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The Nomogram of MRI-based Radiomics
with Complementary Visual Features by

Machine Learning Improves Stratification of
Glioblastoma Patients: A Multicenter Study
Yuyun Xu, MD,1 Xiaodong He, MD,1 Yumei Li, MD,1 Peipei Pang, MD,2 Zhenyu Shu, MD,1*

and Xiangyang Gong, PhD1

Background: Glioblastomas (GBMs) represent both the most common and the most highly malignant primary brain
tumors. The subjective visual imaging features from MRI make it challenging to predict the overall survival (OS) of GBM.
Radiomics can quantify image features objectively as an emerging technique. A pragmatic and objective method in the
clinic to assess OS is strongly in need.
Purpose: To construct a radiomics nomogram to stratify GBM patients into long- vs. short-term survival.
Study Type: Retrospective.
Population: One-hundred and fifty-eight GBM patients from Brain Tumor Segmentation Challenge 2018 (BRATS2018)
were for model construction and 32 GBM patients from the local hospital for external validation.
Field Strength/Sequence: 1.5 T and 3.0 T MRI Scanners, T1WI, T2WI, T2FLAIR, and contrast-enhanced T1WI sequences
Assessment: All patients were divided into long-term or short-term based on a survival of greater or fewer than 12 months.
All BRATS2018 subjects were divided into training and test sets, and images were assessed for ependymal and pia mater
involvement (EPI) and multifocality by three experienced neuroradiologists. All tumor tissues from multiparametric MRI
were fully automatically segmented into three subregions to calculate the radiomic features. Based on the training set, the
most powerful radiomic features were selected to constitute radiomic signature.
Statistical Tests: Receiver operating characteristic (ROC) curve, sensitivity, specificity, and the Hosmer–Lemeshow test.
Results: The nomogram had a survival prediction accuracy of 0.878 and 0.875, a specificity of 0.875 and 0.583, and a sen-
sitivity of 0.704 and 0.833, respectively, in the training and test set. The ROC curve showed the accuracy of the nomo-
gram, radiomic signature, age, and EPI for external validation set were 0.858, 0.826, 0.664, and 0.66 in the validate set,
respectively.
Data Conclusion: Radiomics nomogram integrated with radiomic signature, EPI, and age was found to be robust for the
stratification of GBM patients into long- vs. short-term survival.
Level of Evidence: 3
Technical Efficacy Stage: 2
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Glioblastomas (GBMs) represent the most common and
highly malignant primary brain tumors associated with

a particularly poor median survival duration of 14 months,
and a 5-year survival rate of 5.5%.1,2 Approximately 13,000
GBM cases in the United States have been confirmed each

year, with an incidence rate as low as 3.2 per 100,000 mem-
bers of the population.2

The standard treatment for GBM is surgical resection,
followed by radiation therapy and/or chemotherapy.3 How-
ever, the overall survival (OS) time widely varies across
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individuals due to the inherent heterogeneity of GBMs.4 The
radiological appearance of GBM reflects its aggressive nature,
which contributes to its heterogeneity; thus, physicians com-
monly rely on multiparametric magnetic resonance imaging
(MRI) to aid in prognostication.5 The visual imaging features
derived from MRI have previously been used to predict of
survival.6 However, this assessment has been difficult, as
image interpretation is highly subjective, challenging, and
time-consuming. Therefore, objective quantification of the
image characteristics may help stratify patients based on pre-
dictions for long- vs. short-term survival, yielding valuable
information for clinicians who can then offer precise manage-
ment strategies.

Radiomics, which is a promising and rapidly growing
discipline, is a method that can be used to extract a large
number of quantitative features from medical images and
converts the information into mineable data.7 These data can
be subsequently analyzed to construct biomarkers for disease
diagnosis, prediction, stratification, and prognosis through
feature selection. Radiomics has the benefit of using routine,
clinical MRI sequences to evaluate GBM images, which could
be highly cost-effective and efficient as it is a further investi-
gation on the basis of existing medical image and requires no
additional examination.8 Previous studies have indicated that
imaging features extracted from conventional MRI in routine
clinic can predict survival in patients with GBM before the
treatment.9, 10 Furthermore, previous studies showed that
intratumoral radiomic features outperformed conventional
prognostic factors and provided complementary value to
genomic information for prognosis.11,12

Radiomic features can be employed to quantify radio-
logical appearance, including heterogeneity, size, and inten-
sity; however, it is less effective at determining ependymal
and pia mater involvement (EPI). EPI has been shown to be
a risk factor for OS. In one recent study, it was noted that
ependymal involvement manifested as extensive contact with
the ventricle in GBM patients; as such, the cerebrospinal fluid
(CSF) may allow for widespread tumor cell dissemination,
potentially affecting survival.13 In one study, pia mater
involvement was reported to occur in up to 23.4% of GBM
patients (75 of 321), and this was associated with poor sur-
vival14 . Therefore, the assessment of EPI in GBM patients is
crucial because it would influence the treatment decision.
However, radiomics from automatic or manually segmented
tumors cannot reflect the involvement of both.

Machine-learning techniques enable the analysis of large
quantities of imaging features to extract highly predictive
imaging characteristics, which is increasingly used to generate
genetic and prognostic biomarkers for GBMs.15 Multiple
models of survival analysis that apply MR imaging features
have also been generated to predict patient outcomes in
GBM.16 Several studies have applied support vector machines
(SVMs) on MRI data to predict survival, whereas Zacharaki

et al used classification trees to imaging features from preop-
erative and postoperative MRI scans to predict short-
vs. long-term survival in patients with high-grade
gliomas.17–19 The feasibility of these predictive models is lim-
ited by their inability to directly calculate and visualize these
outcomes, which could be further improved by using nomo-
grams in the clinic. Nomogram is actually a pictorial repre-
sentation of a complex mathematical formula, using biologic
and clinical variables to graphically depict a statistical prog-
nostic model that generates a probability of a clinical event,
such as OS for a given individual. Nomograms are commonly
used tools with rapid computation through user friendly digi-
tal interfaces, together with high accuracy and easily under-
stood prognose, allowing for better prognosis estimation and
clinical decision-making in oncology.20

Thus this study sought to investigate whether combin-
ing radiomic features and specific visual features could better
stratify patients into long- vs. short-term survival sets.

Materials and Methods
Patients
This retrospective study was approved by our institutional review
board, and the requirements for informed consent were waived. The
preoperative clinic routine brain MRI scans of 158 GBM patients
from Brain Tumor Segmentation Challenge 2018 (BRATS2018)
and external validation dataset of 32 GBM patients from the local
hospital were retrospectively analyzed.21–23 Inclusion criteria were:
(1) pathologically confirmed WHO grade IV GBM; (2) no prior his-
tory of treatment, including surgery, chemotherapy, or radiation
therapy; (3) pre-treatment MRI with conventional routine sequences
available. Patients with insufficient quality image were excluded. In
addition, the patients of BRATS2018 were divided into two sets
according to alphabetical order of the labeled name in the dataset,
the training set and testing set, with a ratio of 7:3.

All patients were pathologically confirmed to have a diagnosis
of GBM. Clinicodemographic data, including age and treatment
were obtained. MRI scans were performed at multiple institutions
(N = 20, 19 institutions for the BRATS2018 data and 1 local insti-
tutions for the external validation) with different clinical protocols
and various scanners. The routine sequences included T1-weighted
imaging (T1W), T2-weighted imaging (T2W), T2FLAIR (FLAIR),
and contrast-enhanced T1W (T1CE). The detailed parameters of all
the MR images can be found in Table S1 in the Supplementary
Material. All patients were divided into long-term (12 months or
longer) or short-term (12 months or less) survival sets. Their mean
age was 64.6 years old. Of all patients, 97 had a long-term OS and
93 had a short-term OS. In this study, data from BRATS2018 were
used to build the model, and data from the local medical center were
used to validate the model.

Visual Features Assessment
All MR images were reviewed and assessed for multifocality and EPI
status by three neuroradiologists (Yuyun Xu, Xiaodong He, and
Zhenyu Shu of 14, 16, 20 years of experience, respectively) who
were blinded to the clinical data using ITK-SNAP (http://www.
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itksnap.org/) and assessed the images independently. Discordant
interobserver interpretations were resolved by discussion until a con-
sensus was achieved. Ependymal involvement was defined if the
contrast-enhanced tumor lesion contacted the lining of the ventri-
cle.24 Pia mater involvement was defined as diffuse or nodular
enhancement of the meninges, subarachnoid space, intracranial
nerves, or spinal cord surface in T1 and/or T2 FLAIR gadolinium-
enhanced images.25 EPI positive was defined as the involvement of
the ependyma and/or pia mater. Multifocality was defined as having
more than one area of tumor enhancement, which was located sepa-
rately from the other enhanced areas on a postcontrast T1W
image.26

Image Preprocessing
All BRATS multimodal scans are available as NIfTI files (.nii.gz). In
light of the different imaging parameters, the MR images were
preprocessed to standardize data analysis across patients and were co-
registered to the same anatomical template, interpolated to the same
resolution (1 × 1 × 1 mm3), and skull stripped.22, 27 Gaussian filter-
ing was used to reduce noise in the images; magnetic field migration
correction was performed to reduce external interference factors; and
histogram mapping and intensity standardization were performed to
limit the gray level of all images to 0–255, and the image grayscale
intensity level was then discretized and normalized by downsampling
each image into 32 bins to reduce image noise.

With such fixed values and numbers of bins, the image gray
range was divided into equally spaced intervals. Therefore, the bin
size and intensity resolution of the discretized volumes depended on
the grayscale value (i.e., four bin sizes for each grayscale).

Extraction of Radiomic Features
All MRI images were imported into the AGK software (Artificial-
Intelligent Radio-Genomics Kits; GE Healthcare, Chicago, IL, USA)
to extract radiomics features. Fully automatic GBM segmentation
was performed for both datasets, and three subregions were
obtained, including edema, enhancing, necrotic and nonenhancing
area, the details of the algorithm and process can be found in
Figs. S2 and S3 in the Supplemental Material). The corresponding
radiomic features were also extracted from the dataset from the man-
ually segmented subregions by experts provided by BRATS2018
dataset. The segmented regions of interest of the subregions were
further analyzed by a function tool of AGK software for feature
extraction. Radiomic features were calculated, including histogram,
Haralick, form factor, gray-level co-occurrence matrix (GLCM), and
run-length matrix, and gray level size zone matrix. See Supplemental
Material for details.

Construction of the Radiomic Signature
Analysis of variance of the extracted features was performed based on
the training set. The variance of each feature was calculated, and
then the features greater than the threshold 1 were retained. Then,
the maximum relevance minimum redundancy (mRMR) algorithm
was used to extract the most robust features in the training set. The
maximum-relevance selection aimed to select features that had a
maximal correlation to the actual survival time. At the same time,
the minimum-redundancy selection ensured that the selected fea-
tures had minimal redundancy among each other. Subsequently, an

emerging gradient boosting decision tree (GBDT) algorithm was
used to further reduce the dimensionality of the remaining features.
The detailed dimensionality reduction method of GBDT can be
found in the Supplemental Material. Finally, logistic regression
(LR) analysis was used to obtain robust features that participate in
the construction of the radiomic signature. For the details of feature
dimensionality reduction, please refer to the Supplemental Material
for this article. The radiomics workflow is presented in Fig. 1.

Assessment of Radiomics Signature
Based on the training dataset, three subregions were automatically
segmented from each sequence of T2WI, T1WI, T2FLAIR, and
T1CE, and the features of each subregion were extracted separately,
which constituted a total feature set of 12 subregional features from
these four sequences, and then dimensionality reduction was per-
formed on this feature set. After feature dimensionality reduction, a
joint feature set containing three automatically segmented subregions
of each sequence was used to build radiomic signature. In order to
demonstrate the correlation between the radiomic features and OS,
scores for each patient in the training set were calculated using the
radiomics signature formula to reflect the actual survival probability,
which was defined as the Rad-score.

The radiomic signature of the test set was calculated using the
same formula used in the training set.

Furthermore, a feature set containing the features of four
sequences based on each subregion was extracted as well as the
established radiomic signatures of the three subregions.

Finally, based on the radiomics features extracted by manual
segmentation, the Rad-score of each patient’s survival was calculated,
using the radiomic signature formula constructed by radiomic fea-
tures based on automatic segmentation.

Nomogram Construction and Evaluation
Univariate LR analysis was performed on each potential predictor
variable, including multifocality, EPI, age, and radiomics signature
in the training set, selecting the independent predictors to construct
the models. In this study, five machine-learning methods were
applied including LR, SVM, as well as the Bayes and K nearest
neighbor algorithms, and random forests to build the prediction
model based on the filtered prediction factors, and then used the test
set data to calculate the predictive performance of the prediction
model based on the training set. Receiver operating characteristic
(ROC) was used to evaluate the model’s diagnostic accuracy and
finally utilized the DeLong test to select the optimal machine-
learning model. As a result, the LR machine-learning method was
used to construct the prediction model and nomogram was built. A
radiomics nomogram was then built on the basis of the optimal
machine-learning model.

Nomogram efficiency was verified by the training set, the test
set and the external verification set, including calibration efficiency,
diagnostic accuracy, and net value, which were evaluated by the cali-
bration curve, ROC curve, and decision curve analysis (DCA),
respectively. According to the nomogram for each patient in the
external verification data set, the predicted survival for each patient
was calculated, then all the subjects were divided into long-term sur-
vival set and short-term survival set by the cutoff value of the ROC
curve. Finally, the clinical effect was determined by the actual
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survival state in the different sets. In this study, the best cutoff value
is determined by using the Yoden index, which is equal to the
sensitivity − (1 − specificity). The maximum value of this index
value is the best cutoff value. Finally, a DCA was conducted for the
different predictors in the BRATS2018 set and the external
validation set.

Statistical Analysis
SPSS 17.0 software (IBM Corporation, Armonk, NY, USA) was
used to perform the Kolmogorov–Smirnov test to evaluate the
normality of the distribution of the data, and the chi-squared
test was used for categorical data. Parametric data were assessed
using an independent-samples t-test, whereas nonparametric

data were assessed using the Mann–Whitney U test between
two sets.

One-way analysis of variance was used to compare the con-
tinuous variables among the three sets. The interobserver agree-
ment of visual features by three neuroradiologists was evaluated
by intraclass correlation coefficient (ICC). The area under the
curve (AUC) of the ROC curve was used to evaluate the accuracy
of the radiomic signatures in the training and test sets. The diag-
nostic efficacy of Rad-score in all patients was evaluated by ROC
curve, and the DeLong test was used to compare the difference in
the performance of radiomic signature based on automatic seg-
mentation and manual segmentation in all patients. The
MedCalc15.8 software (MedCalc, Ostend, Belgium) was used to

FIGURE 1: Flow chart of this study.

TABLE 1. Patient Characteristics in the Primary and Internal Validation Cohorts

Variable Training set (N = 110) Test set (N = 48) Validation set (N = 32) P-value

Age (years) 60 � 14 61 � 11 58 � 14 0.663

Radiomic signature 0.139 � 2.076 −0.039 � 2.114 0.208 � 2.383 0.852

Multifocality (N [%]) No 84 (76.4) 34 (70.8) 25 (78.1) 0.702

Yes 26 (23.6) 14 (29.2) 7 (21.9)

EPI (N [%]) No 34 (30.9) 17 (35.4) 11 (34.4) 0.837

Yes 76 (69.1) 31 (64.6) 21 (65.6)

EPI = ependymal and pia mater involvement.
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assess the ROC curves and calculate the cutoff value, and the
differences between AUCs were compared with the DeLong
test. The R statistical software package, version 3.4.1, was
used for all other statistical analyses. The “mRMRe” packages
were used for mRMR analyses. Calibration plots and the
radiomics nomogram were established with the “rms” pack-
age, and DCA with the “dca.R" package. Two-sided P-values
<0.05 were considered statistically significant.

Results
Patients’ Clinical Characteristics
The MR images showed that 128 patients were EPI-
positive and 62 were EPI-negative. The ICCs between
the three neuroradiologists of multifocality and EPIs
were 0.885 (95% CI, 0.854–0.911) and 0.839 (95%
CI, 0.797–0.875), respectively. The differences in age,
radiomic signature, multifocality, and EPIs of the
patients in the training, testing, and validation sets
were not statistically significant with P value of 0.663,
0.852, 0.702, 0.837, respectively, all P > 0.05
(Table 1). The differences in age, radiomic signature,
and meninges between patients with short- and long-
term OS were statistically significant in training, test-
ing, and validation sets (P < 0.05 in all cases), whereas
the differences in multifocality were not statistically
significant P > 0.05 (Table 2).

Construction and Assessment of the Radiomics
Signature
A single region extracted 378 features, and so 4536
features were extracted from each patient’s four MRI
sequences based on three subregions. Finally, seven
GLCM features (Haralick correlations [N = 2], inverse
difference moments [N = 3]; inertia [N = 1]; and clus-
ter prominence [N = 1]) were selected by dimension
reduction to construct the radiomic signature. The
radiomic signature model constructed based on three
separate subregions of the tumor showed favorable
diagnostic performance. In addition, compared with
the signature model constructed on a single subregion
of the tumor, the signature model constructed based
on the combined area had a higher diagnostic perfor-
mance in the training set and the test set (see Fig. 2
and Table 3 for details). The AUC values of the radio-
mic signature constructed based on automatic segmen-
tation and manual segmentation in all datasets were
0.826 and 0.717, the sensitivities were 0.692 and
0.564, and the specificities were 0.8 and 0.836,
respectively. The DeLong test showed that the
AUC values of the two were significantly differ-
ent (P < 0.05). TA
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Radiomics Nomogram Construction and Validation
Univariate LR analysis results showed that age, EPI, and
radiomic signature were independent predictors of OS, as

shown in Table 4. The accuracy, specificity, and sensitivity
of the independent predictors in the training, test, and val-
idation set are shown in Table 5. The ROC curve showed

FIGURE 2: Score diagrams of the radiomics signature in (a) the training set and (b) the test set. (c, d) The diagnostic accuracy of the
prediction scores of the radiomic signature in the training and test sets

TABLE 3. Diagnostic Efficacy of Radiomic Signature based on Different Tumor Subregions

Set Performance features Edema Enhancing Necrotic +nonenhancing Merge area

Training set AUC 0.815 0.81 0.823 0.838

Sensitivity 0.685 0.685 0.648 0.704

Specificity 0.786 0.661 0.786 0.786

Test set AUC 0.786 0.715 0.795 0.814

Sensitivity 0.708 0.458 0.75 0.708

Specificity 0.792 0.75 0.751 0.958

AUC = area under curve.
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that the prediction model constructed by the LR
machine-learning method had the highest diagnostic
efficiency in the training and test sets (AUC = 0.878),
AUCs for SVM, KNN, Forest, Bayes were 0.872,
0.822, 0.860, 0.877, respectively. The DeLong test
showed no statistically significant difference between
the AUC value of the LR and other machine-learning
methods with P > 0.05 (see Fig. 3 for details). The pre-
diction model based on LR machine-learning method
was constructed and the corresponding nomogram was
built, as shown in Fig. 4. The nomogram had a survival
prediction accuracy of 0.878 and 0.875, a specificity of
0.875 and 0.583, and a sensitivity of 0.704 and 0.833,
respectively, in the training and test set. The calibration
curve showed good calibration performance in the train-
ing and test sets, indicating good consistency between
the predicted OS using the nomogram and the actual
OS in the training and test sets. The DCA also showed
good net benefits in the training and test sets (Fig. 5).

Overall External Validation of the Radiomics
Nomogram
The AUC value of the ROC curve showed the accuracy
of the nomogram, radiomic signature, age, EPI,
signature + age and signature + EPI for external valida-
tion set were 0.858 (95% CI 0.69–0.956), 0.826 (95%
CI 0.651–0.936), 0.664 (95% CI 0.476–0.82), 0.660
(95% CI 0.472–0.817), 0.838 (95% CI 0.665–0.944),
and 0.846 (95% CI 0.675–0.949) respectively.
According to the best diagnostic cutoff values for the
nomogram (cutoff value: 0.264), the patients were
divided into long-term and short-term OS sets. There
was a significant difference in the number of GBM
cases between the long- and short-term OS sets
(P < 0.05; Fig. 6). The results of DCA show that the
net benefit of nomogram is similar to the radiomic

TABLE 4. Logistic Regression Analyses to Predict the
Survival State

Variable
Univariate logistic
regression

OR (95% CI) P-value

Age (per 1 year) 0.93 (0.893–0.968)<0.001*

Multifocality (no vs. yes) 1.283 (0.531–3.1) 0.579

EPI (no vs. yes) 0.329 (0.141–0.772) 0.011*

Radiomic signature
(per 0.1 increase)

2.718 (1.796–4.114)<0.001*

EPI = ependymal and pia mater involvement.
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signature in both datasets. In addition, the calibration
curve of the variables showed good consistency in both
datasets, as shown in Fig. 7.

Discussion
OS prediction is important when tailoring treatment options
to reduce burden and improve quality of life, as well as to
guide the development of novel therapies. In this study, we
investigated the role of integrated nomograms on the OS
stratification of GBM patients. EPI, age, and radiomic signa-
ture are found to be independent predictors of OS for GBM
patients. The nomogram was created by integrating the three
independent predictors, had the best performance when strat-
ifying GBM patients into long- vs. short-term survival, which
could help clinicians develop optimal treatment plans.

Our results showed that the nomogram based on radio-
mic features could predict the survival state of GBM patients
very well. Interestingly, seven GLCM features survived as
robust radiomic signatures and participated in the

construction of the nomogram, whereas the other feature
types were not selected. GLCM features were defined to mea-
sure the relationship between two neighboring pixels and to
reflect the local heterogeneity of the tumor. Tumor heteroge-
neity, which is often characterized by high cellularity, diffuse
infiltration, and necrosis, is one of the main causes of treat-
ment resistance in GBM, directly affecting patient prognosis
(i.e., OS time).28 Our results are consistent with those of a
previous study, which indicated that local heterogeneity
played a crucial role in survival stratification in GBM
patients.29

EPI was also found to be an independent predictor. EPI
positivity indicates the probability with which tumor seeds
through CSF dissemination, which is a potential contributing
factor of a poor clinical outcome, and can be reflected by
MRI images as involvement of the ependyma and/or pia
mater.30 A recent report confirmed in a multivariate analysis
of 647 GBM patients, which adjusted for age, gender, extent
of resection, postoperative treatment, and tumor volume, that

FIGURE 3: (a, b) The ROC curves of different machine-learning methods in the training set and the heat maps of their P-values of
compared AUCs. (c, d) The ROC curves of different machine-learning methods in the test set and the heat maps of their P-values of
compared AUCs.
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ependymal involvement was an independent predictor of sur-
vival.31 Previous studies showed meningeal involvement
(as detected on a postoperative MRI) with a diagnostic speci-
ficity of 77% is associated with poor survival outcomes.32

However, the correlation between pia mater involvement and
survival is a little controversial. Park et al showed that men-
ingeal involvement did not affect the clinical results in
GBM patients; however, this may be due to the small num-
ber of patients.24 In addition, age is a predictor of poor
prognosis in GBM patients, in line with other GBM stud-
ies.33 Multifocality did not appear to be an independent
predictor, consistent with the findings of one previous
study.34

After taking the radiomic signature, age, and EPI
together, the nomogram yielded the best performance on the
OS stratification of GBM patients, which might mean they
are complementary factors, thus improving classification per-
formance. Although the DCA shows that the net benefit of
the nomogram is much greater than the age or EPI, the net
benefit of nomogram and radiomic signature in the
BRATS2018 dataset was very close, while in the external vali-
dation dataset the net benefit of the nomogram is only
slightly higher than that of radiomics, which may further
reveal that the nomogram’s prediction mechanism is largely
dependent on radiomic signature.

A prediction model is an important component of
radiomics analysis. Highly accurate and reliable models are
needed for clinicians to provide decision support. Machine

learning can provide highly accurate and reliable models to
improve clinical decision-making in clinical oncology,
which has played an increasingly important role in predic-
tion and oncology.35 In this study, multiple machine-
learning methods were used to select an optimal method,
which greatly improved the accuracy of nomogram. The
joint multi-sequence and multi-region features were
selected to construct the radiomic signature, which may
comprehensively reflect the heterogeneity of the tumor,
and had a good predictive performance. The result sup-
ports previous report that a joint model has improved per-
formance when compared with clinical and radiologic
models.36 Furthermore, our nomogram’s performance out-
performed some of those noted in previous studies, perhaps
due to the joint features we used. In addition, multicenter
data were utilized, which further shows that our nomogram
can be widely generalized.37

Limitations
First, as a retrospective study, the MR imaging data used
in this investigation were acquired with various imaging
parameters and contrast agents, and EPI assessment preci-
sion may be of a little influence. A prospective clinical
study using a larger population is needed to better under-
stand the role of EPIs in the prognosis of GBM patients.
Second, all patients were divided into short- and long-term
survival, using a survival time of binary endpoints instead

FIGURE 4: Nomogram of the prediction model based on the LR machine-learning method.
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of actual survival analysis, which may result in loss of
threshold-related results and information. However,
machine learning prediction based on binary survival time
was also used in previous literature.38, 39 In further

research, we will take this into consideration and a more
precise survival time prediction would need to be
attempted. Last, a detailed medical history of and the treat-
ment course for the GBM patients in this study were not

FIGURE 5: (a, b) The ROC curves of the nomograms in the training and test sets; (c, d) the calibration curves of the nomograms in
the training and test sets; and (e, f) the DCA of the nomograms in the training and test sets.
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FIGURE 6: (a) ROC curves for nomogram, radiomic signature, age and meninges predicting OS in validation set. (b) The stratification
performance of the nomogram in validation set.

FIGURE 7: (a, b) DCA and calibration curves for LR model, radiomic signature, age, and EPIs predicting OS in BRATS2018 dataset,
the graphs show that the LR model has the greatest net benefit in both datasets. (c, d) DCA and calibration curves for LR model,
radiomic signature, age, and EPIs predicting OS in in validation set.
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available, such as Karnofsky Performance Scale score which
is well established as one of the most important predictors,
which might also influence their survival prediction result
and should be considered in future studies.40 As this is a
preliminary research study attempting to integrate radio-
mics with complementary visual features to predict sur-
vival, future studies may benefit from the combined use of
additional clinical data, variable treatments, anatomic
information, and functional images.

Conclusion
This study demonstrates that in a radiomics nomogram inte-
grated with a radiomic signature, complementary visual fea-
tures such as EPI and age were found to be robust for the
stratification of GBM patients into long- vs. short-term sur-
vival and could be useful in clinical practice.
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