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A B S T R A C T   

Purpose: Magnetic Resonance Imaging (MRI) provides an essential contribution in the screening, detection, 
diagnosis, staging, treatment and follow-up in patients with a neurological neoplasm. Deep learning (DL), a 
subdomain of artificial intelligence has the potential to enhance the characterization, processing and interpre
tation of MRI images. The aim of this review paper is to give an overview of the current state-of-art usage of DL in 
MRI for neuro-oncology. 
Methods: We reviewed the Pubmed database by applying a specific search strategy including the combination of 
MRI, DL, neuro-oncology and its corresponding search terminologies, by focussing on Medical Subject Headings 
(Mesh) or title/abstract appearance. The original research papers were classified based on its application, into 
three categories: technological innovation, diagnosis and follow-up. 
Results: Forty-one publications were eligible for review, all were published after the year 2016. The majority (N 
= 22) was assigned to technological innovation, twelve had a focus on diagnosis and seven were related to 
patient follow-up. Applications ranged from improving the acquisition, synthetic CT generation, auto- 
segmentation, tumor classification, outcome prediction and response assessment. The majority of publications 
made use of standard (T1w, cT1w, T2w and FLAIR imaging), with only a few exceptions using more advanced 
MRI technologies. The majority of studies used a variation on convolution neural network (CNN) architectures. 
Conclusion: Deep learning in MRI for neuro-oncology is a novel field of research; it has potential in a broad range 
of applications. Remaining challenges include the accessibility of large imaging datasets, the applicability across 
institutes/vendors and the validation and implementation of these technologies in clinical practise.   

Introduction 

The field of Artificial Intelligence (AI) is evolving at a rapid speed. 
The exponential growth of computational algorithms, like artificial in
telligence methods are expected to improve diagnosis, therapy and 
follow-up in medicine [1]. Especially imaging related studies in health 
care are emerging in the subdomain of AI called deep-learning (DL) 
[2,3]. In contrast to traditional machine learning (ML), where careful 
engineering is necessary to define and extract elements (features) to 
detect or classify patterns in the image, deep-learning allows the use of 
raw imaging data and can automatically discover the representations 
needed for detection or classification [3]. Deep-learning based AI tech
nology therefore provides unprecedented enhancements in terms of 
(automated) image analysis in many fields of medicine [4]. For onco
logical investigations, typical applications are in the area of diagnosis 

and staging of cancer, treatment decision and individual treatment 
optimization including prognosis modelling, and follow-up imaging. 
Many imaging modalities have opportunities to aid in the care path of 
cancer patients. In this review we will focus on the most frequently used 
imaging method applied to neuro-oncology, namely magnetic resonance 
imaging (MRI). Given the large amount of data currently generated on 
MRI scanners applying different image acquisition sequences and post- 
processing steps, deep-learning technology is ideally suited for anal
ysis of these large scale, multi-dimensionalimage sets. MRI and (auto
mated) analysis of MRI data is one of the cornerstones for these previous 
mentioned applications in the neuro-oncology domain [5]. 

Data scientist have an increasing role in the image analysis and 
interpretation of advanced MRI images, due to the generation of a large 
amount of data. For example, diffusion tensor imaging (DTI) is used to 
measure the directionally of proton motion, which is often altered in the 
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presence of brain tumors [6]. For this application physicists, radiologists 
and computer scientists needed to collaborate to extract the maximum 
amount of information captured in these imaging sequences. With the 
increase in computing power and advanced programming algorithms, 
the use of deep-learning algorithms to extract relevant information from 
MRI imaging is expected to increase even further. 

The aim of this review paper is to give an overview of the current 
state-of-art of applications of deep-learning in MRI with a specific focus 
on neuro-oncology. For this investigation, we categorized the available 
literature into various domains following the clinical care path from 
technology to diagnosis and follow-up. 

Methods 

Search strategy 

To provide an overview of the available literature combining Deep 
Learning and MRI in neuro-oncology we used the Pubmed database and 
defined a specific search strategy including a combination of MRI, DL, 
neuro-oncology and corresponding search terminologies. We applied a 
search terminology by focussing on Mesh terms or title/abstract 
appearance. The specific search string was: 

“Magnetic Resonance Imaging”[Mesh] AND “Deep Learning”[Mesh] 
AND (Neuro-oncology[tiab] OR “Brain Neoplasms”[Mesh] OR “Central 
Nervous System Neoplasms”[Mesh] OR “Neoplasms, Neuro
epithelial”[Mesh] OR “Meningeal Neoplasms”[Mesh]) 

Data extraction 

From the original publications, we extracted title, first author, 
journal, year of publication, study type, goal of study, patient popula
tion, sample size, DL technology and MRI technology used. In addition, 
we classified the original research papers into three categories: 1) 
technological innovations 2) diagnosis and 3) follow-up. 

Results 

The search strategy resulted in 45 publications (date: 1st November 
2020). We excluded publications written in Chinese [N = 1], reviews or 
editorial publications [N = 4], publications not specifically focussing on 

DL applications using MRI images [N = 1] and publications without an 
available full text [N = 1]. From reference searching in these papers, we 
identified three additional publications, which were included in the 
scope of this review (Fig. 1). A total of 41 publications were reviewed. 
All publications were recently published, after the year 2016 indicating 
the recent and timely evolution of this field (Fig. 2). 

Technological innovations 

We defined the category technological innovations for research with 
a focus on improving the image acquisition, image analysis or automa
tion in the treatment process. 22 of the 41 publications were assigned to 
‘technological innovations’ (Table 1), with a large variation in ap
proaches. This ranged from tasks regarding the reduction of contrast 
agents in the image acquisition [7], the filtering of artefacts and spectral 
fitting in MRSI [8,9], the separation of brain from non-brain tissue [10], 
the generation of synthetic Computed Tomography (CT) images for 
radiotherapy treatment [11–14], the auto-segmentation tasks of brain 
tumors [15–26] and solutions to generate, or cope with, limited anno
tated data [26,27]. The patient populations was diverse, containing 
healthy subjects, not specified brain tumors, as well as glioma, glio
blastoma, meningeomas and brain metastasis. Sample sizes ranged from 
10 MRI scans [9] to 1107 patients with 2925 MRI scans [10]. The most 
frequently used MRI sequences were T1 weighted (T1-w) or contrast 
enhanced T1-w MRI (cT1-w), followed by a frequent addition of T2 
weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR). The 
use of Magnetic resonance spectroscopic imaging (MRSI) was only 
presented in two publications (see Table 1). 

Image acquisition and pre-processing 
During image acquisition, MRI contrast agents can be used to 

enhance the visibility of pathology on images. Gadolinium-based 
contrast is the most frequently used in clinical practice and has vital 
importance in neuro-oncological MRI (e.g. T1-w, T2-w and FLAIR se
quences). There is, however convincing evidence that a deposition of 
gadolinium in the deep nuclei of the brain can occur, especially after 
repeated exposure to Gadolinium-based contrast. At the moment, the 
clinical or biological significance is still unknown, nevertheless the In
ternational Society of Magnetic Resonance in Medicine (ISMRM) urges 
caution in the use of gadolinium and a reduction of the frequency and 

Fig. 1. Search results.  
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amount of contrast agent is preferred [29]. A deep-learning framework 
was used to generate full-dose gadolinium images from low-dose, using 
only 10% of the gadolinium dose, images. The study shown that the DL 
method showed no significant differences with regard to overall image 
quality, clarity of the contrast enhancement or artifact suppression and 
therefore has the potential to reduce the gadolinium contrast agent 
while preserving the image quality, [7]. 

Specifically in magnetic resonance spectroscopic imaging (MRSI), 
the removal of spectral artefacts is an essential pre-processing step. Deep 
learning models have been developed to identify and filter these poor 
quality spectral data, that otherwise could lead to incorrect classification 
of voxel pathology. Gurbani et al. [8] trained a CNN to analyze the MRSI 
frequency domain spectra to detect artifacts, and compared the perfor
mance of the model to experts and achieved a high sensitivity and 
specificity with an AUC of 0.95. In addition, the same authors used a 
convolution neural network to process the MRSI data and perform rapid 
spectral fitting, were they were able to perform a sub-minute calculation 
of the relative metabolite concentration of the brain [9]. 

In the processing of images for neuroimaging studies, the identifi
cation of the brain tissue is an important pre-processing step. The ac
curacy can have impact on the quality of further image analysis like 
image registration, segmentation of tumor lesions, measurement of 
brain volume, cortical thickness and planning for interventions 
[10,30,31]. Challenges in brain segmentation are the labour and time 
intensiveness of manual segmentation and when segmentation is auto
mated the diversity in MRI pulse sequences, MRI vendors and neuro
logical pathologies, which can impact the automatic segmentation. 
Isensee et al. [10] trained and independently validated an artificial 
neural network (ANN), for brain identification on four different datasets 
including a large dataset from a prospective randomized neuro-oncology 
trial (EORTC-26101) and three independent public datasets [32–34]. 
The ANN algorithm outperformed six public brain identification 
methods, by the comparison of comparing DICE coefficient and Haus
dorff distances and enabled a robust brain identification in the presence 
of pathology. The brain extraction algorithm was applicable to a broad 
range of MRI sequence types (T1-w, cT1-2, T2-w and FLAIR) and was not 
influenced by MRI acquisition parameters or hardware. 

Synthetic CT generation 
For radiotherapy treatment planning, CT scans are used to determine 

the electron or mass density of the tissues. This density is necessary to 
estimate the absorbed dose of the radiotherapy treatment. In neuro- 
oncology the use of MRI images provides significant additional value 
regarding soft tissue contrast in comparison to CT imaging. Therefore, in 
current clinical practice, most patients receive both MRI and CT imaging 

in the workup for radiotherapy treatment (Fig. 3). The radiotherapy 
domain is however moving towards the use of MRI only treatments, by 
generating a synthetic CT from MRI images. A challenge in this use case 
is the accurate separation of air and bone, which is essential to limit the 
dose calculation error. Kazemifar et al. [11] used a generative adver
sarial network to generate synthetic CT images from cT1-w MRI images 
and assessed the dosimetric accuracy. Overall, they observed no signif
icant difference in dose parameters evaluated for the target volume and 
healthy structures. In addition, Neppl et al. [12] evaluated the use of a 
2D and 3D U-shaped Convolutional Neural Network (CNN) to generate 
synthetic CT images from T1-w MRI and assessed the effect of photon 
and proton dose distribution. The dose evaluation for photons yielded a 
good pass rate for both 2D and 3D U-Nets, while the gamma passing rate 
(2%, 2 mm) for the proton plans were all above 89.3%. Liu et al. [13] 
utilized the deep convolutional encoder-decoder network to develop an 
automated approach to generate pseudo CT images from T1-w MR im
ages and observed no significant difference in dose-distribution 
compared to the use of standard kvCT imaging. Last, Dinkla et al. [14] 
showed that dose calculations performed on synthetic CT images 
generated by a dilated CNN, by using an additional dilation parameter to 
the standard convolutional kernels, were accurate and can be used for 
MRI-only intracranial radiation therapy treatment planning. 

Auto-segmentation 
For characterization of individual brain structures, the segmentation 

of relevant structures (both tumor and functional regions of interest) 
within the brain is an important process for many applications including 
radiation treatment planning (Fig. 3). The outlining of regions of interest 
is a time-intensive procedure and it is known to be prone to inter- 
observer variability. [35–37] The use of automated segmentation has 
therefore the potential to improve the delineation quality and treatment 
workflow. 

As part of the International Conference on Medical Image Computing 
and Computer Assisted Intervention (MICCAI) a yearly challenge has 
been set for Brain Tumor Segmentation Challenge (BRATS) from 2012 to 
2020, which focusses on the evaluation state-of-the-art methods for the 
segmentation of brain tumors in multimodal magnetic resonance im
aging (MRI) scans. The available dataset is modified for each yearly 
challenge. In our search 8 publications used data made available from 
this BRATS MICCAI challenge from several years and propose a diversity 
of DL methodsto improve tumor segmentation [15–22]. 

All studies using BRATS data report at least the DICE similarity co
efficient for their proposed methods, which ranged for the whole tumor 
from 0.84 to 0.91, for the tumor core 0.72–0.86 and for the enhanced 
from 0.62 − 0.82 (Fig. 4). In detail, on the MICCAI 2015 dataset; Iqbal et 

Fig. 2. Number of publications per year, per category. *The year 2020 is incomplete, since the reference search was performed on 1st November 2020.  
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Table 1 
The publications associated with the category ‘technological innovation’.  

Title First Author Journal Year Study type Goal of study patient 
population 

sample 
size 

AI technology MRI 
technology 

Deep learning 
enables reduced 
gadolinium dose 
for contrast- 
enhanced brain 
MRI. 

Gong et al. J Magn 
Reson 
Imaging 

2018 Prospective To reduce 
gadolinium dose in 
contrast-enhanced 
brain MRI 

mixed & 
glioma 

60 
patients 

Encoder-decoder CNN 
with bypass 
connections and 
residual connections 

T1-w IR- 
FSPGR 

MR-based treatment 
planning in 
radiation therapy 
using a deep 
learning approach. 

Liu et al. J Appl Clin 
Med Phys. 

2019 Retrospective To develop and 
evaluate the 
feasibility of DL 
approaches for MR- 
based radiation 
treatment planning 

stroke patients 
& brain mets 

50 
patients 

CNN; 
deepconvolutional 
encoder-decoder 
network 

cT1-w 

Clinical Evaluation 
of a 
Multiparametric 
Deep Learning 
Model for 
Glioblastoma 
Segmentation 
Using 
Heterogeneous 
Magnetic 
Resonance 
Imaging Data 
From Clinical 
Routine. 

Perkuhn et al. J. Invest 
Radiol. 

2018 Retrospective To evaluate an 
automatic GBM 
tumor 
segmentation 
algorithm on data 
from multiple 
centers 

glioblastoma 64 
patients 

DL model based on 
DeepMedic, a 
multilayer, multiscale 
convolutional neural 
network 

cT1-w, T1- 
w, T2-w, 
FLAIR 

Postoperative glioma 
segmentation in 
CT image using 
deep feature fusion 
model guided by 
multi-sequence 
MRIs. 

Tang et al. Eur 
Radiol. 

2020 Retrospective To develop a deep 
feature fusion 
model (DFFM) 
guided by multi- 
sequence MRIs for 
postoperative 
glioma 
segmentation 

postoperative 
gliomas 

59 
patients 

Multi-channel CNN 
architecture 

cT1-w, T1- 
w, T2-w, 
FLAIR 

Deep learning model 
integrating 
features and novel 
classifiers fusion 
for brain tumor 
segmentation. 

Iqbal et al. Microsc 
Res Tech. 

2019 retrospective Present DL models 
using long short 
term memory 
(LSTM) and CNN 
(ConvNet) for 
accurate brain 
tumor delineation 

glioma 384 
patients 

Long Short Term 
Memory (LSTM) and 
CNN (ConvNet) 

cT1-w, T1- 
w, T2-w, 
FLAIR 

An Efficient 
Implementation of 
Deep 
Convolutional 
Neural Networks 
for MRI 
Segmentation. 

Hoseini et al. J Digit 
Imaging. 

2018 Retrospective To segment brain 
tumors in MRI 
using DL. 

brain tumors 230 brain 
images 

High-capacity Deep 
CNN containing > one 
layer. The DCNN 
contains two parts: 
architecture and 
learning algorithms. 

cT1-w, T1- 
w, T2-w, 
FLAIR 

An Enhancement of 
Deep Learning 
Algorithm for 
Brain Tumor 
Segmentation 
Using Kernel Based 
CNN with 
M− SVM. 

Thillaikkarasi 
et al. 

J Med 
Syst. 

2019 retrospective To present a novel 
deep learning 
algorithm (kernel 
based CNN) with 
M− SVM to 
segment the tumor 
automatically and 
efficiently. 

not mentioned 40 
patients 

Image Classification 
using M− SVM 
classifier & Tumor 
segmentation using DL 
algorithm 

not 
mentioned 

AdaptAhead 
Optimization 
Algorithm for 
Learning Deep 
CNN Applied to 
MRI 
Segmentation. 

Hoseini et al. J Digit 
Imaging. 

2019 Descriptive Development of 
AdaptAhead 
optimization 
algorithm for 
learning DCNN 
with robust 
architecture in 
relation to the high 
volume data. 

glioma 230 brain 
images 

Proposed optimization 
algorithm for learning 
DCNN based on a 
combination of 
Nesterov and 
RMSProp techniques 
(AdaptAhead). 

cT1-w, T1- 
w, T2-w, 
FLAIR 

Interactive Medical 
Image 
Segmentation 
Using Deep 
Learning With 
Image-Specific 
Fine Tuning. 

Wang et al. IEEE Trans 
Med 
Imaging 

2018 Decriptive 3-D segmentation 
of brain tumor core 
and whole brain 
tumor from 
different MR 
sequences 

glioma 274 scans 
from 198 
patients 

DL-based interactive 
segmentation 
framework by 
incorporating CNNs 
into a bounding box 

cT1-w, 
FLAIR, T2- 
w 

Li et al. 2019 Descriptive glioma 

(continued on next page) 
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Table 1 (continued ) 

Title First Author Journal Year Study type Goal of study patient 
population 

sample 
size 

AI technology MRI 
technology 

A novel end-to-end 
brain tumor 
segmentation 
method using 
improved fully 
convolutional 
networks. 

Comput 
Biol Med. 

To develop a novel 
end-to-end brain 
tumor 
segmentation 
method using an 
improved fully 
CNN by modifying 
the U-Net 
architecture 

274 scans 
from 198 
patients 

An improved fully 
CNN by modifying the 
U-Net architecture 

cT1-w, T1- 
w, T2-w, 
FLAIR 

Eye Tracking for 
Deep Learning 
Segmentation 
Using 
Convolutional 
Neural Networks. 

Stember et al. J Digit 
Imaging 

2019 retrospective To show that 
segmentation 
masks generated 
with the help of eye 
tracking are similar 
to those rendered 
by hand 
annotation. 

meningeoma, 
normal brain 

444 scans CNN cT1-w 

DRRNet: Dense 
Residual Refine 
Networks for 
Automatic Brain 
Tumor 
Segmentation. 

Sun et al. J Med 
Syst. 

2019 Decriptive To propose a novel 
automatic 3D CNN- 
based method for 
brain tumor 
segmentation. 

glioma 274 scans Densely connected 3D 
CNNbased model, 
DRRNet 

cT1-w, T1- 
w, T2-w, 
FLAIR 

A convolutional 
neural network to 
filter artifacts in 
spectroscopic MRI. 

Gurbani et al. Magn 
Reson 
Med. 

2018 Descriptive A DL model was 
developed that was 
capable of 
identifying and 
filtering out poor 
quality spectra. 

glioblastoma NA CNN MRSI 

MRI-only brain 
radiotherapy: 
Assessing the 
dosimetric 
accuracy of 
synthetic CT 
images generated 
using a deep 
learning approach. 

Kazemifar S 
et al. 

Radiother 
Oncol. 

2019 Retrospective This study assessed 
the dosimetric 
accuracy of 
synthetic CT 
images generated 
from magnetic 
resonance imaging 
(MRI) data for focal 
brain radiation 
therapy, using a DL 
approach. 

brain tumors 77 
patients 

generative adversarial 
network (GAN) 

cT1-w 

Evaluation of proton 
and photon dose 
distributions 
recalculated on 2D 
and 3D Unet- 
generated 
pseudoCTs from 
T1-weighted MR 
head scans. 

Neppl S et al. Acta Oncol 2019 Retrospective Comparison of 
generated 
pseudoCTs with a 
U-shaped CNN for 
2D image slices 
(Unet2D) and a 
Ushaped CNN for 
3D image stacks 
(Unet3D) from 
MRI. 

head 89 scans 2D and a 3D U-shaped 
convolutional neural 
network (Unet). 

T1-w 

Building medical 
image classifiers 
with very limited 
data using 
segmentation 
networks. 

Wong et al. Med Image 
Anal 

2018 Descriptive A strategy for 
building medical 
image classifiers 
from pre-trained 
segmentation 
networks. 

no tumor, low 
grade glioma, 
glioblastoma 

323 scans Modified M− Net: the 
no of feature channels 
of each convolutional 
layer evolves with 
max pooling and 
upsampling. 

T1-w, MP- 
RAGE, 
SPGR 

Brain Tumor 
Segmentation 
Based on Improved 
Convolutional 
Neural Network in 
Combination with 
Non-quantifiable 
Local Texture 
Feature. 

Deng et al. J Med Syst 2019 Descriptive Novel brain tumor 
segmentation 
method by 
integrating fully 
CNN and dense 
micro-block 
difference feature 
(DMDF) into a 
unified framework. 

glioma 100 
patients 

Fully CNN CNN 
(FCNN) and dense 
micro-block difference 
feature (DMDF) 

cT1-w, T1- 
w, T2-w, 
FLAIR 

Incorporation of a 
spectral model in a 
convolutional 
neural network for 
accelerated 
spectral fitting. 

Gurbani et al. Magn 
Reson 
Med. 

2019 Descriptive A novel deep 
learning 
architecture that 
combines a CNN 
with a priori 
models of the 
spectrum. 

glioblastoma 10 scans CNN with a priori 
models of the 
spectrum 

MRSI 

Adaptive Feature 
Recombination 
and Recalibration 

Pereira et al. IEEE Trans 
Med 
Imaging 

2019 Descriptive The recombination 
of features and a 
spatially adaptive 

brain tumors 396 scans Fully Convolutional 
Networks — the SegSE 
block. 

cT1-w, T1- 
w, T2-w, 
FLAIR 

(continued on next page) 

C.M.L. Zegers et al.                                                                                                                                                                                                                             



Physica Medica 83 (2021) 161–173

166

al [17] evaluated two deep learning models, long short term memory 
(LSTM) and CNN (ConvNet) and reported DICE for the whole tumor of 
0.84 for the ensemble LSTM and ConvNet. Wang et al. [18] developed an 
interactive framework with Image-specific fine-tuning-based Segmen
tation (BIFSeg), and reported for the same dataset DICE similarity co
efficients for the whole tumor of 0.86 (unsupervised) and 0.88 
(supervised refinement method). Sun et al. [20] used a densely con
nected, automatic 3D CNN-based method and was able to achieve a 
DICE of 0.84. Deng et al. [21] integrated a fully convolutional neural 
networks (FCNN) and dense micro-block difference feature (DMDF) in a 
framework and reported an average DICE 0.91. Hoseini et al. [15] used 
the MICCAI 2016 dataset to evaluate their high-capacity Deep Con
volutional Neural Network (DCNN), and presents a DICE of 0.90. In 
addition, the authors used the MICCAI 2015 and 2016 dataset to eval
uate the proposed optimization algorithm (AdaptAhead) for learning the 
DCNN, which was based on a combination of Nesterov and RMSProp 
techniques and showed a DICE of 0.89 (2015 dataset) and 0.85 (2016 

dataset)[16]. Li et al.[19] validated their convolutional network, based 
on a modification of the U-Net architecture and achieved DICE co
efficients for the whole tumor of 0.89 (MICCAI 2015) and 0.88 (MICCAI 
2017). Last, Pereira [22] et al used the MICCAI 2017 and 2013 datasets 
to validate their proposed method, a recombination of features and a 
spatially adaptive recalibration block that was adapted for semantic 
segmentation with a FCNN (SegSE) and presented DICE coefficients of 
0.90 (MICCAI 2017) and 0.89 (MICCAI 2013). 

Additional studies on independent datasets are 1) The use of pre
operative MRI scans (T1, T2, FLAIR and cT1) of glioblastoma patients to 
detect and segment tumor lesion based on a multilayer, multiscale 
convolutional neural network. Perkuhn et al. [23] showed in a dataset of 
64 patients from 15 different institutes a high lesion detection rate and 
segmentation accuracy (DICE for whole tumor segmentation: 0.86), 
which was comparable to the interrater variability. 2) A multi-sequence 
MRI guided convolution neural network showed to accurately delineate 
post-operative gliomas on CT images for radiotherapy, to assist image 

Table 1 (continued ) 

Title First Author Journal Year Study type Goal of study patient 
population 

sample 
size 

AI technology MRI 
technology 

for Semantic 
Segmentation 
With Fully 
Convolutional 
Networks. 

recalibration block 
that is adapted for 
semantic 
segmentation with 
Fully CNN — the 
SegSE block. 

A robust grey wolf- 
based deep 
learning for brain 
tumour detection 
in MR images. 

Geetha et al. Biomed 
Tech 

2020 Descriptive This article 
proposes a new 
accurate brain 
tumor detection 
model 

glioma 58 
patients 

Deep belief network 
(DBN) for 
classification for 
which grey wolf 
optimisation (GWO) is 
used. The proposed 
model is termed the 
GW-DBN model. 

cT1-w, T1- 
w, T2-w, 
FLAIR 

Automated brain 
extraction of 
multisequence 
MRI using artificial 
neural networks. 

Isensee et al. Hum Brain 
Mapp. 

2019 Retrospective To train and 
independently 
validate an ANN for 
brain extraction 

glioblastoma, 
healthy 
subjects, 
patients with 
psychiatric 
symptoms 

1107 
patients; 
2925 
MRI 

Artificial Neural 
Networks (ANN) 

T1-w, cT1- 
w, FLAIR, 
T2-w 

MR-Only Brain 
Radiation 
Therapy: 
Dosimetric 
Evaluation of 
Synthetic CTs 
Generated by a 
Dilated 
Convolutional 
Neural Network 

Dinkla et al. Int J 
Radiat 
Oncol Biol 
Phys 

2018 Retrospective Evaluate whether 
synthetic CT 
images generated 
with a dilated CNN 
enable accurate 
MR-based dose 
calculations in the 
brain 

Brain tumors 52 
patients 

Dilated CNN T1w  

Fig. 3. Example of a patient with an anaplastic oligodendroglioma WHO-grade 3 in the right parietal lobe. Shown are the T1-w image after gadolinium contrast, the 
FLAIR MRI and the CT used for radiotherapy planning purposes. In blue is the annotated gross tumor volume by experienced radiation oncologist. The segmentation 
of the tumor lesion and the generation of a synthetic CT are steps that could potentially be automated using DL technology. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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segmentation and reduce workload [24]. 
Challenges in the generation of deep learning applications for image 

analysis is the presence of a sufficient amount of annotated datasets. An 
approach in the development of annotated data for tumor segmentation 
is the use of eye-tracking technology. Segmentation masks were gener
ated by eye-tracking technology and compared to hand annotation and 
the authors demonstrated that eye-tracking can be used to generate 
segmentation masks suitable for deep learning segmentation tasks [27]. 
In addition, strategies are developed to circumvent the issue of limited 
annotated data. For example by building image classifiers using features 
from pre- trained segmentation networks. By using these segmentation 
networks, the machine can learn first from the simpler shapes and 
structures before tackling the actual classification problem. Using this 
methodology a high classification performance can be obtained with 
limited training data [28]. 

To summarize; deep learning applications are in development for a 
broad range of technological or (pre-) processing steps of MRI. The 
additional value has been shown for the increase of MRI image quality 
(e.g. by reduction of contrast or artefacts), the generation of synthetic CT 
imaging from MRI allowing less imaging interventions for the individual 
patients and for the generation of automatic tissue and auto-contouring 
task with the potential to reduce workload within current processes. 

Diagnosis 

Twelve papers investigated the role of AI in the diagnosis of neuro
logical neoplasms (Table 2). The main objectives of the papers involved: 
pathological or molecular classification of the tumors (N = 7) [38–44] 
solely detection of tumor in a Computer Aided Diagnosis (CAD) fashion 
(N = 1) [45] and the combination of detection and segmentation of the 
lesions (N = 4) [46–49]. The number of patients used in the studies span 
from a minimum of 33 patients [47] to a maximum of 266 patients [49]. 
Sert et al. [48] used a publicly available dataset from the cancer imaging 
archive (TCIA; TCGA-GBM), which includes more than 500 samples; 
however the authors selected 100 positives (including at least a tumor) 
and 100 negative samples (healthy subjects) to train the Convolutional 
Neural network (CNN; ResNet architecture) . 

All of the studies were retrospective. Half of the studies used data 
collected from a single institution and the other half collected data from 
at least two different institutions (minimum 2, maximum 37 centres). 
Four studies were focused on meningioma [38,42,43,46], two studies on 
glioblastoma [47,48]. Two studies used glioma patients [44,45]. Two 
studies used different solid brain tumors [39,41]. One study used brain 
metastases arising from other primary tumors [40]. 

Brain tumor classification 
Accurate diagnosis of brain lesions is essential for selecting an 

effective treatment. The classification of brain tumor into subtypes is a 
challenging research problem. Deepak et al. [39] proposed an automatic 
classification system based on GoogleNet CNN architecture and used it 
to identify three pathological subtypes of brain tumors (e.g. glioma, 
meningioma and pituitary tumor) on cT1w imaging. A mean classifi
cation accuracy of 98% was achieved. Swati et al. [41] approached the 
same problem by using a pre-trained deep CNN model and a block-wise 
fine-tuning strategy based on transfer learning, and achieved an average 
accuracy of 95%. To differentiate meningeomas and spinal schwanno
mas, the most frequent tumors of the spinal cord, Maki et al. [43] used a 
convolutional neural network (CNN) and was able to make a discrimi
nation with an accuracy of AUC = 0.88 and 0.87 for T2 weighted im
aging and contrast enhanced T1w imaging respectively. 

Meningioma 
The detection and grading of meningioma is important to select the 

suitable treatment for the individual patient. Laukamp et al. [46] used a 
multiparametric deep-learning model on multiple MRI sequences 
including T1 (with or without contrast), T2 and FLAIR and was able to 
automatically detect meningiomas in 55 out of 56 cases. In addition, a 
deep CNN was able to discriminate between benign and atypical/ 
anaplastic meningiomas from the apparent diffusion coefficient (ADC) 
maps, with an accuracy of AUC: 0.94 [38]. 

Radiomics is an image analysis method that uses a series of quali
tative and quantitative analyses of high-throughput image features to 
obtain predictive or prognostic information from medical images. Zhu 
et al. [42] used a deep learning radiomics model to pre-operatively 

Fig. 4. Comparison of DICE similarity coefficient for the whole tumor, tumor core or enhanced lesion of the publications [15–22] using the MICCAI Brain Tumor 
Segmentation Challenge datasets (BRATS 2015–2017). 
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Table 2 
Overview of the articles in the category ’diagnosis’.  

Title First 
Author 

Journal Year Study type Goal of study Patient 
population 

sample 
size 

AI technology MRI 

Fully automated 
detection and 
segmentation of 
meningiomas using 
deep learning on 
routine 
multiparametric MRI. 

Laukamp 
KR et al. 

Eur Radiol. 2019 Retrospective To investigate the 
reliability of automated 
detection and 
segmentation of grade I 
and II meningiomas using 
a DL model on 
multiparametric MRI 
data from diverse 
scanners including 
referring institutions. 

meningeoma 56 
patients 

DeepMedic 
architecture using 
a deep 3D CNN 

T1-w, 
cT1-w, 
T2, FLAIR 

A deep learning 
radiomics model for 
preoperative grading 
in meningioma. 

Zhu et al. Eur J Radiol. 2019 Retrospective To develop and validate a 
DL Radiomics model for 
meningioma grading 
based on routine post- 
contrast T1W before 
surgery 

meningeoma 181 
patients 

Pretrained CNN 
(Xception) 

cT1-w 

Brain tumor 
classification using 
deep CNN features via 
transfer learning. 

Deepak 
et al. 

Comput Biol 
Med. 

2019 Retrospective To present an accurate 
and automatic 
classification system 
designed for three 
pathological types of 
brain tumor. T 

glioma, 
meningioma, 
pituitary 
tumor 

3064 
brain 
MRI 
images 
from 233 
patients 

Pretrained CNN 
(GoogLeNet) 

cT1-w 

Brain tumor 
classification for MR 
images using transfer 
learning and fine- 
tuning. 

Swati 
et al. 

Comput Med 
Imaging 
Graph. 

2019 Retrospective To propose a new 
approach for brain tumor 
image classification 
based on transfer 
learning and fine-tuning. 

glioma, 
meningioma, 
pituitary 
tumor 

3064 
brain 
MRI 
images 
from 233 
patients 

Pretrained CNN 
(VGG19) 

cT1-w 

A new approach for 
brain tumor diagnosis 
system: Single image 
super resolution based 
maximum fuzzy 
entropy segmentation 
and convolutional 
neural network. 

Sert et al. Med 
Hypotheses. 

2019 Retrospective To propose a brain tumor 
diagnosis approach using 
single image super 
resolution based 
maximum fuzzy entropy 
segmentation and CNN 
(SISR-MFES-CNN). 

GBM 200 
images 

SISR-MFES-CNN 
(ResNet) 

cT1-w 

Deep Learning based 
Radiomics (DLR) and 
its usage in 
noninvasive IDH1 
prediction for low 
grade glioma. 

Li et al. Sci Rep. 2017 Retrospective To present the 
performance of DL 
radiomics for predicting 
the mutation status of 
isocitrate dehydrogenase 
1 (IDH1) in patients with 
low-grade glioma 

glioma 151 
patients 

CNN architecture 
with 
convolutional 
layers followed 
by fully 
connected layers 

T2, 
FLAIR, 
cT1-w 

A Deep Convolutional 
Neural Network With 
Performance 
Comparable to 
Radiologists for 
Differentiating 
Between Spinal 
Schwannoma and 
Meningioma. 

Maki 
et al. 

Spine 2020 Retrospective To evaluate the 
performance of our CNN 
in differentiating 
between spinal 
schwannoma and 
meningioma on MRI. 

spinal 
schwannoma 
and 
meningioma 

84 
patients 

Pretrained CNN 
(InceptionV3) 

cT1-w, 
T2-w 

Accuracy of deep 
learning to 
differentiate the 
histopathological 
grading of 
meningiomas on MR 
images: A preliminary 
study. 

Banzato 
et al. 

J Magn 
Reson 
Imaging 

2019 Retrospective To determine the 
diagnostic accuracy of a 
deep CNN in the 
differentiation of the 
histopathological 
grading of meningiomas 
from MR images. 

meningeoma 117 
patients 

Pretrained CNN 
(Inception-V3 
and AlexNet) 

cT1-w, 
ADC 

Computer-aided 
Detection of Brain 
Metastases in T1- 
weighted MRI for 
Stereotactic 
Radiosurgery Using 
Deep Learning Single- 
Shot Detectors. 

Zhou 
et al. 

Radiology 2020 Retrospective To develop and 
investigate DL methods 
for detecting brain 
metastasis with MRI to 
aid in treatment planning 
for Stereotactic 
Radiosurgery. 

brain 
metastases 

266 
patients 

Deep-learning 
single-shot 
detector models 

cT1-w 

A Novel Deep Learning 
Algorithm for the 
Automatic Detection 
of High-Grade Gliomas 
on T2-Weighted 

Atici et al. Turk 
Neurosurg 

2020 Retrospective To propose a 
convolutional neural 
network (CNN) for the 
automatic detection of 

high grade 
glioma 

179 
patients 

CNN 
architectures 
with 
convolutional 
layers followed 

T2-w 

(continued on next page) 
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assess the grade of the meningioma. In the study they compared deep 
features with more traditional hand-crafted features. The deep learning 
model could significantly increase the discrimination between high and 
low-grade meningioma with an AUC of 0.811 compared to the AUC of 
0.678 for the hand-crafted features. 

Glioma & glioblastoma 
In all neurological lesions the ability to classify lesions according to 

the WHO classification is essential, for which currently invasive 
methods like biopsy or resection are used [50,51]. Besides the risk of 
surgery related complication there is the risk of a sample error. For a 
public dataset of the Cancer Genome Atlas Glioblastoma Multiforme, 
Sert et al. [48] developed an approach to use super resolution (SR; 
converting low-resolution input images into high-resolution images), 
and maximum fuzzy entropy segmentation (MFES) in combination with 
a convolution neural network to increase the classification performance 
between benign/malignant lesions. Out of 200 samples (100 benign, 100 
malignant), a total of 10 false positive/false negative cases were 
observed (AUC = 0.98). The automatic detection of lesions is an addi
tional benefit of DL in the diagnostic phase of cancer care. Atici et al. 
[45] developed a CNN using 3580 images from 179 patients for the 
automatic detection of high-grade gliomas on T2w MRI images and 
report an acceptable performance with an accuracy between 0.85 and 
0.94 and precision between 0.81 and 0.98. 

In addition, deep learning based radiomics can be used in the diag
nosis of low-grade gliomas to detect patients with the isocitrate dehy
drogenase 1 (IDH1) mutation. Note that, the IDH1 mutation status 
accounts for a large proportion of the predictive value in low-grade 
glioma and the treatment regimen is currently defined according to 
IDH1 status. Li et al. [44] demonstrated that deep learning radiomics on 
FLAIR and cT1-w MRI imaging has potential to predict IDH1 mutation in 
low-grade gliomas (AUC 0.92). 

Also, in the preparation of the treatment, accurate target definition is 
of utmost importance to increase the outcome from either radiotherapy 
or neurosurgery. Peeken et al. [47] used a fully connected neural 
network in combination with DTI images to define the infiltrative tumor 
areas of GBM, with the purpose to guide radiation treatment. This novel 
infiltrating tumor definition was in all patients related to the location of 
tumor recurrences and has potential to further individualize radio
therapy treatment. 

To summarize, deep learning has the potential to contribute to the 
automatic classification of lesions with regard to disease type, grade or 
mutational status. tumorAll these developments can contribute to 
improved cancer care with regard to more efficient diagnostic workflow 
as well as a step towards more personalized treatment. 

Follow-up 

Seven publications were related to the use of DL and MRI for the 
follow-up of neuro-oncological patients. All publications used retro
spective data of glioma or glioblastoma patients (Table 3). 

Response assessment in Neuro-Oncology (RANO) 
To assess the treatment response of neuro-oncology patients the 

Response Assessment in Neuro-Oncology (RANO) criteria are frequently 
used. These criteria are generally accepted to assess response in clinical 
trials and are increasingly used in clinical practise. The RANO criteria 
divides response in four types (complete response, partial response, 
stable disease or progression) based on MRI and clinical features. Chang 
et al. [52] developed an automatic pipeline for brain extraction, tumor 
segmentation and RANO measurements and applied it in two patient 
cohorts; low- or high-grade gliomas (843 patients with 843 MRI scans) 
and newly diagnosed glioblastomas (54 patients with 713 MRI scans). 
To develop the deep learning algorithm, they utilized the 3D U-Net ar
chitecture, and automatically segmented the FLAIR hyper intensity, 
contrast-enhancing tumor, tumor volumes and the product of maximum 
diameters, according to RANO criteria. The Automatic RANO mea
surement was reproducible when evaluating the change in tumor burden 
during treatment, with an intraclass correlation coefficient (ICC) be
tween automatic and manual delta RANO measurements of 0.85 (P <
0.001). 

A disadvantage of the current RANO criteria is that it relies on 2D 
measurements. The use of 3D measurements for assessing tumor 
response could provide a more reliable result, but due to the significant 
workload of 3D manual assessment, it has practical limitations. For this 
reason, Kickingereder et al. [5] developed an infrastructure to enable 
full-automated analysis of MRI and investigated its performance for 
tumor response assessment. The assessment of tumor response based on 
their neural network outperformed the RANO assessment as a predictor 
for overall survival in an EORTC dataset, in addition the automatic 
assessment of tumor response showed a higher agreement to radiologist 
assessment than the use of RANO criteria. Based on both studies artifi
cial intelligence has shown additional value in the automation of the 
RANO assessment as well as improving it. 

Deep features 
In the assessment of overall survival deep radiomics features have 

the potential to provide additional value as well. Transfer learning can 
be used within the current radiomics models for the extraction of a large 
number of deep features from the hidden layers of CNN. Deep features 
contain more abstract information of the MRI images and potentially 

Table 2 (continued ) 

Title First 
Author 

Journal Year Study type Goal of study Patient 
population 

sample 
size 

AI technology MRI 

Magnetic Resonance 
Images: A Preliminary 
Machine Learning 
Study. 

high-grade gliomas on 
T2-w MRI. 

by fully 
connected layers 

Deep learning derived 
tumor infiltration 
maps for personalized 
target definition in 
Glioblastoma 
radiotherapy. 

Peeken 
et al. 

Radiother 
Oncol. 

2019 Retrospective To apply DL based free 
water correction of DTI 
scans to estimate the 
infiltrative gross tumor 
volume inside of the 
FLAIR hyperintense 
region. 

GBM 33 
patients 

Neural network 
for signal 
deconvolution as 
described 
previously 

DTI, T1- 
2, cT1-w, 
T2-w, 
FLAIR 

Deep-learned 3D black- 
blood imaging using 
automatic labelling 
technique and 3D 
convolutional neural 
networks for detecting 
metastatic brain 
tumors. 

Jun et al. Ahn SS. Sci 
Rep. 

2018 Retrospective To propose a DL 3D BB 
imaging with an auto- 
labelling technique and 
3D CNN for brain 
metastases detection 
without additional BB 
scan. 

suspected 
brain 
metastasis 

65 
patients 

CNN comprised of 
only 
convolutional 
layers 

CE 3D- 
GRE 
imaging 
& BB 
imaging  
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provide more predictive patterns compared to handcrafted features. In 
patients with GBM deep features extracted via transfer learning on 
multi-modality MR images (T1, T1C, T2 and T2 FLAIR) were used to 
generate a radiomics signature based on six features for the prediction of 
overall survival [53]. The proposed radiomics signature showed a higher 
performance (C-index 0.710) compared to general risk factors (age and 
KPS) and the combination of deep-learning based radiomics and general 
risk factors improved the predictive performance to a C-index of 0.739 
[53]. In addition, the combination of standard radiomics features in 
combination with deep features was successful in an initial validation in 
cT1-w MRI images [54]. 

Advanced MRI 
Most studies use standard cT1-w, T1-w, T2-w or FLAIR MRI acqui

sitions, however the use of additional MRI sequences, like DWI, DTI or 
fMRI in the follow-up were described in three articles [55–57]. 

Bacchi et al. [55] aimed to distinguish high grade glioma progression 

from treatment related changes like pseudoprogression or radionecrosis. 
For this purpose, the authors performed classification experiments using 
a CNN on DWI, ADC, FAIR and c-T1-w images. The DWI sequence had 
the best performance (AUC 0.63, Accuracy 0.73) and these DWI images 
were used in combination with other sequences. The combination of 
DWI with FLAIR sequences showed the highest performance (AUC: 0.80, 
Accuracy: 0.82), which shows that DL may be useful in distinguishing 
progression from treatment induced normal brain tissue changes. 

To predict overall survival in patients with high-grade glioma Nie 
et al. proposed a CNN architecture on multi-model pre-operative MRI 
images (T1w, fMRI and DTI) to train a survival time prediction model. 
This method was used to extract features from the image modalities in a 
supervised manner and train a Support Vector Machine to predict 
overall survival time. The experimental results showed that both fMRI 
and DTI played a more significant role compared to conventional T1 
MRI, in building a successful prediction model [56]. In addition, in a 
subsequent study the authors show in 68 high-grade glioma patients, 

Table 3 
Overview of the articles in the category follow-up’.  

Title First Author Journal Year study type Goal of study patient 
population 

sample 
size 

AI technology MRI 

A Deep Learning-Based 
Radiomics Model for 
Prediction of Survival 
in Glioblastoma 
Multiforme. 

Lao J et al. Sci Rep 2017 Retrospective To investigate if deep 
features extracted via 
transfer learning can 
generate radiomics 
signatures for prediction 
of overall survival in 
patients with GBM. 

GBM 112 
patients 

Pre-trained 
CNN via 
transfer 
learning 

T1-w, 
cT1-w, 
T2, 
FLAIR 

Automatic assessment 
of glioma burden: a 
deep learning 
algorithm for fully 
automated 
volumetric and 
bidimensional 
measurement. 

Chang K et al. Neuro Oncol. 2019 Retrospective The development of an 
algorithm that 
automatically segments 
FLAIR hyperintensity and 
contrast-enhancing 
tumor, quantitating tumor 
volumes as well as the 
product of maximum 
bidimensional diameters 
according to the RANO 
criteria (AutoRANO). 

low-grade 
glioma high 
grade glioma 
GBM 

897 
patients 

3D U-Net 
architecture 

FLAIR, 
T1-w, 
cT1-w 

Deep Transfer Learning 
and Radiomics 
Feature Prediction of 
Survival of Patients 
with High-Grade 
Gliomas. 

Han et al. AJNR AM J 
Neuroradiol 

2020 Retrospective The production of a 
combined DL and 
radiomics model to 
predict overall survival in 
patients with high-grade 
gliomas. 

High grade 
glioma 

178 
patients 

pretrained 
convolutinal 
neural network 

cT1-w 

Deep learning in the 
detection of high- 
grade glioma 
recurrence using 
multiple MRI 
sequences: A pilot 
study. 

Bacchi et al. J Clin 
Neurosci. 

2019 Retrospective To determine the accuracy 
with which CNN could 
predict recurrence/ 
progression vs treatment 
related changes using 
multiple MRI sequences 

high grade 
glioma 

55 
patients 

CNN DWI, 
ADC, 
FLAIR 
and cT1- 
w 

Multi-Channel 3D Deep 
Feature Learning for 
Survival Time 
Prediction of Brain 
Tumor Patients Using 
Multi-Modal 
Neuroimages. 

Nie D. et al. Sci Rep. 2019 Retrospective To predict the overall 
survival (OS) time of high- 
grade gliomas patient. 

high grade 
glioma 

93 
patients 

3D CNN 
(Caffe49) 

T1-w, 
DTI, rs- 
fMRI 

3D Deep Learning for 
Multi-modal 
Imaging-Guided 
Survival Time 
Prediction of Brain 
Tumor Patients. 

Nie D. et al Med Image 
Comput 
Comput Assist 
Interv. 

2016 retrospective To automatically extract 
features from multi-modal 
preoperative brain images 
(i.e., T1 MRI, fMRI and 
DTI) of high-grade glioma 
patients. 

high grade 
glioma 

69 
patients 

3D 
convolutional 
neural networks 
(CNNs) 

cT1-w, 
resting 
state 
fMRI, 
DTI 

Automated quantitative 
tumour response 
assessment of MRI in 
neuro-oncology with 
artificial neural 
networks: a 
multicentre, 
retrospective study. 

Kickingereder 
et al. 

Lancet Oncol 2019 Retrospective To develop a framework 
relying on artificial neural 
networks (ANNs) for fully 
automated quantitative 
analysis of MRI in neuro- 
oncology 

glioma/GBM 1027 
patients 

Artificial Neural 
Networks 
(ANN) 

T1-w, 
cT1-w, 
FLAIR, 
T2-w  
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that a combination of the features extracted by their multi-modality, 
multi-channel deep survival prediction framework in combination 
with demographic and tumor-related features have an accuracy of 91% 
to predict overall survival [57]. 

In brief, deep learning applications have shown their potential in the 
automation of response assessment criteria (RANO), improve the 
response assessment by including 3D information as well as improve the 
prediction of overall survival by the inclusion of deep features or 
advanced MRI sequences and to distinguish between progression and 
treatment related changes on MRI. None of these methods though were 
extensively implemented or validated in current clinical practice but do 
show promising avenues for further investigation. 

Discussion & Conclusion 

The use of DL methods in the analysis of MRI data in neuro-oncology 
is rising. This study provides an overview of the current use of DL in the 
field of neuro-oncological MRI. Forty-one publications were reviewed 
and covered a broad range of applications, from technological in
novations to improving diagnosis and follow-up. 

We observed that the majority of publications were in the category of 
technological innovations. This is evident since these technological de
velopments precede the clinical applications in diagnosis and follow-up. 
The technological innovations have a variety of impact on the clinical 
applicability of MRI technology or on its efficiency, e.g. by reduction of 
workload. In addition, the availability of open data to develop DL 
technology for brain tumor image segmentation, directly results in a 
significant number of publications. These Brain Tumor Segmentation 
challenges (BRATS) are repeated on a yearly basis. The challenge of 
2020 had on top of the tumor segmentation challenge, also the focus on 
the prediction of patient overall survival and had initially a task planned 
to differentiate between pseudoprogression and true tumor recurrence. 
Based on these (proposed) challenges we can only expect the field to 
move rapidly in development of additional DL applications to support 
patient follow-up as well. 

Challenges in the use of deep learning are amongst others, the gen
eralisability of the models to different institutes and MRI scanners, as 
well as the accessibility to a large amount of annotated data to develop, 
train and externally validate the model. By using data from several in
stitutes, a DL model is exposed to a larger range of data variations, which 
will generate a more robust and broader applicable model. There are, 
however, several barriers when trying to share clinical imaging data, 
considering technical, ethical, political and administrative issues [58]. 
Therefore, the ability to train a deep learning model without sharing the 
data by using distributed or federated learning is a promising approach. 
Using federated learning, models can be developed on data of different 
institutes and therefore a larger and more diverse dataset. Czeitzler et al. 
[59] recently showed the ability to train deep neural network model for 
organ segmentation in a distributed manner with similar performance to 
a centralized approach. Distributed learning is an active field of research 
as well as the use of deep learning on imaging data. The combination of 
both research fields could be a promising next step. Furthermore, clin
ical introduction of these AI methods requires a careful consideration in 
training, commissioning and acceptance of such models, recently pub
lished guidelines could be followed for this [60]. 

In our review, all studies related to ‘follow-up’ were focused on its 
applicability to evaluate tumor response or treatment outcome (e.g. 
overall survival). This can be related to the fact that most studies used 
data of patients with high grade glioma or glioblastoma with a relative 
poor survival. Nevertheless, for patients with a brain lesion with a 
relative long life expectancy, like meningioma patients, the prediction of 
treatment induced side effects could have additional value as well. We 
expect additional value from cross-disciplinary research combining the 
knowledge from general neuro-imaging, neuropsychology and specific 
research fields in dementia, Parkinson’s disease or epilepsy. For 
example, after high dose radiotherapy for primary or metastatic brain 

tumors 50–90% of greater than 6 months’ survivors develop irreversible 
disabling cognitive decline leading to premature loss of independence, 
reduced Quality of Life (QOL) as well as significant economic burden 
both at the individual as societal level [61]. Therefore, evaluation 
methods to assess and predict side effects after treatment would be 
beneficial to allow the development of optimized treatment strategies. 

To allow the evaluation of treatment induced side effects, and to 
target oncological treatment, one should take into account the healthy 
brain structures and their susceptibility for treatment induced damage. 
The auto segmentation of structures at risk can have additional benefits 
on top of automatic tumor segmentation. For the neuro-oncological 
domain there is a consensus-based atlas available for CT- and MRI 
based contouring from the European Particle Therapy Network [37]. 
Auto segmentation of these brain structures could provide advantages 
by improving quality, due to the reduction of inter observer variation 
and improve on efficiency by reduction of delineation time. 

The majority of publications made use of the standard MRI sequences 
available like T1w, cT1w, T2 or FLAIR imaging. The most straightfor
ward reason for this is the availability and quantity of these imaging 
data. Nevertheless, in a few studies used advanced MRI imaging tech
niques (e.g. fMRI, DTI, DWI) and presented favourable results in com
parison to standard imaging techniques [55,57].Furthermore, perfusion 
MRI imaging is another area that requires some elaborate post- 
processing and the some initial investigations of the use of deep 
learning for perfusion MRI in neuro-oncology are ongoing [62–64]. 

The publications in this review all originate from the past four years, 
which shows that the development of deep learning technology is 
evolving rapidly for the application within neuro-oncological MRI. 
Nevertheless, the clinical use of these models is still limited. Shortlife 
et al. [65] presents six challenges in the implementation of AI in clinical 
support systems: black boxes are unacceptable, time is a scarce resource, 
intuitive and simple, relevance and insight are essential, inform and 
assist not replace clinician and the scientific foundation must be strong. 
Where the first one (black boxes are unacceptable) could be the biggest 
challenges in the clinical application of DL in clinical practice an 
emphasis should be given to develop explainable AI. Also, ethical di
lemmas, like balancing the advantages and risks of using AI technology, 
as well as the role of AI in the medical education (e.g. how do we prepare 
future clinicians for the use of AI) and potential legal conflicts while 
using AI (who is responsible when using a black-box AI?) can slow down 
implementation of these novel technologies [66]. 

To conclude, Deep learning in MRI for neuro-oncology is a novel field 
of research, it has shown to have potential in a broad range of applica
tions. Nevertheless, challenges remain the accessibility of large repre
sentative imaging datasets, the applicability of the models across 
institutes and MRI vendors and the potential barriers to implement these 
AI technologies in clinical practise. 
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