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Intraoperative MRI for Glioma Surgery: Present Overview and Future Directions
Alexander T. Yahanda and Michael R. Chicoine
OVERVIEW OF INTRAOPERATIVE MAGNETIC RESONANCE
IMAGING

Intraoperative magnetic resonance imaging (iMRI) was introduced
in 1994 with the 0.5 Tesla (T) “double donut” magnet that
surrounded the operating table.1 Surgeons operated within the
confines of a narrow space between the 2 halves of the magnet;
however, although this provided the opportunity to easily obtain
repeated scans during surgery, it provided limited access to the
patient.1 Other early iterations of iMRI included a low-field
(0.15T) movable magnet that could be situated beneath the
operating table and moved into position to acquire images.1

Subsequently, iMRI technology has evolved considerably. Most
current iMRI devices employ 1.5T or 3T high-field magnets that
do not impede patient access. These iMRI devices are either
moved into the operating room on a ceiling-mounted track or are
located in close proximity to the surgical field so that the patient
can be transferred to the magnet in the same room or an adjacent
room for imaging as needed.1

iMRI can provide high-resolution images for neurosurgical
procedures that can be acquired in near real-time in specially
equipped suites. Naturally, this lends itself well to brain tumor
surgeries for which maximal safe resection is the optimal goal.
Tumor resection can be complicated by a number of factors,
including brain shift or other surgical changes that may be diffi-
cult to predict or visualize. Using iMRI, the surgeon can pause
mid-case and acquire images to identify areas of residual tumor or
to further clarify important structures. Moreover, iMRI can
enhance frameless stereotactic neurosurgical navigation. Intra-
operative images can be fused with preoperative images using the
stereotactic navigation software to better understand alterations of
anatomy during surgery.
Despite its potential advantages, iMRI implementation requires

a significant financial investment for hospitals, alterations to
operating rooms, and uniquely trained staff to ensure safe oper-
ation of these complex devices. As such, research into the utility
and accuracy of iMRI is paramount to discern the true impact of
this technology. Two randomized control trials have been con-
ducted to evaluate the impact of iMRI for glioma surgery,2,3 which
have demonstrated that iMRI may significantly increase extent of
resection (EOR) and rates of gross total resection (GTR). Several
retrospective studies have also shown that iMRI may help
increase EOR for both low- and high-grade gliomas compared
to surgeries that did not use iMRI.4,5

The authors of this article have conducted many retrospective
multicenter studies examining the impact of iMRI on outcomes
after glioma resection.6-8 These studies have found that iMRI
increased EOR, which was positively associated with longer overall
survival and progression-free survival. In this way, iMRI may be a
useful tool for prolonging survival. For grade II astrocytomas and
oligodendrogliomas, for instance, additional tumor resection after
iMRI was performed in 66% of cases that utilized iMRI, of which
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GTR was obtained in nearly 55% of these cases.7 Use of iMRI was
also significantly associated with increased progression-free
survival on multivariate regression.
For glioblastoma, the authors used volumetric tumor analyses

to compare surgical resections that were conducted with and
without iMRI. They determined that additional resection facili-
tated by iMRI led to a 6.3% mean increase in EOR for tumors with
initial subtotal resection.6 EOR was also higher in iMRI groups
regardless of whether the surgeon had initially intended a
subtotal resection or a GTR. Further studies (unpublished) are
examining the role of iMRI for ependymomas and pilocytic
astrocytomas. In addition, the authors found iMRI to be a
reliable tool for discerning residual tumor during glioma
surgeries. For grade IeIV gliomas, histopathological samples of
tumor specimens acquired from additional resections after iMRI
were positive for residual tumor in 89%e93% of cases.9 As shown
in multiple studies, iMRI-guided increases in EOR can be achieved
without higher rates of postoperative neurologic deficits.4-6

FUTURE DIRECTIONS

Despite evidence touting the benefits of iMRI for glioma resection,
iMRI use is mainly informed by surgeon or institutional prefer-
ences and the variable availability of this technology. Surgeons
often have differing views on the utility of iMRI for resection of
gliomas. More research is needed to examine the opinions and
preferences of surgeons regarding iMRI use to provide a cross-
sectional view of how iMRI is utilized and to elucidate for which
tumors it may be the most useful. Such investigations, combined
with more prospective studies examining the impact of iMRI,
would better define whether iMRI should be incorporated into
standard of care for certain tumors or tumor locations.
Other areas in need of further investigation include optimiza-

tion of image capture with iMRI. Current iMRI devices can
perform both standard (e.g., T1, T2, fluid attenuated inversion
recovery, diffusion-weighted imaging) and more “advanced”
sequences (e.g., perfusion, diffusion tensor imaging [DTI],
resting-state). To date, the benefit and scope of intraoperative
imaging using advanced sequences have been examined in less
detail. Intraoperative DTI, for instance, has been used to accu-
rately identify corticospinal tracts and how these fibers may shift
during tumor resection, but this is not common practice. Intra-
operative identification of other white matter tracts such as optic
radiations, arcuate fasciculus, or beyond with DTI could also be
incorporated into iMRI paradigms. The same may be true for the
role of other advanced imaging techniques such as resting-state
images acquired during glioma resection. Continued exploration
of the combination of iMRI and other imaging technologies such
as fluorescent imaging with 5-aminolevulinc acid (5-ALA) or
intraoperative ultrasound is needed as well because using
multiple tumor imaging modalities in tandem may safely and
synergistically increase EOR.10
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Finally, an emerging benefit of iMRI has been the facilitation of
laser interstitial thermal therapy (LITT). This technique involves
stereotactic insertion of a laser probe into a tumor or other lesion
and intensively heating the lesion while using magnetic resonance
thermography to assess the extent of “tumor kill.” Increases in the
availability of iMRI suites have advanced the application of LITT in
the treatment of gliomas, and iMRI will remain integral as the
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indications for LITT expand for many more neurosurgical
conditions.
In summary, iMRI has enabled great advances regarding the

surgical management of gliomas, and this technology likely will
have an expanding role in the future of neurosurgery. However,
more data on how best to apply iMRI will help properly tailor
its use.
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