute to its molecular patho-
genesis. Promising therapies such as HDAC inhibitors 
that epigenetically modify the tumor landscape to prevent 
progression are currently in clinical trials. In addition, 
ongoing research into harnessing the host immune system 
through PD-1 monoclonal therapy and CAR T cells have 
shown preclinical success and have been translated into 
clinical studies.
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