
RESEARCH ARTICLE

Dose-dependent thresholds of

dexamethasone destabilize CAR T-cell

treatment efficacy

Alexander B. BrummerID
1*, Xin Yang2†, Eric Ma2, Margarita GutovaID

3,

Christine E. BrownID
2*, Russell C. RockneID

1*

1 Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, Beckman

Research Institute, City of Hope National Medical Center, Duarte, California, United States of America,

2 Department of Hematology and Hematopoietic Cell Translation and Immuno-Oncology, Beckman Research

Institute, City of Hope National Medical Center, Duarte, California, United States of America, 3 Department of

Stem Cell Biology and Regenerative Medicine, Beckman Research Institute, City of Hope National Medical

Center, Duarte, California, United States of America

† Deceased.

* abrummer@coh.org (ABB); cbrown@coh.org (CEB); rrockne@coh.org (RCR)

Abstract

Chimeric antigen receptor (CAR) T-cell therapy is potentially an effective targeted immuno-

therapy for glioblastoma, yet there is presently little known about the efficacy of CAR T-cell

treatment when combined with the widely used anti-inflammatory and immunosuppressant

glucocorticoid, dexamethasone. Here we present a mathematical model-based analysis of

three patient-derived glioblastoma cell lines treated in vitro with CAR T-cells and dexameth-

asone. Advanced in vitro experimental cell killing assay technologies allow for highly

resolved temporal dynamics of tumor cells treated with CAR T-cells and dexamethasone,

making this a valuable model system for studying the rich dynamics of nonlinear biological

processes with translational applications. We model the system as a nonautonomous, two-

species predator-prey interaction of tumor cells and CAR T-cells, with explicit time-

dependence in the clearance rate of dexamethasone. Using time as a bifurcation parameter,

we show that (1) dexamethasone destabilizes coexistence equilibria between CAR T-cells

and tumor cells in a dose-dependent manner and (2) as dexamethasone is cleared from the

system, a stable coexistence equilibrium returns in the form of a Hopf bifurcation. With the

model fit to experimental data, we demonstrate that high concentrations of dexamethasone

antagonizes CAR T-cell efficacy by exhausting, or reducing the activity of CAR T-cells, and

by promoting tumor cell growth. Finally, we identify a critical threshold in the ratio of CAR T-

cell death to CAR T-cell proliferation rates that predicts eventual treatment success or failure

that may be used to guide the dose and timing of CAR T-cell therapy in the presence of

dexamethasone in patients.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009504 January 26, 2022 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Brummer AB, Yang X, Ma E, Gutova M,

Brown CE, Rockne RC (2022) Dose-dependent

thresholds of dexamethasone destabilize CAR T-

cell treatment efficacy. PLoS Comput Biol 18(1):

e1009504. https://doi.org/10.1371/journal.

pcbi.1009504

Editor: Heiko Enderling, H. Lee Moffitt Cancer

Center & Research Institute, UNITED STATES

Received: October 4, 2021

Accepted: January 12, 2022

Published: January 26, 2022

Copyright: © 2022 Brummer et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data and code

used to perform the analyses and generate figures

are available on a Github repository at https://

github.com/alexbbrummer/CARRGODEX.

Funding: Research reported in this publication was

supported by the National Cancer Institute of the

National Institutes of Health (https://www.cancer.

gov/) under grant numbers R01CA254271 (CB),

R01NS115971 (CB, RR), and P30CA033572, the

Marcus Foundation (http://www.marcus.

foundation/childhood-brain-tumors), and the

https://orcid.org/0000-0002-8776-0939
https://orcid.org/0000-0002-7094-626X
https://orcid.org/0000-0003-4915-8207
https://orcid.org/0000-0002-1557-159X
https://doi.org/10.1371/journal.pcbi.1009504
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009504&domain=pdf&date_stamp=2022-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009504&domain=pdf&date_stamp=2022-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009504&domain=pdf&date_stamp=2022-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009504&domain=pdf&date_stamp=2022-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009504&domain=pdf&date_stamp=2022-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009504&domain=pdf&date_stamp=2022-01-26
https://doi.org/10.1371/journal.pcbi.1009504
https://doi.org/10.1371/journal.pcbi.1009504
http://creativecommons.org/licenses/by/4.0/
https://github.com/alexbbrummer/CARRGODEX
https://github.com/alexbbrummer/CARRGODEX
https://www.cancer.gov/
https://www.cancer.gov/
http://www.marcus.foundation/childhood-brain-tumors
http://www.marcus.foundation/childhood-brain-tumors


Author summary

Bioengineering and gene-editing technologies have paved the way for advance immuno-

therapies that can target patient-specific tumor cells. One of these therapies, chimeric anti-

gen receptor (CAR) T-cell therapy has recently shown promise in treating glioblastoma,

an aggressive brain cancer often with poor patient prognosis. Dexamethasone is a com-

monly prescribed anti-inflammatory medication due to the health complications of

tumor associated swelling in the brain. However, the immunosuppressant effects of dexa-

methasone on the immunotherapeutic CAR T-cells are not well understood. To address

this issue, we use mathematical modeling to study in vitro dynamics of dexamethasone

and CAR T-cells in three patient-derived glioblastoma cell lines. We find that in each cell

line studied there is a threshold of tolerable dexamethasone concentration. Below this

threshold, CAR T-cells are successful at eliminating the cancer cells, while above this

threshold, dexamethasone critically inhibits CAR T-cell efficacy. Our modeling suggests

that in the presence of high dexamethasone reduced CAR T-cell efficacy, or increased

exhaustion, can occur and result in CAR T-cell treatment failure.

Introduction

Chimeric antigen receptor (CAR) T-cell therapy is a rapidly advancing immunotherapy for

the treatment of cancer. CAR T-cell therapy has demonstrated remarkable clinical outcomes

in haematologic cancers, and this success has motivated efforts to advance CAR T-cell therapy

for the treatment of solid tissue tumours, including the highly aggressive brain cancer glioblas-

toma (GBM) [1–4]. The prognosis for GBM following standard of care treatment of surgical

resection, radiotherapy, and chemotherapy remains unacceptably low with most patients sur-

viving less than 18 months [5]. CAR T-cell therapy may offer unrealized opportunities to

improve outcomes for GBM based on the ability to engineer, expand, and adoptively transfer

large numbers of tumor reactive T-cells. Our group and others are clinically evaluating CAR

T-cells for the treatment of GBM, in which the therapeutic T-cells are delivered locoregionally

[4, 6]. Our lead clinical program targets IL13Rα2, a tumor associated antigen expressed by the

majority of high-grade gliomas, including GBM [7, 8]. In early phase clinical trials, IL13Rα2-

CAR T-cells have shown encouraging evidence for antitumor bioactvitiy in a subset of patients

[1, 9].

To further develop CAR T-cell therapy for the clinical treatment of GBM, it is essential to

understand how CAR T-cells interact with commonly administered medications which may

impact CAR T-cell efficacy. The anti-inflammatory synthetic glucocorticoid dexamethasone

(Dex) is a ubiquitous medication for patients with GBM due to the propensity for brain tissue

inflammation that accompanies tumor development in GBM, and the severity of the associated

medical complications that accompanies inflammation. Dex is also commonly used to manage

neurologic immune-related adverse events (irAEs) associated with CAR T-cells and other

immunotherapies [10]. To study the effects of Dex on CAR T-cell proliferation, killing, and

exhaustion, we extend mathematical models developed by us and others to study highly

resolved temporal in vitro dynamics of patient-derived GBM cell lines under various concen-

trations of dexamethasone and CAR T-cells [11].

Recent work has demonstrated contradictory outcomes in the use of Dex for treating GBM.

Specifically, the anti- and pro-proliferative effects of Dex on GBM have been shown to depend

on cell type [12]. Furthermore, a previous proof-of-concept experiment demonstrated the abil-

ity of high Dex doses (5 mg/kg) to compromise successful CAR T-cell therapy in mice with
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xenograft GBM tumors, whereas lower doses (0.2–1 mg/kg) had limited effect on in vivo anti-

tumor potency [8]. This data suggests a threshold at which Dex negatively impacts CAR T-cell

therapy and reinforces the importance of mathematical modeling to infer and understand how

Dex influences CAR T-cell therapy efficacy for GBM.

Mathematical modeling of CAR T-cells has demonstrated value in quantitatively characteriz-

ing tumor-immune cell dynamics. Compartmental models have been leveraged to enhance

understanding of the underlying cancer biology. In such practices, variation in model complex-

ity can be utilized to investigate either the myriad roles of T cell and tumor cell types [13–15] or

the mathematical nature of the cell-cell interactions themselves [16, 17]. These same approaches

can be naturally extended to inform and predict both pre-clinical and clinical applications of

immunotherapies [18–21]. Most recently, such efforts have been applied to model and predict

CAR T-cell therapies for leukemia [22, 23], glioblastoma organoids and solid brains tumors

[11], and combination therapies with radiotherapy [24] and chemotherapy [25].

Previous work by us investigated CAR T-cell therapy for the treatment of glioblastoma

(GBM) solid brain tumors. This work validated the principle components necessary for accurate

predictions, specifically identifying: rates of GBM proliferation and cell killing, and CAR T-cell

proliferation, exhaustion, and death. These factors were combined into a predator-prey system

called CARRGO: Chimeric Antigen Receptor T-cell treatment Response in GliOma [11].

Here we extend this work by incorporating the Dex concentration as a new model parame-

ter, and assume that it follows exponentially depleting pharmacokinetics. We posit that Dex

has directly measurable effects on GBM proliferation and CAR T-cell death, and indirectly

measurable effects on all other model parameters. We use our extended model to investigate

the consequences of combination CAR T-cell and Dex therapy on three in vitro GBM cell

lines. We establish an experimental protocol that measures treatment effects on GBM cell pop-

ulations while co-varying initial CAR T-cell populations and Dex concentrations.

Materials and methods

Cell lines

Primary brain tumor (PBT) cell lines derived from GBM tumor resection tissue were derived

as described in [1, 26]. All three cell lines come from male donors ages 43, 52, and 59 years old.

As this study was focused on the interaction between Dex and CAR T-cells, cell lines were

either selected based on the endogenous expression of IL13Rα2 (PBT030 and PBT128) or engi-

neered to express high levels of IL13Rα2 (greater than 70%) by lentiviral transduction

(PBT138) as described in [1, 11, 26]. Expression levels of IL13Rα2 for each PBT cell line as

determined by flow cytometry are shown in S1 Supporting Information. For IL13Rα2-targeted

CAR T-cell lines, healthy donor CD62L+ naive and memory T-cells were lentivirally trans-

duced to express a second-generation of IL13Rα2-targeting CAR as described in [8]. Summary

information regarding cell lines can be found in Table 1.

Table 1. Experimental conditions.

Tumor cell line (% IL13Rα2) CAR T-cells Initial number of tumor cells Effector to Target (E:T) ratio Dex concentrations (μg/ml)

PBT030 (97.97%) IL13Rα2 BBz 10K-20K 1:4, 1:8, 1:20 0, 10−4, 10−3, 10−2, 10−1, 1

PBT128 (89.11%) IL13Rα2 BBz 10K-20K 1:4, 1:8, 1:20 0, 10−4, 10−3, 10−2, 10−1, 1

PBT138 (99.53%) IL13Rα2 BBz 10K-20K 1:4, 1:8, 1:20 0, 10−4, 10−3, 10−2, 10−1, 1

Patient-derived brain tumor (PBT) lines with corresponding expression levels of IL13Rα2, CAR T-cell lines, initial number of cells, effector to target ratios, and Dex

concentrations used in in vitro experiments.

https://doi.org/10.1371/journal.pcbi.1009504.t001
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Experimental conditions

Cancer cell growth and treatment response was monitored with the xCELLigence cell analyzer

system [27]. By correlating changes in electrical impedance with number of tumor cells

adhered to electrode plates, a measurement of the cell population is reported every 15 minutes.

Cell populations of both the tumor cells and CAR T-cells are reported in the non-dimensional

units of Cell Index (CI), where 1 CI� 10K cells. Previous work has demonstrated that cell

index and cell number are strongly correlated [28, 29], including in the presence of CAR T-cell

treatment [11]. Flow cytometry was used at the experiment endpoint to examine the validity of

the cell index-cell number correlation in the presence of Dex, as well as count the non-adher-

ent CAR T-cells. Tumor cells were seeded at 10K-20K cells per well and left either untreated,

treated with only Dex, treated with only CAR T-cells, or treated with both Dex and CAR T-

cells. All control and treatment conditions were conducted in duplicate, with treatments

occurring 24 hours after seeding and followed for 6–8 days (144–192 hrs). CAR T-cell treat-

ments were performed with E:T ratios of 1:4, 1:8, and 1:20. Dex treatment concentrations used

were 10−4, 10−3, 10−2, 10−1, and 1 μg/ml. The experiment design is diagrammed in Fig 1a, and

treatment conditions are presented in Table 1. A follow-up experiment was conducted to

examine the potential for Dex-induced changes to tumor cell morphology using the IncuCyte

live cell imaging system (Fig 2 and S1 Supporting Information). In this second experiment, E:

T ratios of 1:20, 1:40, and 1:80 were used as the CAR T-cells had been engineered to be more

efficacious. All other experimental conditions were held constant. See https://github.com/

alexbbrummer/CARRGODEX for all experimental data.

Fig 1. Diagram of in vitro experiments and mathematical model. (a) Experiments were conducted using a 96-well

plate xCELLigence cell killing assay, where tumor cell adherence modulates electrical impedance. Dexamethasone and

CAR T-cells were added simultaneously 24 hours following tumor cell plating, with observation proceeding for 6–8

days (144–192 hrs). CAR T-cells were counted at the experiment endpoint with flow cytometry analysis (FACS). (b) A

mathematical model similar to a predator-prey system is used to model tumor cell growth, death, and interactions

between tumor cells, CAR T-cells, and Dex. The compartmental model is translated into the system of equations in Eqs

(1)–(3).

https://doi.org/10.1371/journal.pcbi.1009504.g001
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Mathematical model

To model the interactions between the tumor cells, the CAR T-cells, and dexamethasone, we

extend the predator-prey inspired CARRGO model from Sahoo et al. [11]. We use the princi-

ple of mass-action to model the effect of Dex on tumor and CAR T-cell populations, without

an explicit assumption of a positive or negative effect of Dex on those cell populations. A com-

partmental representation of the model is presented in Fig 1b, and all model variables and

parameters are presented in Table 2. The tumor cell and CAR T-cell populations are modeled

here in units of cell index (CI), a strongly correlated indicator of cell number that is produced

by the xCELLigence cell killing assay measurement system [11, 28, 29]. Expressing the com-

partmental model as a system of equations,

dx
dt
¼ rx �

r

K
x2 � k1xy � c0Dx ð1Þ

dy
dt
¼ k2xy � yy � c3Dy ð2Þ

Fig 2. Incucyte live cell imaging of PBT138.eGFP cells 100 hours following treatment shows high Dex-induced reduction in CAR T-cell efficacy. (a) No

Dex or CAR T-cell treatment (PBT138 culture). Visible are tumor cells of different morphology round (red arrows) and elongated (blue arrow), representing

heterogeneous patient-derived glioma cell culture. (b) CAR T-cell only treatment with effector:target cell (E:T) ratio of 1:20. Visible are tumor apoptotic bodies

that represent CAR T-cell killing (white circles). (c) Combined CAR T-cell (E:T = 1:20) and Dex (0.1 ng/ml) treatment. Tumor apoptotic bodies still visible

(white circles) representing killing at low Dex. (d) Combined CAR T-cell (E:T = 1:20) and high Dex (1 μg/ml) treatment showing lack of tumor aggregates and

some increase in tumor cell numbers. White scale bars represent 200 μm.

https://doi.org/10.1371/journal.pcbi.1009504.g002

Table 2. Mathematical model parameters and variables.

Parameter or Variable Description Observed Range Unit

x tumor cell population [0, 5] CI

y CAR T-cell population [0, 3] CI

D dexamethasone concentration [0, 1] μg/ml

ρ tumor cell net growth rate [0.5, 12] day−1

K carrying capacity [1, 20] CI

κ1 tumor killing rate [0.8, 90] day−1CI−1

κ2 net rate of proliferation and exhaustion of CAR T-cells when stimulated by cancer cells [0.1, 2] day−1CI−1

θ CAR T-cell death rate (persistence) [10−12, 3] day−1

c0 effect of Dex on tumor growth [−10, 4] day−1

c3 effect of Dex on CAR T-cell death [−11, 11] day−1

σ half-life of Dex 5 day−1

https://doi.org/10.1371/journal.pcbi.1009504.t002
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dD
dt
¼ � sD;

ð3Þ

where x is the tumor cell population, y is the CAR T-cell population, and D is the concentra-

tion of dexamethasone. Although cell populations are often modelled in terms of cell number,

here we use cell index (CI) to link model parameters with the experimental xCELLigence plat-

form readout data. As determined in previous studies, cell index and cell number are strongly

correlated, with a cell index of one equal to approximately 10,000 cells.

Pharmacokinetic studies report the plasma half-life of Dex as being approximately 200 min-

utes, resulting in s ¼ 24lnð2Þ=3:�3 hr−1 = 5 day−1 [30, 31]. We do not explicitly model the

mechanism by which Dex is cleared from the system, which can be through cell uptake, evapo-

ration, or absorption into the culture media. Here we simply assume the elimination of Dex is

equivalent to the Dex plasma half-life. While the Dex interaction terms are explicitly sub-

tracted from the population growth rates, we make no presumptions on the signs of the inter-

action constants, c0 and c3. This has the effect of allowing for both scenarios where Dex can be

either anti-proliferative (i.e. c0, c3 < 0) or pro-proliferative (i.e. c0, c3 > 0) to either the CAR T-

cells or tumor growth [12, 32].

We next convert this three-species, autonomous population model into a two-species, non-

autonomous model. We formulate the model this way to study how the concentration of Dex

influences the dynamical behavior and long-term stability of the CAR T-cell and tumor cell

populations, which essentially considers time as a bifurcation parameter. The value of this

approach is its utility in analyzing the stability of the tumor cell-CAR T-cell dynamics as time

evolves, a perspective that bears more clinical relevance and simplicity than the exponentially

decaying concentration of Dex.

Previous studies have utilized nonautonomous models to account for time-varying envi-

ronmental conditions in generic predator-prey systems [33, 34], for pulsed patient precondi-

tioning in combination CAR T-cell and chemotherapy [25], and in the analysis of

pharmacokinetic-pharmacodynamic tumor growth models with time-dependent perturba-

tions due to anticancer agents (see chapter 7 in [35]).

In the present model, we highlight the fact that the decaying dexamethasone concentration

is modeled with a bounded and continuously differentiable function on the interval [0,1).

This can be seen by separately solving Eq (3) as D(t) = D0e−σt. Thus, stable solutions to the non-

autonomous model will still converge to those of the autonomous model [35]. Upon substitu-

tion for D(t), we arrive at the following system of equations

dx
dt
¼ r � c0e� stð Þ x 1 �

rx
ðr � c0e� stÞK

� �

� k1xy ð4Þ

dy
dt
¼ k2xy � ðyþ c3e� stÞ y

ð5Þ

where we factored terms to reflect the anti/pro-proliferative potential of Dex, and re-scaled the

constants c0 and c3. Letting ρ(t) = ρ − c0e−σt, K(t) = ρ(t)K/ρ, and θ(t) = θ + c3e−σt, our model

takes the simplified form of

dx
dt
¼ rðtÞx 1 �

x
KðtÞ

� �

� k1xy ð6Þ

dy
dt
¼ k2xy � yðtÞy

ð7Þ

which is reminiscent of the original CARRGO model [11]. The definitions of ρ(t), K(t), and
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θ(t) demonstrate how the signs of the constants c0 and c3 can determine the anti/pro-prolifer-

ative effect of Dex on the tumor cells and CAR T-cells. Specifically, if c0 > 0, then Dex is anti-

proliferative to the tumor cells, lowering the effective growth rate ρ(t) and carrying capacity

K(t). If c0 < 0, then Dex is pro-proliferative to the tumor cells, raising the effective growth rate

ρ(t) and carrying capacity K(t). On the other hand, if c3 > 0, then Dex is anti-proliferative to

the CAR T-cells, increasing the effective death rate θ(t). If c3 < 0, then Dex is pro-proliferative

to the CAR T-cells, decreasing the effective death rate θ(t).

Parameter estimation

The fitting procedure used to estimate model parameters consisted of a combination of parti-

cle swarm optimization (PSO) and the Levenberg-Marquardt algorithm (LMA). PSO is a sto-

chastic global optimization procedure inspired by biological swarming [36]. PSO has been

used recently for parameter estimation in a variety of initial value problems across cancer

research and systems biology [37–40]. These optimization procedures were used to minimize

the weighted sum-of-squares error between measured and predicted tumor cell and CAR T-

cell populations. PSO was used first to determine rough estimates of model parameters. This

was followed by use of LMA to fine-tune parameter values.

Although the mathematical model has 8 parameters, we show that the model in Eqs (6) and

(7) is structurally identifiable from the experimental data. This allows for explicit measurement

and inference of all the parameters in the model, including c0 and c3, and thus the effects of

Dex on the tumor cells and CAR T-cells independently [41]. In particular, two replicates

(wells) of tumor cells were grown untreated with CAR T-cells but with and without Dex treat-

ments to independently identify the tumor growth rate, ρ, carrying capacity K, and the effect

of Dex on the tumor growth rate and carrying capacity c0. Additionally, two replicates of

tumor cells treated with CAR T-cells were conducted with and without Dex. This allowed us

to independently identify the tumor killing rate with and without Dex, κ1, the CAR T-cell pro-

liferation/exhaustion with and without Dex, κ2, the CAR T-cell death rate θ, and the effect of

Dex on the CAR T-cell death rate c3. See Supplemental Information for identifiability analysis,

and https://github.com/alexbbrummer/CARRGODEX for all experimental data and computa-

tional code to reproduce the model fitting, parameter estimates, and figures. All model fitting

was performed using the programming language Python. All model fits were performed on

averages of the experimental duplicates.

Stability analysis

Prior work has demonstrated that conventional methods of stability analysis can be extended

to nonautonomous models [35, 42]. As the concentration of dexamethasone is an exponen-

tially decaying function, D(t) = D0e−σt, we can analyze the stability of Eqs (4) and (5) as we

would normally in an autonomous scenario. Despite this, in S1 Supporting Information. we

present a stability analysis of the 3 × 3 autonomous system for the coexistence equilibrium in

the limit that the dexamethasone concentration decays to zero. This demonstrates that the

eigenvalues of the two systems are effectively the same, with the only difference due to whether

one expresses the eigenvalues in terms of the Dex concentration, D, or the precise form of its

exponential decay, D0e−σt. Furthermore, we emphasize that the two systems converge on a

time scale of the order of the decay constant, σ. Mathematically speaking, the Dex concentra-

tion never reaches zero, but on a more practical and physiological level, Dex clears after

approximately 3–5 half lives, as presented later in the results.

With the simplified form of our CARRGO with Dex model in Eqs (6) and (7), the equilibrium

solutions are identified as P1 = (0, 0), P2 = (K(t), 0), and P3 ¼
yðtÞ
k2
;
rðtÞðKðtÞk2 � yðtÞÞ

KðtÞk1k2

� �
where (x, y) =
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(tumor cells, CAR T- cells). These solutions are referred to as ‘Death’, ‘Tumor Proliferation’,

and ‘Coexistence’ respectively. Given the structure of the dynamical system in Eqs (6) and (7),

eigenvalue analysis shows that the ‘Death’ and ‘Tumor Proliferation’ equilibria are never stable

solutions (see S1 Supporting Information). Interestingly, this does not preclude our ability to

predict tumor death or proliferation. On the contrary, observed and measured tumor death

and proliferation occur within the parameter space that defines the coexistence equilibrium.

Careful examination of the coexistence equilibrium stability can elucidate this point.

In the ‘Coexistence’ scenario, the equilibrium is P3 ¼
yðtÞ
k2
;
rðtÞðKðtÞk2 � yðtÞÞ

KðtÞk1k2

� �
. Importantly, the

model parameters that determine the final tumor cell population are the ratio of the CAR T-

cell death rate and the CAR T-cell proliferation/exhaustion after the Dex has cleared, θ/κ2.

Thus, if either CAR T-cell death is low with respect to CAR T-cell proliferation, or CAR T-cell

proliferation is high with respect to death, then θ/κ2� 0, and tumor death can occur as the

coexistence equilibrium. We next examine how the conditions for stability depend on the

model parameters, in particular the Dex concentration.

The eigenvalues of the Jacobian for the coexistence equilibrium are

l� ¼
rðtÞyðtÞ
2k2KðtÞ

� 1� 1þ
4k2KðtÞ
rðtÞ

1 �
k2KðtÞ
yðtÞ

� �� �1=2
( )

ð8Þ

Recalling that ρ(t) = ρ − c0e−σt and KðtÞ ¼ r� c0e� st

r
K, then

KðtÞ
rðtÞ ¼

K
r
. Substitution of the expres-

sions for the time-dependent growth rate, carrying capacity, and death rate results in

l� ¼
r yþ c3e� stð Þ

2k2K
� 1� 1þ

4k2K
r

1 �
k2K r � c0e� stð Þ

r yþ c3e� stð Þ

� �" #1=2
8
<

:

9
=

;
ð9Þ

In Eq (9), the term underlined in blue determines oscillatory behavior, while the term under-

lined in red determines the stability of the oscillatory states (spiraling in, spiraling out, or as a

fixed limit cycle). By convention, only the parameters characterising the effects of Dex on

tumor growth and CAR T-cell death, c0 and c3, can take on negative values. Thus, after the Dex

has cleared, any oscillatory coexistence state will be stable. This consequence highlights the

value of our decision to model the system as nonautonomous. In the event that Dex is pro-pro-

liferative to the CAR T-cells such that c3 < −θ, then there will always be at least one positive

eigenvalue (with or without oscillations), and the equilibrium will be temporarily unstable

until the Dex has sufficiently cleared the system.

To determine the condition for oscillatory states, we require non-zero imaginary compo-

nents of the eigenvalues, I(λ±) 6¼ 0, which results in the following condition

r� c0e� st

yþ c3e� st

� �

>
r

k2K
þ

r

2k2K

� �2

ð10Þ

In Eq (10) we can see that the existence of oscillations about the coexistence equilibrium are

again determined by the relative sizes of θ(t) and κ2.

Results

Experimental results of this study demonstrate that high concentrations of dexamethasone can

attenuate tumor eradication even when CAR T-cell therapy would otherwise have been suc-

cessful (Fig 2). This phenomenon was observed directly in cell line PBT128 (Fig 3), PBT138

(S1 Fig) and it can be inferred for cell line PBT030 between effector-to-target ratios 1:4 and 1:8
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(S2 and S3 Figs, respectively). A reduction in CAR T-cell efficacy is observed regardless of

treatment success or failure at different effector-to-target ratios (E:T) for all three cell lines

(Fig 4, S1 and S3 Figs). Importantly, our predator-prey model that incorporates Dex can pre-

dict these changes in CAR T-cell efficacy and connect them to key features of CAR T-cell func-

tion (e.g. proliferation, exhaustion, and death).

Dexamethasone antagonizes CAR T-cell efficacy

Our experimental results suggest that Dex acts to antagonize CAR T-cell treatment efficacy in

a dose-dependent manner, resulting in persistent tumor cell growth. In Fig 3 we see that final

populations of tumor cells for line PBT128 increase as a function of increasing initial Dex con-

centration. Specifically, the system dynamics range from complete tumor cell death for initial

Dex concentrations of 0.0 μg/ml, 1 × 10−4 μg/ml, 1 × 10−3 μg/ml, and 1 × 10−2 μg/ml to tumor

progression for initial Dex concentrations of 1 × 10−1 μg/ml, and 1 μg/ml. We also see a noted

decrease in initial CAR T-cell growth as the initial Dex concentration is increased.

Fig 3. Graphs of measured and predicted (a) tumor cells, (b) CAR T-cells, and (c) Dex concentration over time for tumor cell line PBT128 with

an initial effector-to-target ratio of 1:4. Temporal measurements of (a) tumor cells measured by xCELLigence cell index (CI) values and (b) CAR T-

cell levels with initial and final measurements represented by symbols, and CARRGO model predictions are represented by lines. Experimental

measurements for the tumor cell population are down-sampled by 1/10 for clarity. Colors and symbol types represent different initial Dex

concentrations (see top legend). The progression of the tumor cell curves as initial Dex concentration increases demonstrate the effect of Dex to

reduce CAR T-cell efficacy.

https://doi.org/10.1371/journal.pcbi.1009504.g003
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The loss of CAR T-cell treatment efficacy as a result of Dex can be observed across all CAR

T-cell E:T ratios. In Fig 4 we see how increasing the initial Dex concentration continually

increases the final tumor population when compared to the Dex control for the PBT128 cell

line. Interestingly, the extent to which pseudo-regression occurs for the medium and low dose

CAR T-cell groups is noticeably diminished as Dex increases.

Also notable are the cases of medium initial CAR T-cells (E:T = 1:8) and high initial Dex

(0.1 μg/ml − 1 μg/ml), where the final tumor cell population has surpassed the initial pseudo-

progression peak. Flow cytometry measurements of these high Dex concentrations in the

absence of CAR T-cell treatment for PBT128 demonstrate that the xCELLigence Cell Index

metric begins to overestimate tumor cell number (S2 Fig). This effect was also observed in

PBT030 (again in the absence of CAR T-cells), but not PBT138, and led to our omission of the

Dex-only treatments in this analysis.

Dexamethasone induced destablization of coexistence

Analysis of the coexistence eigenvalue stability helps to elucidate the effect that Dex has on the

system dynamics. Fig 5 presents bifurcation diagrams for two different experimental scenarios

Fig 4. Time series of tumor cell populations for PBT128 across various CAR T-cell E:T ratios of 1:4 (a), 1:8 (b), and 1:20 (c).

Colors and symbol types vary to reflect initial Dex concentrations (see top legend). Tumor persistence is seen to increase due to

increasing initial Dex concentration regardless of the different starting CAR T-cell E:T ratios. Symbols represent measured data,

while lines represent CARRGO model predictions. Experimental measurements for the tumor cell population are down-sampled by

1/10 for clarity.

https://doi.org/10.1371/journal.pcbi.1009504.g004
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with the same initial CAR T-cell population but different initial Dex concentrations. Fig 5a

shows the coexistence eigenvalues as functions of time for the experimental conditions of high

initial CAR T-cells (E:T = 1:4) and a low initial Dex concentration of 1 × 10−3 μg/ml in which

productive tumor cell death occurred. Fig 5b shows the coexistence eigenvalues as functions of

time for the experimental conditions of high initial CAR T-cells (E:T = 1:4) and a high initial

Dex concentration of 1 × 10−1 μg/ml and corresponds to tumor cell progression. To illustrate

how the time-dependence of the eigenvalues influences the system dynamics, streamplots of

Eqs (6) and (7) are presented as insets for each experimental scenario, with experimentally

measured tumor cell index values and model-inferred CAR T-cell index vales represented by

the black dots.

In the scenario with an initial Dex concentration of 1 × 10−3 μg/ml (Fig 5a), the coexistence

equilibrium begins as a stable spiral for the duration of the Dex clearance and the remainder of

the experiment. As the Dex clears, the real and imaginary components of the eigenvalues

decrease in magnitude. These temporal changes in the eigenvalues shift the location and shape

of the system trajectory, as shown in the figure inset. In particular, throughout the times t1 =

32 hrs and t2 = 40 hrs, as the Dex is still clearing, the system is predicted and observed to oscil-

late about the changing coexistence equilibrium P3. Initially, and throughout times t1 and t2,

the real component of the eigenvalue is large enough to facilitate in-spiraling. By t3 = 60 hrs,

effectively all of the Dex has cleared, and the phase space trajectory is soon to pass through a

zero in tumor cell population, terminating the dynamics.

In the scenario with a higher initial Dex concentration of 1 × 10−1 μg/ml (Fig 5b), the coex-

istence equilibrium begins as an unstable fixed point (represented by the dashed lines during

times t1 = 32 hrs and t2 = 38 hrs). After twice the half-life of Dex (� 7 hrs), a Hopf bifurcation

occurs and the system transitions through a limit cycle (observable at time t� 40 hrs) and into

a stable spiral (represented by the solid lines during time t3 = 42 hrs). When the system is in an

unstable state, the instantaneous trajectory predicted by Eqs (6) and (7) show pseudo-progres-

sive growth. As in the previous scenario with 1 × 10−3 μg/ml of Dex, the system enters a stable

spiral by the time all of the Dex has cleared (t4 = 60 hrs). However, in this scenario, once the

Dex has fully cleared the system the predicted trajectory no longer passes through a zero in the

tumor cell population.

Tumor cell killing and CAR T-cell exhaustion

To examine the effect of Dex on total tumor cell killing we compare tumor cell growth trajecto-

ries for CAR T-cell only treatment, and combined CAR T-cell and Dex treatments in Fig 6.

For the combined treatment scenarios, we focus on experimental conditions at the threshold

of treatment success and treatment failure, and along a Dex-gradient of treatment failure (Fig

6a, 6c and 6e for cell lines PBT030, PBT128, and PBT138, respectively). Accompanying each

growth trajectory are barplots of the inferred model parameters (Fig 6b, 6d and 6f) which help

to identify mechanistically how Dex interacts separately with the tumor cells and CAR T-cells.

We chose not to examine Dex only treatments as flow cytometry measurements indicated a

loss in the strength of the correlation between xCELLigence cell index and flow cytometry-

measured cell number in these treatment scenarios [28, 29]. The correlation was observed to

be maintained in combined treatment scenarios, with correlation coefficients of = 0.97 in cell

line PBT138, 0.70 in cell line PBT128, and 0.30 in cell line PBT030 (S1 Supporting

Information).

From the perspective of our mathematical model, the effect of Dex on the CAR T-cells is to

reduce efficacy by inducing exhaustion. In going from treatment success to failure, the CAR T-

cell death rate, θ, increases for all cell lines. Furthermore, for cell lines PBT030 and PBT138 the
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Fig 5. Stability analysis of coexistence equilibria for CARRGO model with Dex under the experimental conditions

of tumor cell line PBT128 with an initial CAR T-cell E:T ratio of 1:4. Initial Dex concentrations are 1 × 10−3 μg/ml

(a) and 1 × 10−1 μg/ml (b). Bifurcation diagrams (main graphs) demonstrate how Dex modulates the temporal

dynamics of the coexistence equilibria. Inset graphs show phase space diagrams demonstrating transient state of

coexistence equilibria as time evolves and Dex clears. In (a) the initial Dex concentration of 1 × 10−3 μg/ml is too small

to facilitate exhaustion of the CAR T-cells, thus the coexistence equilibrium is a stable spiral. However, the equilibrium

position is still seen to translate through the phase space, and the predicted trajectory deform, while Dex is clearing. In

(b) the initial Dex concentration of 1 × 10−1 μg/ml is sufficiently large enough to facilitate exhaustion of the CAR T-

cells, thus the coexistence equilibrium is an unstable fixed point (dashed lines) until a sufficient level of Dex has cleared
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tumor cell killing, κ1, decreases while CAR T-cell proliferation, κ2, remains fixed, while in cell

line PBT128 the tumor cell killing, κ1, remains fixed while CAR T-cell proliferation, κ2,

decreases. These shifts dramatically increase the predicted coexistence equilibrium for the

tumor cell population, given as θ/κ2. Next is the effect of Dex on the CAR T-cell death rate, c3,

which switches from positive to negative between success and failure across all cell lines. This

shift suggests that during treatment success there is high turnover of CAR T-cells due to the

Dex-induced increase in CAR T-cell death and the cancer cell stimulated CAR T-cell prolifera-

tion. After Dex clears, CAR T-cell death returns to a small rate resulting in treatment success.

In the failure scenario Dex again promotes CAR T-cell growth, c3 < 0, yet increases CAR T-

cell exhaustion by reducing the size of κ2. Our interpretation of these combined effects is that

Dex results in CAR T-cell exhaustion.

and the system returns to a stable spiral (solid lines). Unlike the lower initial Dex concentration scenario in (a), the

coexistence equilibrium has translated, and the predicted trajectory has narrowed, such that the tumor population no

longer reaches a value of zero, resulting in tumor progression.

https://doi.org/10.1371/journal.pcbi.1009504.g005

Fig 6. Comparison of tumor cell measurements and CARRGO model fits (a, c, and e), and CARRGO model parameters (b, d, and f) for CAR T-

cell only treatments, and combination CAR T-cell and Dex treatments for each tumor cell line studied. For the combined treatment scenarios, we

focus on experimental conditions at the threshold of treatment success and treatment failure, and along a Dex-gradient of increasing tumor

progression. For PBT030 (a, b) the conditions at the threshold of treatment success are E:T = 1:4 and 1 μg/ml of Dex, and E:T = 1:8 and 10−4 μg/ml for

treatment failure. For PBT128 (c, d) the conditions at the threshold of treatment success are E:T = 1:4 and 10−3 μg/ml of Dex, and E:T = 1:4 and 10−1

μg/ml for treatment failure. For PBT138 (e, f) the conditions at the threshold of treatment success are E:T = 1:20 and 10−4 μg/ml of Dex, and E:T = 1:20

and 10−3 μg/ml for treatment failure. Symbols represent average of two replicates, and error bars represent sample ranges. Note that experimental

measurements presented are downsampled by 1/10 for clarity.

https://doi.org/10.1371/journal.pcbi.1009504.g006
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Predicting treatment success or failure

Analysis of treatment success and failure across all experimental conditions identifies an essen-

tial threshold, T0, for the predicted tumor cell equilibrium population. As shown in Fig 7, we

observe an approximate threshold of T0� 0.4 CI such that for values of θ/κ2 < T0, total tumor

cell death occurs after a brief period of pseudo-progression. Alternatively, for values of θ/κ2 >

T0, tumor cell persistence occurs after pseudo-progression and pseudo-response. Importantly,

for the cell lines PBT128 and PBT138, we can see a transition from treatment success to treat-

ment failure at fixed levels of initial CAR T-cells (0.25CI for PBT128 and 0.05CI PBT138) and

as initial Dex concentration increases from 10−2 to 10−1 μg/ml. For tumor cell line PBT030, the

transition from treatment success to failure occurs primarily as a result of changes in the initial

number of CAR T-cells administered, with E:T ratios of 1:4 resulting in success, and 1:8 result-

ing in failure.

Discussion

In this work we demonstrate how mathematical modeling can be leveraged to identify and

quantify how the commonly used anti-inflammatory synthetic glucocorticoid dexamethasone

may undermine CAR T-cell treatment efficacy in glioblastoma.

Our modeling identifies that Dex treatment destabilizes the coexistence equilibrium and

forces the system into a new equilibrium state upon Dex clearance (Fig 5). We predict that this

process is a result of a Dex-induced increase in CAR T-cell proliferation, c3 < −θ, followed by

an increase in CAR T-cell death, θ increasing, and either a decrease or fixation of cancer cell

Fig 7. The ratio of CAR T-cell death (θ) to CAR T-cell proliferation/exhaustion (κ2) rates predict CAR T-cell

treatment success (tumor cell death) or failure (tumor cell progression). We observed that a ratio of θ/κ2� 0.4 CI

as the predicted final tumor cell population serves as a threshold for observed tumor progression or death. The

threshold of θ/κ2� 0.4 CI was consistent across all three tumor cell lines (denoted by color), CAR T-cell E:T ratios

(denoted by shape), and initial Dex concentrations (denoted by location along the horizontal axis). Conditions not

shown are PBT030 with an E:T ratio of 1:20 which all resulted in tumor cell progression, PBT128 with an E:T ratio of

1:8 and 1:20 which all resulted in tumor cell progression, and PBT138 with E:T ratios of 1:8 and 1:4 which all resulted

in tumor cell death. See S4 Fig for all E:T ratios.

https://doi.org/10.1371/journal.pcbi.1009504.g007
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stimulated proliferation of CAR T-cells, κ2 decreasing or approx. constant. We interpret these

combined effects as facilitating CAR T-cell exhaustion (Fig 6). These responses are manifest in

a cycle of pseudo-progression, pseudo-regression, and a final stage of tumor progression.

Importantly, we identify a threshold on the ratio of CAR T-cell death to CAR T-cell prolifera-

tion/exhaustion rates, (θ/κ2� 0.4 CI), that appears to predict successful tumor eradication (θ/

κ2 < 0.4 CI), or proliferation (θ/κ2 > 0.4 CI). We find that this threshold is valid across all

three PBT cell lines, initial CAR T-cell populations, and Dex concentrations (Fig 7).

In modeling this system, we chose to use a nonautonomous (explicit in time) approach in

order to assess the dynamical stability of the system as a function of Dex concentration. By

treating time as a bifurcation parameter, variations in system stability and predicted phase

space trajectories can be visualized (Fig 5). This approach facilitates understanding of treat-

ment success and failure due to an overabundance of Dex and in the context of stability analy-

sis. Specifically, in scenarios where treatment succeeded, as in Fig 5(a), the coexistence

equilibrium remained stable throughout the duration of Dex clearance. On the other hand,

in scenarios where high levels of Dex led to treatment failure and tumor outgrowth, as in

Fig 5b, the coexistence equilibrium was initially unstable until sufficient Dex cleared from the

system.

Insight gained from studying tumor-CAR T-cell dynamics can aid in understanding how

Dex levels compromise CAR T-cell efficacy. Destabilization of the coexistence equilibrium is

driven by changes to the experimentally derived model parameters θ, κ2, and c3 (Fig 6 and

Eq (10), which represent the death rate of CAR T-cells, the proliferation or exhaustion of the

CAR T-cells, and the effect of Dex on the CAR T-cell death rate, respectively. These changes

are interpreted as Dex promoting tumor cell growth and CAR T-cell growth at early times (due

to c3 < −θ), yet once the Dex has cleared the CAR T-cells become exhausted, no longer prolifer-

ating enough to keep up with natural death or facilitate tumor cell killing. CAR T-cell exhaus-

tion, indicated by a decrease in κ2, is a primary cause of tumor progression as determined by

the increase in the predicted final tumor cell population, θ/κ2 (Fig 6). Importantly, this Dex-

induced shift from CAR T-cell proliferation to exhaustion is highlighted by the differences in

phase space trajectories between treatment success and treatment failure presented in Fig 5.

A notable feature of the mathematical model is the fact that it captures a wide range of

dynamics observed in multiple experimental conditions [11]. This is despite its relative sim-

plicity compared to other mathematical models of immunotherapies [13, 17, 43, 44]. A recent

commentary regarding predator-prey like models, including the model presented here, is the

possibility of oscillating solutions which are unlikely to be observed in patients [45, 46]. We

note that the coexistence equilibrium is accompanied with phase-space trajectories that accu-

rately describe experimental data. This includes scenarios of treatment success and tumor

death (x = 0), allowing for informative and quantitative biological inference. Furthermore, we

highlight that each model parameter can be uniquely identified from our measured data, as

supported by our structural identifiability analysis (S1 Supporting Information) [41]. This

allows for the deconvolution of dynamics and parameters not otherwise accessible from the

cell killing assay.

Several possible extensions of our model exist and are worth consideration in future analy-

ses. A common extension is to generalize the interaction between tumor cells and CAR T-cells

to a higher order Holling Type form [13, 17, 43]. Generally, the Holling Type II and III interac-

tions are used to model changes in cell-cell interactions, notably predator-prey handling time

and density-dependent behavior. Additionally, where the CARRGO model combines CAR T-

cell proliferation and exhaustion into one parameter, κ2, other approaches may incorporate a

second T-cell type altogether [20, 45], a population of macrophages [44], or explicitly account-

ing for the pharmacodynamic and pharmacokinetics of CAR T-cell dynamics [47].
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Interestingly, recent theoretical work has shown that a two T-cell type predator-prey model

with Holling Type I interactions can, in the appropriate limits and conditions, reduce to a sin-

gle T-cell type predator-prey model with a Holling Type II interaction [43]. While such model

extensions can be enlightening, our approach aims to balance model complexity with the

dimensionality and resolution of the experimental data.

Limitations and simplifications

Several limitations and simplifications were made in the course of this work that naturally sug-

gest follow up studies. Although these studies were informative to assess the direct effect of

Dex on CAR T-cell effector function, there is potential to construct models with many inter-

acting immune populations. The fact that the xCELLigence cell killing assay is an in vitro sys-

tem lacking an immune system naturally limits the model complexity that is experimentally

accessible. Related to this is the clearance rate of the dexamethasone, assumed here to have a

fixed value of approximately 200 minutes. In patient populations, some level of variation in the

clearance rate is to be expected due to physiological differences [30, 31]. Future work examin-

ing how variation in the clearance rate affects treatment success would be of interest. Further-

more, the fact that T-cells are non-adherent to the cell killing assay precludes proposed models

that require high temporal resolution of the T-cell dynamics. Presently, our experimental pro-

tocol includes only two datapoints for the CAR T-cells: the initial and final timepoints.

Although this results in a boundary value problem from a mathematical point of view and

uniquely determined solution for the CAR T-cell population, an immediate benefit from a

modeling perspective would be high temporal resolution measurement of CAR T-cell dynam-

ics similar to the tumor cells. Another simplification is that this modeling framework does not

include spatial variations in tumor cell, CAR T-cell, or Dex density. Due to the highly struc-

tured nature of the brain and heterogeneity of glioblastoma tumors, including hypoxia, necro-

sis, and extensive invasion through the brain, spatial considerations may be important. Finally,

a growing subject of importance is understanding sex and age-based differences in the immu-

nological responses of patient derived cell lines, and how those difference translate to an indi-

vidual level in clinical applications [48]. In this work, all GBM cell lines were derived from

male patients of a similar age (43, 52, and 59 years old), suggesting that future in vitro work

would benefit from including a greater diversity of patients across both age and sex.

Potential applications and clinical relevance

Translating our findings to clinical applications requires refining understanding of the treatment

success or failure threshold in terms of clinically accessible information for the treatment of

GBM. In previous studies, we established that low doses of subcutaneous injections of Dex (0.2–

1 mg/kg) had limited effect on in vivo antitumor potency in orthotopic murine models of GBM,

whereas high doses of Dex (5 mg/kg) significantly compromise successful CAR T-cell therapy.

The goal of this study was to extend these findings by modeling a wide-range of in vitro
Dex levels to better predict CAR T-cell responses in the presence of Dex. Our finding evaluat-

ing IL13Rα2-CAR T-cells suggest that in vitro Dex concentrations between 10–100 ng/mL

would correspond to this treatment failure threshold. While in vivo Dex concentrations locally

in the brain and tumor microenvironment are difficult to measure and depend on the blood

brain barrier, vasculature, and brain fluid flow, it has been reported that patients receiving oral

administration of 7.5 mg of Dex result in serum Dex concentrations ranging from 2.5 to 98.1

ng/mL (median 61.6 ng/mL) within 1 to 3 hours [49], a range encompassing the treatment

threshold defined in this study. In our phase 1 clinical trials evaluating CAR T-cells for GBM,

Dex is limited to 6 mg per day in an effort to balance the clinical utility of Dex for reducing
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tumor-associated edema and immune related inflammation during CAR T-cell therapy, while

at the same time maximizing CAR T-cell treatment efficacy, and in light of this data we are

continuing to evaluate the clinical impact of Dex on therapeutic activity.

Another important consideration is the role of Dex on endogenous immune responses. In a

study evaluating neoantigen vaccine therapy for GBM, the generation of polyfunctional neoanti-

gen T-cell responses was severely compromised in patients receiving Dex during T-cell priming

[50]. Importantly, the interplay between CAR T-cell therapy and endogenous immune responses

has been shown to positively contribute to the treatment success of CAR T-cell therapy [51–53].

Thus, the impact of Dex on host immune responses, which was not evaluated in this study, will

be an important future consideration when assessing the effect of Dex on CAR T-cell therapy.

Further, as advances in personalized medicine continue to develop patient-specific treatment

plans, it is important to consider how many CAR T-cells are required for effective treatment in

addition to how much Dex. This question is essential for designing patient specific adaptive

therapies and in use of clinical decision support software. Furthermore, it requires knowledge

of the spatial extent of individual tumors, the in vivo spatial heterogeneity of CAR T-cells and

dexamethasone concentrations, and patient response and tolerance to timed-drug delivery.

One can also consider varying the concentration and timing of the high dexamethasone

dosages to still provide therapeutic levels of Dex yet avoid compromising CAR T-cell efficacy.

Previous theoretical work analysing pulsed drug delivery shows promise for this alternative

approach [19]. Yet still, another treatment strategy could be patient preconditioning with

dexamethasone followed with delayed, and perhaps pulsed, CAR T-cell delivery. Recent simu-

lated studies investigating preconditioning with chemotherapy [25] or targeted radionuclide

therapy [24] followed with CAR T-cells suggests that combination pretreatment and time-

delay approaches have clinical value, in particular for providing therapeutic dosages at lower

total concentrations. Based on the duration of observable changes to the phase-space trajectory

in Fig 5, we suggest a time-delay of 2–3 dexamethasone half-lives.

While adaptive therapy protocols have yet to be fully implemented in CAR T-cell treatment

plans, data driven methods such as clinical decision support systems and other machine learn-

ing inspired approaches have been proposed for patient monitoring [54]. Here, algorithms are

trained on historical patient treatment data in an effort to assess the likelihood that new

patients will develop cytokine release syndrome (CRS) or immune effector cell-associated neu-

rotoxicity syndrome (ICANS) as a result of CAR T-cell therapy. Typical management plans

involve, among other things, the use of corticosteroids such as dexamethasone. In this context,

our results emphasize the need to better resolve the threshold of treatment success in combin-

ing CAR T-cells and Dex given that severe and unexpected complications can occur when try-

ing to predict a treatment response that involves nonlinear drug interactions.

An essential component to understanding and predicting combination CAR T-cell and

dexamethasone treatment success in clinical scenarios is the spatial extent and heterogeneity

of tumors and the spatial variation of CAR T-cell and dexamethasone concentrations. While

advances in medical imaging and patient-specific treatment planning are aiding this effort,

equally important is the development of spatially-dependent models that can accurately

account for observed variation. Recent work in this direction has shown promise, demonstrat-

ing the ability of mathematical models to combine genotypic evolution with spatial aggrega-

tion to describe heterogeneous tumor growth [55].

Conclusion

In this work, we present an analysis of experimental data designed to untangle the interaction

between glioblastoma cancer cells, CAR T-cells, and the anti-inflammatory glucocorticoid,
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dexamethasone. We examined three different human derived primary brain tumor glioblas-

toma cell lines and found that dexamethasone can act to exhaust CAR T-cells leading to tumor

outgrowth, thereby undermining treatment success. In cases of extreme dosing, this results in

complete treatment failure and tumor progression. Our use of a nonautonomous, explicitly

time-dependent predatory-prey model to characterize the interactions demonstrates that dexa-

methasone acts to destabilize the coexistence equilibrium between CAR T-cells and tumor

cells. Furthermore, we observe that the predicted coexistence equilibrium population for the

tumor cells, defined as the ratio of the CAR T-cell death rate to the CAR T-cell proliferation/

exhaustion rate, serves as an experimental threshold for treatment success or failure. This

work has important implications for future clinical applications of combination therapy using

CAR T-cell and dexamethasone, as well as demonstrates the value of using nonautonomous

models for pharmacodynamics.

Supporting information

S1 Supporting Information. Supplementary text. Contains analysis of regression between

xCELLigence cell index and flow cytometry cell number, xCELLigence time series and Incu-

Cyte imaging of dexamethasone only treatments, expression levels of IL13Rα2 in primary

brain tumor cell lines, stability analysis for the autonomous 3 × 3 coexistence equilibrium and

for the nonautonomous 2 × 2 ‘Death’ and ‘Tumor Proliferation’ equilibria, structural identifia-

bility of the CARRGO with Dex model, and methods for parameter estimation by particle

swarm optimization.
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S1 Fig. Data and model fits for PBT138 with E:T = 1:20. Graphs of tumor cells, CAR T-cells,

and Dex concentration over time for tumor cell line PBT138 with an initial effector to target

ratio of 1:4. Temporal measurements of tumor cell population and the initial and final CAR T-

cell measurements are represented by symbols, and CARRGO model predictions are repre-

sented by lines. Colors and symbol types vary to reflect initial Dex concentrations (see top leg-

end). The progression of the tumor cell curves as initial Dex concentration increases

demonstrate the effect of Dex to reduce CAR T-cell efficacy. In particular, CAR T-cell treat-

ment is successful at low Dex initial Dex concentrations (0, 10−4, and 10−3 μg/ml) and fails at

higher initial Dex concentrations (10−2, 10−1, and 1 μg/ml), resulting in tumor cell progression.

Experimental measurements for the tumor cell population are down-sampled by 1/10 for clar-

ity.

(TIF)

S2 Fig. Data and model fits for PBT030 with E:T = 1:4. Similar graphical information as S1

Fig presented for tumor cell line PBT030 with an initial effector-to-target ratio of 1:4. For all

initial Dex concentrations, treatment success is observed, resulting in complete tumor death.

(TIF)

S3 Fig. Data and model fits for PBT030 with E:T = 1:8. Similar graphical information as S1

Fig presented for tumor cell line PBT030 with an initial effector-to-target ratio of 1:8. For all

initial Dex concentrations, treatment failure is observed, resulting in tumor cell progression

that generally increases with increasing initial Dex concentrations.

(TIF)

S4 Fig. Treatment success/Failure threshold. The ratio of CAR T-cell death (θ) to CAR T-cell

proliferation/exhaustion (κ2) rates predict CAR T-cell treatment success (tumor cell death) or

failure (tumor cell progression). We observed that a ratio of θ/κ2� 0.4 CI as the predicted
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final tumor cell population serves as a threshold for observed tumor progression or death. The

threshold of θ/κ2� 0.4 CI was consistent across all three tumor cell lines (denoted by color),

CAR T-cell E:T ratios (denoted by shape), and initial Dex concentrations (denoted by location

along the horizontal axis).

(TIF)
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