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Abstract
Combining isocitrate dehydrogenase mutation (IDHmut) with O6-methylguanine-DNA methyltransferase promoter methylation
(MGMTmet) has been identified as a critical prognostic molecular marker for gliomas. The aim of this study was to determine the
ability of glioma radiomics features from magnetic resonance imaging (MRI) to predict the co-occurrence of IDHmut and MGMTmet
by applying the tree-based pipeline optimization tool (TPOT), an automated machine learning (autoML) approach. This was a retro-
spective study, in which 162 patients with gliomas were evaluated, including 58 patients with co-occurrence of IDHmut and
MGMTmet and 104 patients with other status comprising: IDH wildtype and MGMT unmethylated (n = 67), IDH wildtype and
MGMTmet (n = 36), and IDHmut and MGMT unmethylated (n = 1). Three-dimensional (3D) T1-weighted images, gadolinium-
enhanced 3D T1-weighted images (Gd-3DT1WI), T2-weighted images, and fluid-attenuated inversion recovery (FLAIR) images
acquired at 3.0 T were used. Radiomics features were extracted from FLAIR and Gd-3DT1WI images. The TPOT was employed to
generate the best machine learning pipeline, which contains both feature selector and classifier, based on input feature sets. A
4-fold cross-validation was used to evaluate the performance of automatically generated models. For each iteration, the training set
included 121 subjects, while the test set included 41 subjects. Student’s t-test or a chi-square test was applied on different clinical
characteristics between two groups. Sensitivity, specificity, accuracy, kappa score, and AUC were used to evaluate the performance
of TPOT-generated models. Finally, we compared the above metrics of TPOT-generated models to identify the best-performing
model. Patients’ ages and grades between two groups were significantly different (p = 0.002 and p = 0.000, respectively). The 4-fold
cross-validation showed that gradient boosting classifier trained on shape and textual features from the Laplacian-of-Gaussian-filtered
Gd-3DT1 achieved the best performance (average sensitivity = 81.1%, average specificity = 94%, average accuracy = 89.4%, average
kappa score = 0.76, average AUC = 0.951). Using autoML based on radiomics features from MRI, a high discriminatory accuracy
was achieved for predicting co-occurrence of IDHmut and MGMTmet in gliomas.
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INTRODUCTION
Gliomas are the most common malignant primary brain
tumors in adults.1 High-grade gliomas tend to have poor out-
comes despite aggressive treatment, including surgery and
adjuvant concurrent chemoradiation therapy with
temozolomide.2 Hence, the early identification of potential
prognostic characteristics is of value. Overall survival and the
response to therapy are highly dependent on both the World
Health Organization (WHO) grade and molecular character-
istics, particularly the isocitrate dehydrogenase mutation
(IDHmut) and O6-methylguanine-DNA methyltransferase
promoter methylation (MGMTmet) status.3–5 A previous
study reported that glioblastomas with co-occurrence of
IDHmut and MGMTmet had the longest survival, followed
by patients with IDHmut and MGMT unmethylated
(MGMTunmet) or IDH wildtype (IDHwt) and MGMTmet
glioblastoma, while patients with IDHwt and MGMTunmet
glioblastoma showed the shortest survival; and the study
suggested that the combination of IDHmut and MGMTmet
outperforms either IDHmut or MGMTmet alone to predict
survival in glioblastoma.6 Similarly, another study demon-
strated that the co-occurrence of IDHmut and MGMTmet is
associated with long-term survival in low-grade glioma.7

Thus, combination of IDHmut and MGMTmet is a predic-
tor with more prognostic power than IDHmut or
MGMTmet alone. Currently, information on the two geno-
types can be obtained only via invasive tissue sampling and
immunohistochemistry and genomic sequence analysis. How-
ever, these methods may not have high accuracy on account
of intratumoral heterogeneity and insufficiency of tumor
samples.8

As a noninvasive method, radiomics from magnetic res-
onance imaging (MRI) may take full advantage of the deep
information, which play an important role in the genetic-level
classification of gliomas. This approach employs a set of qual-
itative and quantitative analyses of high-throughput image
features to acquire predictive information derived from MRI.9

With the potential ability to improve the predictive accuracy,
radiomics was widely utilized to classify molecular subtypes
based on various MRI images in gliomas.10,11 However, most
previous radiomics studies aimed to predict IDHmut or
MGMTmet alone,12,13 which rarely focused on the co-
occurrence of IDHmut and MGMTmet.

Predicting the IDH and MGMT status is possible by
constructing radiomics-based classifiers applying machine
learning (ML) methods. However, during ML, choosing the
most appropriate combination of feature selector and classifier
and corresponding hyperparameters tends to be complicated
for researchers without ML experience.14 To overcome these
limitations, a relatively new system called “automated
machine learning (autoML)” has been developed to automate
these challenging and time-consuming processes.15 The tree-

based pipeline optimization tool (TPOT) is an autoML sys-
tem that adopts a higher-level architecture for the optimiza-
tion process by utilizing genetic programming to search and
generate optimal ML pipelines.16 The performance of
TPOT-generated ML pipelines has been observed to match
or exceed that of the models tuned by ML experts while
requiring minimal intervention.17,18

In the current study, we aimed to evaluate the ability of
TPOT based on radiomics features from MRI to predict the
co-occurrence of IDHmut and MGMTmet in gliomas.

MATERIALS AND METHODS
Patient Cohort
This retrospective study was approved by the local research ethics
committee, and the requirement to obtain individual informed con-
sent was waived because of the retrospective nature of this study.
Four hundred and fifty-seven patients with brain tumor were
selected from routine clinical scans performed between October
2016 and November 2020. MRI scanning was performed according
to the current clinical protocols, and no additional scans or
sequences were carried out for purely research purposes. All the
included patients met the following criteria: (1) histopathologically
confirmed primary Grade II, III, or IV gliomas with reference to the
latest WHO classification; (2) available IDH and MGMT genotype;
and (3) full preoperative MRI scanning, including high-resolution
three-dimensional (3D) T1-weighted images (3D T1WI),
T2-weighted images (T2WI), fluid-attenuated inversion recovery
(FLAIR), and gadolinium-enhanced 3D T1-weighted images
(Gd-3DT1WI). Initially, 171 patients met the inclusion criteria;
however, nine patients were excluded because of poor image quality.
Finally, 162 patients were enrolled for the subsequent training and
testing of autoML models, Of these, 58 patients with co-occurrence
of IDHmut and MGMTmet, and 104 patients with other status,
including 67 patients with IDHwt and MGMTunmet, 36 patients
with IDHwt and MGMTmet, and one patient with IDHmut and
MGMTunmet. The process of patients’ enrollment was presented in
Figure S1.

Image Acquisition
Images were obtained with a 3.0 T MR scanner (Skyra, Siemens
Healthineers) and 20-channel head coil. The protocol included the
following sequences: 3D T1WI (repetition time [TR]/echo time
[TE]/flip angle = 1540 ms/2.4 ms/8�, matrix = 256 × 256, field of
view [FOV] = 230 × 230 mm, slice thickness = 1 mm); T2WI (TR/
TE/flip angle = 4500/105/150�, matrix = 320 × 230,
FOV = 176 × 220 mm, slice thickness = 5 mm); FLAIR (TR/TE/
flip angle = 6000 ms/81 ms/90�, matrix = 256 × 198,
FOV = 195 × 220 mm, thickness = 5 mm); Gd-3DT1WI
(0.1 mmol/kg body weight of gadobenate dimeglumine [Multihance,
Braccosine, Shanghai, China] was administered intravenously at a
rate of 4.0 ml/s, followed by a 30-ml saline flush, TR/TE/flip
angle = 1540 ms/2.4 ms/8�, matrix = 230 × 230 mm, slice
thickness = 1 mm).
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Glioma Segmentation
A region of interest (ROI) encompassing whole tumors was seg-
mented using the open-source NiftyNet platform,19 which is a deep
learning based fully automatic segmentation approach that has been
shown to be more reliable and faster than other semi-automatic
methods.20 The details of the segmentation process are described as
follows: (1) the 3DT1 volume was resampled to 1 mm3 isotropic
resolution; (2) the resampled 3DT1 volume was automatically
cropped using robustfov from the fsl package (https://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/InitialProcessing), and the skull was removed using the
fsl brain extraction tool (BET) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
BET); (3) the remaining Gd-3DT1, FLAIR, and T2 volumes were
co-registered to the processed 3DT1 volume and multiplied with the
brain mask generated by BET; (4) all four processed volumes were
merged and fed into the segmentation model trained on the multi-
modal brain tumor segmentation (BraTS) dataset, then a mask
encompassing both tumor core and edema area was generated.21

The initial mask was then visually inspected and manually corrected
by a radiologist (Xibiao Yang. with 10 years of experience in neuro-
oncology) utilizing ITK-SNAP software (http://www.itksnap.org). A
detailed illustration of steps on manual correction is provided in
Table S1.

Radiomics Feature Extraction
For radiomics analysis, we applied an open-source python package
to extract radiomics features (Pyradiomics Library, version 2.0.0).22

By doing so, the radiomics features, including tumor shape and tex-
ture features, were automatically extracted from each ROI.22,23

Laplacian-of-Gaussian (LoG) and wavelet filters were applied to the
original images, and radiomics features were extracted from these
images, as well. The kernel width (σ) of LoG is listed as follows:
1 mm (fine-scale filtration), 3 mm (medium-scale filtration), and
5 mm (coarse-scale filtration). In total, 1,102 radiomics features
(14 shape features + 68 textural features × (1 original image + 3
LoG filtered images + 4 wavelet filtered images) × 2 imaging
sequences) were calculated for each subject. Table S2 displays details
regarding the extracted features.

Tree-Based Pipeline Optimization Tool

TPOT OVERVIEW. Here, we used TPOT (http://epistasislab.
github.io/tpot/) as an autoML system to construct optimal ML pipe-
lines for our image dataset.24 In brief, TPOT employs genetic pro-
gramming to select a set of featured preprocessing functions and ML
classification or regression algorithms to maximize model perfor-
mance for the dataset of interest.23,25 The performance of the model
is then evaluated utilizing a fitness function that selects more power-
ful features over weaker features.26

TPOT ANALYSIS. To explore the diagnostic value of Gd-3DT1 and
FLAIR and the scale of the disease-related features displayed, the
extracted radiomics features from above two sequences were categorized
into 23 feature sets (the 23 feature sets are presented in Table S3).

To ensure the stability and reproductivity, an outer 4-fold
cross validation was employed to evaluate the performance of auto-
matic generated models. Briefly, the dataset is randomly divided into
four equal subsets; during each iteration, the four subsets are

alternated between training and testing cohorts. Note that each itera-
tion of cross-validation procedure represents a new training and test-
ing phase on a unique combination of the four subsets. Thereby, the
TPOT procedure run four times to generalize the reliability of the
results. The evaluation procedure using cross validation was pres-
ented in Figure S2.

The settings of TPOT are as follows: generation number, 50;
size of population, 100; and inner 10-fold cross validation. For each
generation, TPOT replicated the pipelines that currently performed
best and then made random changes to them (e.g., adding or delet-
ing an operation or adjusting the parameter settings). These random
changes can positively or negatively affect pipeline performance;
thus, TPOT continued to detect new pipelines. At the end of each
generation, the pipeline with the worst performance was removed,
and TPOT entered the next generation. Finally, the best-performing
pipeline created during the optimization process was recommended
using TPOT. The workflow in each iteration is shown in Figure 1.

Further, according to the feature importance scores, TPOT
automatically produced features from the best model which are most
useful in predicting co-occurrence of IDHmut and MGMTmet.
The scores of each feature were added together across 4-fold cross
validation, and the top 10 features were selected as important fea-
tures that contributed to final prediction model.

Statistical Analysis
Student’s t-test was performed to evaluate the significant differences
in age between patients with co-occurrence of IDHmut and
MGMTmet and patients with other status. The chi-square test was
performed to determine significant differences in the gender and
grades between groups. The level of confidence was kept at 95%,
and results with p-values less than 0.05 were considered to be
significant.

The predictive power of the automatic generated models was
measured using the average of metrics including sensitivity, specific-
ity, accuracy, kappa score, and AUC across 4-fold cross-validation.

RESULTS
Demographics
No significant difference was found in gender (p = 0.162)
between the co-occurrence of IDHmut and MGMTmet and
other status. However, the mean age of the co-occurrence of
the IDHmut and MGMTmet groups was younger than that
of the other status group (41.60 � 11.40 years
vs. 48.34 � 14.19 years, p = 0.002). The constituent ratios
of glioma grades are significantly different (p = 0.000). The
constituent ratio of lower grade (II + III) in co-occurrence of
IDHmut and MGMTmet groups was higher than in the
other status group. In contrast, the ratio of high grade (IV) in
other status was higher than in the co-occurrence of IDHmut
and MGMTmet. The clinical and statistical results of the
study are summarized in Table 1.

Classification Model Derived from TPOT
The TPOT generated the optimal ML models for every fea-
ture set in the training cohort. The performance of each
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FIGURE 1: An overview of the current study. The subject’s glioma was automatically segmented from Gd-3DT1, FLAIR, T2, and 3DT1
(the yellow region indicates the tumor mask on each sequence) using the open-source NiftyNet platform. We first extracted the
radiomics features. Shape features were extracted from the segmented result (the green shape); texture features were extracted
from original images, Laplacian-of-Gaussian (LoG) filter images, and wavelet filter images. Then, all the extracted features were
categorized into 23 feature sets. Each feature set split into training set (dark color) and test set (light color) then entered to TPOT
analysis. In the training phase, an inner 10-fold cross validation is used to tune the hyperparameters and select the optimal model.
We then evaluated the optimal model on the independent test set. Finally, the best classification pipeline for our dataset was
constructed
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generated model was assessed in a separate test set. Table 2
lists all the generated models and their average performance
of 4-fold cross validation. According to the model compari-
son, gradient boosting classifier trained on the shape and tex-
tual features from the LoG-filtered Gd-3DT1 identified by
TPOT (Model 7) achieved the best performance (average sen-
sitivity = 81.1%, average specificity = 94%, average accu-
racy = 89.4%, average kappa score = 0.76, average
AUC = 0.951). Table S4a–d provides the performance of
23 models in each iteration and detailed parameters used in
these models. Figure 2 shows the receiver operating character-
istic curves illustrating the predictive performance of Model
7 in each iteration.

Important Features Contributing to Classification
The top 10 features with the strongest predictive ability are
presented in Figure 3 and include gray-level co-occurrence
matrix (GLCM) correlation from LoG-filtered Gd-3DT1,
GLCM cluster prominence from LoG-filtered Gd-3DT1,
GLCM Informational Measure of Correlation (IMC) 1 from
LoG-filtered Gd-3DT1, GLCM Inverse Difference Moment
Normalized (IDMN) from LoG-filtered Gd-3DT1, the shape
surface area to volume ratio (SAVR), gray-level size zone
matrix (GLSZM) zone entropy, shape-maximum two-
dimensional (2D) diameter column, GLCM maximum prob-
ability from LoG-filtered Gd-3DT1, GLCM cluster shade

from LoG-filtered Gd-3DT1, and shape-sphericity.

DISCUSSION
We evaluated the ability of autoML methods implemented in
TPOT to predict the co-occurrence of IDHmut and
MGMTmet in patients with gliomas. Over the 4-fold cross
validation, the gradient-boosting classifier built on shape and
texture derived from LoG-filtered Gd-3DT1 achieved the
best performance.

The ability of TPOT is to identify the best pipeline that
can be used to fit the statistical properties of the underlying
dataset while controlling for overfitting and reliability.27 Prior
studies have compared the models derived by TPOT with a
basic random forest (RF) and relevance vector regression
(RVR) and shown that the models from TPOT had a signifi-
cant improvement than RF or RVR.24,27 Our findings also
showed a relatively high accuracy of prediction and suggested
that TPOT is feasible and promising for genotype status
prediction.

Considering that Gd-3DT1 contains information on
angiogenesis of the tumor and the disruption of the blood–
brain barrier, while FLAIR contains information on the den-
sity of tumor cells,28 these two sequences were involved in
current study. As a crucial step in radiomics studies, tumor
segmentation has a significant impact on subsequent feature
extraction.29 Manual segmentation is often required for

TABLE 1. Patient demographics and tumor genotypes

IDHmut
+ MGMTmet

Other status, IDHwt
+ MGMTunmet = 67;
IDHwt + MGMTmet = 36;
IDHmut + MGMTunmet = 1

p-value
(IDHmut + MGMTmet
vs. Other status)Demographics N = 58 N = 104

Age (years)

Mean, years
(range)

41.60 (21–78) 48.34 (12–79) 0.002*

Sex

Male, n (%) 29 (50%) 63 (60.1%) 0.193

Grade, n (%)

Lower grade
(II + III)

48 (82.8%) 30 (28.8%) (subgroup 1 = 18;
subgroup 2 = 11; subgroup 3 = 1)

0.000*

High grade (IV) 10 (17.2%) 74 (71.2%) (subgroup 1 = 49;
subgroup 2 = 25)

Abbreviations: IDHmut, isocitrate dehydrogenase mutation; IDHwt, isocitrate dehydrogenase wildtype; MGMTmet, O6-methylguanine-DNA
methyltransferase promoter methylation; MGMTunmet, O6-methylguanine-DNA methyltransferase promoter unmethylated.
*p < 0.05.
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tumors with irregular shapes or fuzzy borders. However, man-
ual segmentation is a time-consuming and labor-intensive
work. In this study, we integrated a fully automated, deep
learning-based approach for glioma segmentation, making the
whole method more practical in the clinical setting. From our
results, the trained segmentation model performed satisfacto-
rily in most cases; only five patients were mis-segmented the
periventricular white matter hyperintensities resulted from
small vessel disease as edema area of tumor. Of note, the mis-
segmented regions were easy to recognize and remove manu-
ally, as shown in Table S1. Generally, this automatic

approach is beneficial to the feasibility of the proposed
workflow, which has great potential to be applied in routine
clinical practice.

Notably, the predictive ability of texture is associated
with the sequence of MRI and whether the LoG filter is
applied. Features from the Gd-3DT1 sequence (Models
2–13) were found to be more predictive than those from
FLAIR images (Models 14–23). This finding might be inter-
preted as a consequence of the relatively lower resolution of
the FLAIR images, which might limit the radiomics feature
extraction, thereby reducing the predictive ability. Addition-
ally, in the feature sets from Gd-3DT1 sequence, when LoG
filtering was employed, the predictive performance of the
models outperformed the models without LoG filtering. The
LoG filter is a tool that can reduce the MRI high-frequency
signal noise and simultaneously reduce the effects of large sig-
nal variations that can be detected in each image slice—for
example, the variation from an inhomogeneous magnetic
field.30 The extraction of LoG-filtered features was strongly
determined by the kernel size. In brief, low σ values indicate
fine textures, whereas high σ values indicate coarse textures.
The current study demonstrated that the filtered volumes
encode the characteristics of tissue heterogeneity, which may
be related to the co-occurrence of IDHmut and MGMTmet.

In the top 10 features with contribution to prediction
from the best-performing model, seven of them were derived
from texture features, including GLCM correlation, IMC1,
and IDMN. The GLCM correlation parameter is interpreted
as the grayscale linear dependence between adjacent pixels.22

A lower GLCM correlation in fine-filtered images in the

FIGURE 2: Receiver operating characteristic curve analysis for
optima model generated by tree-based pipeline optimization
tool. Separate curves were plotted for each outer cross-
validation fold along with corresponding AUC value

FIGURE 3: Top 10 features that contributed to the prediction from the optimal model. Abbreviations: GLCM_IMC1, gray-level co-
occurrence matrix Informational Measure of Correlation 1; GLCM_ IDMN, gray-level co-occurrence matrix Inverse Difference
Moment Normalized; GLSZM, gray-level size zone matrix; LoG, Laplacian of Gaussian.
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group with co-occurrence group indicated a sign of less infil-
tration of peripheral tissues in this group. This finding agrees
with a previous study finding that a correlation metric could
differentiate the pretreatment glioma grades in MR images.31

According to the definition, IMC1 quantifies the complexity
of the texture and IDMN measures the local homogeneity
within a ROI. Both features reflect the levels of tissue homo-
geneity in different ways: a lower IMC1 and a higher IDMN
are related to the homogeneous nature of the abnormal-
ity.32,33 Unsurprisingly, our research showed lower values of
IMC1 and higher IDMN in the co-occurrence group. Addi-
tionally, GLCM cluster prominence, cluster shade, and maxi-
mum probability also showed high power in predicting the
co-occurrence of IDHmut and MGMTmet. Cluster promi-
nence and cluster shade are the measures of the skewness and
uniformity of the GLCM, and a higher cluster shade indicates
greater asymmetry about the mean, while the maximum
probability of GLCM is the occurrence of the most signifi-
cant pair of neighboring intensity values.22 The association
between the features and metastatic gastrointestinal stromal
tumors has been reported.34 As regard to the GLSZM zone
entropy, this texture measures the uncertainty/randomness in
the distribution of zone sizes and gray levels. A higher value
indicates more heterogeneity in the texture patterns. Gener-
ally, the differences in these features between the two groups
in the present study indicate a unique heterogeneous textural
pattern in the IDHmut and MGMTmet groups.

Three shape features were also key features in the best
model, the feature with the dominant predictive capability
was the SAVR. This feature is a potential marker of the infil-
trative capacity, while a large SAVR represents the complexity
at the tumor margin and an increased interaction between the
tumor and surrounding tissues.35 Briefly, tumors with a low
SAVR may be inherently less aggressive than those with a
high SAVR, possibly explaining why patients with co-
occurrence of IDHmut and MGMTmet have a longer
survival than those with other status.35 The maximum 2D
diameter column is the largest pairwise Euclidean distance
between the tumor surface mesh vertices, and the sphericity is
defined as the measure of roundness of the shape region rela-
tive to a circle. These two features also contributed the most
to the model for predicting IDH status in a previous study.36

Moreover, we observed that the patients with co-
occurrence of IDHmut and MGMTmet were significantly
younger than those with other status. It has been proved that
IDHmut is associated with younger age and rarely occurs in
patients above the age of 65.37 Our results are consistent with
this study and suggest that age might also be an important
demographic factor in gliomas with co-occurrence of
IDHmut and MGMTmet. Additionally, we found that the
ratio of lower grade (II + III) glioma in co-occurrence of
IDHmut and MGMTmet group was higher than in the other
status group. This finding was in line with prior studies,

which showed IDHmut is more commonly seen in Grade II
and III gliomas.3,38

Limitations
First, the relatively small sample size is a major limitation,
although radiomics can be performed with as few as
100 patients,9 the inclusion of more patients with different
scanner should provide more power and is a better choice in
the future. Second, we had no independent external valida-
tion dataset, which would be the best strategy to deal with
overfitting.39 On the other hand, we utilized an inner 10-fold
cross validation and an outer 4-fold cross validation to vali-
date our models’ predictive performance and minimize the
potential bias. Third, we did not extract features from
advanced MR sequences, such as diffusion tensor imaging,
dynamic susceptibility contrast perfusion-weighted imaging,
and proton MR spectroscopy, which may provide valuable
information beyond conventional sequences; studies combin-
ing advanced MRI data may lead to an improvement in the
model performances. Finally, we focused only on predicting
the most meaningful group (IDHmut and MGMTmet),
which can provide precise prognosis and help early choice of
treatment in patients with glioma; in the future, as the
amount of dataset enlarged, classifying a case into four groups
(IDHmut and MGMTmet, IDHwt and MGMTunmet,
IDHwt and MGMTmet, IDHmut and MGMTunmet) is
worth exploring.

CONCLUSION
TPOT can be applied as a data-driven approach to identify opti-
mal radiomics-based ML models to predict the co-occurrence of
IDHmut and MGMTmet in gliomas with high accuracy. This
method has the potential to serve as an alternative to invasive tis-
sue sampling and may aid in the preoperative diagnosis and clin-
ical decision-making for patients with gliomas.
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