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Abstract
Background: Glioma, the most common malignant brain tumor, leads to high 
recurrence rates and disabilities in patients. Pyroptosis is an inflammasomes-
induced programmed cell death in response to infection or chemotherapy. 
However, the role of pyroptosis in glioma has not yet been elucidated.
Methods: RNA-seq data and clinical information of 660 gliomas and 847 sam-
ples were downloaded from the TCGA and CGGA, respectively. Then, data of 
104 normal brain tissues was retrieved from the GTEx for differential expression 
analysis. Twelve pairs of peritumoral tissue and glioma samples were used for 
validation. Gene alteration status of differentially expressed pyroptosis-related 
regulators in gliomas was detected in cBioPortal algorithm. Consensus clustering 
was employed to classify gliomas based on differentially expressed pyroptosis-
related regulators. Subsequently, a PS-signature was constructed using LASSO-
congressional analysis for clinical application. The immune infiltration of glioma 
microenvironment (TME) was explored using ESTIMATE, CIBERSORT, and the 
other immune signatures.
Results: cBioPortal algorithm revealed alteration of these regulators was cor-
related to better prognosis of gliomas. Then, our study showed that pyroptosis-
related regulators can be used to sort out patients into two clusters with distinct 
prognostic outcome and immune status. Moreover, a PS-signature for predicting 
the prognosis of glioma patients was developed based on the identified subtypes. 
The high PS-score group showed more abundant inflammatory cell infiltration 
and stronger immune response, but with poorer prognosis of gliomas.
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1   |   INTRODUCTION

Glioma, the most common malignant brain tumor, is 
histologically characterized by considerable cellularity 
and mitotic activity, vascular proliferation, and necro-
sis.1 Glioma patients suffer from high recurrence rates 
and disabilities due to tumor invasiveness and chemo-
therapy and radiotherapy resistance.2 Currently, tumor 
resection, adjunctive chemotherapy, and radiotherapy 
are the standard means for glioma therapy.3 However, 
these treatment options have limited therapeutic ef-
fects on glioma; thus, the disease remains a serious 
clinical problem.4 This calls for elucidation of glioma 
tumorigenesis and exploration of glioma biomarkers, 
with the overall goal of developing effective therapeutic 
strategies.

Pyroptosis, an inflammasome-induced programmed 
cell death mediated by gasdermins, is thought to mod-
ulate clearance of pathogens from infections and rep-
resents caspase dependence, nuclear condensation, and 
DNA fragmentation.5,6 However, unlike apoptosis, it is 
critically dependent on plasma membrane pores formed 
by members of the gasdermin protein family, which is 
usually the consequence of inflammatory caspase activa-
tion.7 Although the release of inflammatory factors in py-
roptosis might create a tumor-suppressive environment, 
pyroptosis can hold multiple roles in various cancers. 
Production of pyroptosis-related regulator and inflam-
masomes has been shown to suppress tumor growth 
(colorectal cancer, liver cancer, and nasopharyngeal 
carcinoma), whereas pyroptosis-related inflammasome 
might promote the growth of cancer cells in melano-
ma.8–11 Some studies have revealed that several regula-
tory noncoding RNA could induce pyroptosis in glioma 
tumor cells and inhibit their proliferation in vitro.12 
However, the inflammatory microenvironment created 
by pyroptosis played a significant role in the invasion 
and growth of glioma.13,14 Zhang et al. newly identified a 
four pyroptosis-related gene signature (CASP4, CASP9, 
GSDMC, and IL1A) which had an impact on the TME 
and immune cell infiltrations of glioma.15 Besides, a risk 
model of 10 pyroptosis-related genes was constructed to 
predict the prognosis of patients with glioma.16 However, 

comfirmatory experiments were lacking for these find-
ings. Therefore, given the complexity of the microen-
vironment, studies should be conducted to thoroughly 
elucidate the biofunction of pyroptosis-related regula-
tors and their effect on glioma prognosis.

In this study, gliomas were obtained from The Cancer 
Genome Atlas (TCGA) database, Chinese Glioma 
Genome Atlas (CGGA) and The Genotype-Tissue 
Expression (GTEx) Project. Then, we screened differ-
entially expressed pyroptosis-related regulators in glio-
mas and explored their potential biofunction. Moreover, 
this study identified two pyroptosis-related clusters of 
glioma samples, which showed significantly different 
molecular characteristics and immune cell infiltration. 
Subsequently, a PS-signature was established based on 
the identified subtypes, followed by exploration of the 
biological pathways associated with the risk signature. 
Notably, the PS-signature showed the potential to be a 
biomarker for glioma diagnosis and reflected the im-
mune microenvironment of gliomas.

2   |   METHOD AND MATERIAL

2.1  |  Defining pyroptosis-related 
regulators and data processing

Forty-two human pyroptosis-related regulators were de-
fined from five sources, including Zhang, Rogers, He, 
Shi, and Gene Ontology (GO) project.17–21 Next, FPKM 
RNA-seq data of 694 gliomas were obtained from LGG 
and GBM datasets in The Cancer Genome Atlas (TCGA, 
https://portal.gdc.cancer.gov). From the Chinese Glioma 
Genome Atlas (CGGA, https://www.cgga.org.cn), we 
downloaded RNA sequencing data of 1018 gliomas from 
693_cohort and 325_cohort. In addition, we retrieved 
the RNA-seq data of 104 normal brain tissues from the 
Geneotype-Tissue Expression database (GTEx, https://
www.gtexp​ortal.org/) for differential expression analy-
sis.22 The “ComBat” algorithm of the “SVA” R package 
was employed to eliminate the batch effects between dif-
ferent datasets. Patients with incomplete clinicopatho-
logic information were excluded.

Conclusion: The findings of this study provide a therapeutic basis for future re-
search on pyroptosis and unravel the relationship between pyroptosis and glioma 
prognosis. The risk signature can be utilized as a prognostic biomarker for glioma.
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2.2  |  Analysis of differentially  
expressed pyroptosis-related regulators in 
glioma and identification of  
pytoptosis-related patterns

The “limma” R package was used to obtain differen-
tially expressed pyroptosis-related regulators (cut-
off: adjusted (p < 0.05 and | log2FC) | >0.5). STRING 
(http://www.strin​g-db.org), a website tool for analyzing 
protein–protein interactions, was applied to visualize the 
network of differentially expressed pyroptosis-related 
regulators and perform functional enrichment analy-
sis.23 In the Human Protein Atlas (HPA) online da-
tabase (Protein Atlas version 20.1, http://www.prote​
inatl​as.org/), we compare the expression of pyroptosis-
related regulators at a translational level.24–26 In ad-
dition, mutation and copy-number alteration (CNA) 
status of differentially expressed pyroptosis-related 
regulators in gliomas was further explored in the cBio-
Portal algorithm (http://www.cbiop​ortal.org/), followed 
by evaluating the impact of pyroptosis-related regula-
tors' alteration on glioma prognosis.27 Classifying sam-
ples by predefined gene expression characteristics has 
been proven to be an important method to distinguish 
samples for further analysis.28 The consensus clustering 
algorithm from the “ConsensusClusterPlus” R package 
was performed to identify cluster members in glioma on 
the basis of the expression of pyroptosis-related regu-
lators.29 Taking clinical data into consideration, we 
determined the difference in the prognosis of samples 
between the clusters.

2.3  |  Construction and validation of a  
PS-related signature

It is well known that a sparse linear predictive model can 
be constructed using the Lasso algorithm.30 Herein, we 
constructed an efficient prediction model using LASSO 
analysis.

PS-score = 
∑n

i
expression level of pyroptosis−related factors

(i) ∗�(i) (β: coefficient of key pryoptosis-related regulator).
Kaplan–Meier survival curves were performed to com-

pare the prognosis of different PS-score groups. Time-
dependent ROC curves (a quantitative analysis tool for 
a model) were generated to determine the efficiency of 
the model. Signature-related genes were integrated in the 
MSigDB database for functional analysis.31 The “rms” R-
package was used to establish a nomogram (a statistical 
model with a user-friendly graphical interface) with the 
goal of predicting the clinical outcomes of glioma pa-
tients. Notably, a calibration plot was generated to assess 
the capacity of the nomogram.32

2.4  |  TME cell infiltration, tumor 
mutation burden (TMB), and stemness 
score of gliomas

A previous study reported that tumor-infiltrating 
immune cells in the microenvironment are closely 
associated with the immune response to tumor pyrop-
tosis.33 In this study, we used the LM22 signature from 
CIBERSORT and 28 previously reported immune cells 
signatures to quantify the proportions of immune cells 
in glioma.34 In addition, the fraction of immune and 
stromal cells in glioma samples was calculated using the 
“Estimate” method.35 Given that some tumoral param-
eters play significant roles in tumor immune response, 
their association with the PS-signature deserved to be 
analyzed. It should be noted that the tumor mutation 
burden (TMB) is associated with abundance of antigens 
and neoantigens, which leads to increased immuno-
genicity.35,36 High stemness indices (mDNAsi) showed 
a strong association with pathologic grade, aggressive-
ness, and poor clinical outcomes.37 Therefore, this study 
compared the TMB and stemness indices of different 
groups in gliomas.

2.5  |  RNA extraction and real-time 
quantitative PCR (qRT-PCR)

Total RNA was extracted from 12 pairs of adjacent non-
tumor brain tissues and glioma samples by means of a 
TRIzol reagent (AG21102, Accurate Biotechnology). 
Subsequently, the extracted RNA was reverse-
transcribed using the PrimeScript RTMasterMix kit 
(AG11706, Accurate Biotechnology). Finally, the SYBR 
GREEN Kit (AG11701, Accurate Biotechnology) was 
used to perform qRT-PCR and quantify pyroptosis-
related regulators in gliomas and brain tissues in accord-
ance with the manufacturer's protocol. Table  1 shows 
the sequences of primers used for qRT-PCR. Notably, 
relative mRNA expression was normalized to GAPDH 
(housekeeping gene) mRNA expression and quantified 
using the 2 − ΔΔCt method.

2.6  |  Statistical analysis

Correlation analysis was calculated using Spearman's 
test. Log-rank tests and Kaplan–Merier curve were de-
rived to determine the prognosis differences between 
different groups of glioma patients. Wilcoxon test and 
the Kruskal–Wallis test were used to compare differ-
ences between groups. p < 0.05 was considered statisti-
cally significant.

http://www.string-db.org
http://www.proteinatlas.org/
http://www.proteinatlas.org/
http://www.cbioportal.org/
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3   |   RESULT

3.1  |  Expression variations and genetic 
changes of pyroptosis-related regulators in 
glioma

A sum of 42 pyroptosis-related genes were identified, 
followed by further analysis of differentially expressed 
genes (DEGs) in glioma. Consequently, 20 pyroptosis-
related regulators were screened out in the TCGA-
GTEx cohort, whereas 18 pyroptosis-related regulators 
showed significant differences between normal brain 
tissues and glioma tissue in the CGGA-GTEx cohort 
(Figure 1A–D). Next, a protein network was used to de-
tect and visualize the ten common DEGs (Figure 1E,F). 
At the genetic level, TP53 showed the highest fre-
quency of mutations, whereas IL1B showed the least 
frequency of mutations (Figure  2A). Taking clinical 
data of gliomas into consideration, alteration of these 
regulators was correlated to better prognosis of gliomas 
(Figure  2B,C). Moreover, ten pyroptosis-related regu-
lators were upregulated in glioma samples compared 
to normal brain tissues, with exception of GSDMB 
(Figure 2D,E and Figure S1–S3).

3.2  |  Glioma classification pattern on the 
basis of pyroptosis-related regulators

On the basis of ten pyroptosis-related regulators, the con-
sensus clustering method was performed, and two sub-
types were identified: pyroptosis-related IS1 in 359 samples 
and pyroptosis-related IS2 in 301 samples (Figure 3A–C). 
IS1 glioma patients had better survival prognosis than IS2 

patients in both TCGA and CGGA cohorts (Figure 3D,E). 
The potential biological behaviors associated with these 
clusters were detected in the STRING platform based on 
the protein network mentioned above. Furthermore, gene 
set variation analysis (GSVA) was performed to analyze 
the biological processes significantly correlated with IS2 
and IS1 (Figure 3F). Results showed that IS1 was mainly 
enriched in pathways associated with carcinogenic activa-
tion pathway, such as cell division, DNA repair, and nega-
tive regulation of ubiquitination. On the other hand, IS2 
was mainly enriched in immune-related signaling path-
ways, including cytokine production and regulation of im-
mune effector process.

3.3  |  Differences in clinical 
characteristics and TME infiltration 
between the two pyroptosis-related  
subtypes

The two pyroptosis-related patterns could be used to 
distinguish glioma samples (Figure  4A). Therefore, we 
performed a comprehensive analysis of the association 
between clinical information and this pyroptosis-related 
classification. Interestingly, the expression level of most 
pyroptosis-related regulators was higher in cluster 2 than 
in cluster 1 (Figure 4B). Next, the immune signatures of 
gliomas were analyzed to evaluate the immune status of 
different clusters. The two glioma subtypes had distinct 
characteristics of TME immune cell infiltration where 
IS2 can be considered to be immunologically “hot” for 
highly abundant immune cell infiltration, whereas IS1 
was defined as an immunologically “cold” phenotype 
with a sparse population of immune cells (Figure  4C). 

T A B L E  1   Primer of pryoptosis-related regulators

Gene Forward Reverse

TREM2 5′-AGACTACTCTGCCTGAACACT-3′ 5′-CCAGCTAAATATGACAGTCTTGGAT-3′

IL18 5′-AGAGATAATGCACCCCGGAC-3′ 5′-ACACTTCACAGAGATAGTTACAGCC-3′

CASP3 5′-GACTCTGGAATATCCCTGGACAACA-3′ 5′-AGGTTTGCTGCATCGACATCTG-3′

TP53 5′-GAGGCCTTGGAACTCAAGGATG-3′ 5′-TCAGGCCCTTCTGTCTTGAACA-3′

AIM2 5′-AAAAGCTGGTGAAACCCCGAA-3′ 5′-CATTGTGTCCTCGTTTCTAACCC-3′

GSDMB 5′-AGGAAACCCTGAAAAGCGACC-3′ 5′-GCACCATCCTTCTTCATCGTCT-3′

IL1B 5′-TGAAGCAGCCATGGCAGAAG-3′ 5′-GGTCGGAGATTCGTAGCTGGA-3′

CASP1 5′-CAAGTCAAGCCGCACACGTCT-3′ 5′-AGCTCTGTAGTCATGTCCGAAGCA-3′

CHMP6 5′-CGGCAAATAGACGAGCTCCT-3′ 5′-CTCTATTTGTTCCTGAGTGATTGCG-3′

GZMA 5′-TATGACCCAGCCACACGCGAA-3′ 5′-GGTTCCTGGTTTCACATCGTCCC-3′

GAPDH 5′-GCCATCACAGCAACACAGAA-3′ 5′- GCCATACCAGTAAGCTTGCC -3′

Abbreviations: AIM2: absent in melanoma 2; CASP1, caspase 1; CASP3: caspase 3; CHMP6: charged multivesicular body protein 6; GAPDH: glyceraldehyde-
3-phosphate dehydrogenase; GSDMB: gasdermin B; GZMA, granzyme A; IL18, interleukin 18; IL1B: interleukin 1 beta; TP53: tumor protein 53; TREM2, 
triggering receptor expressed on myeloid cells 2.
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F I G U R E  1   Differentially expressed pyroptosis-related regulators between glioma and normal brain tissue. (A) Volcano plot showing 
the differentially expressed pyroptosis-related regulators between gliomas and normal brain tissues in the TCGA-GTEx cohort. (B) Volcano 
plot showing the differentially expressed pyroptosis-related regulators between gliomas and normal brain tissues in the CGGA-GTEx cohort. 
(C) Heatmap showing the differentially expressed pyroptosis-related regulators between gliomas and normal brain tissues in the TCGA-
GTEx cohort. (D) Heatmap showing the differentially expressed pyroptosis-related regulators between gliomas and normal brain tissues in 
the CGGA-GTEx cohort. (E) Venn diagram showing common differentially expressed pyroptosis-related regulators. (F) Protein interaction 
network (PPI) of common differentially expressed pyroptosis-related regulators.
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The CIBERSORT algorithm showed that IS1 was en-
riched with follicular helper T cells, naive B cell, and rest-
ing mast cells, whereas IS2 was enriched with activated 

mast cells and activated dendritic cells (Figure  4D). 
Furthermore, most immune signatures in IS2 were higher 
than those in IS1, which validated our abovementioned 

F I G U R E  2   Characteristics and differences of pyroptosis-related regulators in gliomas. (A) Landscape of genomic alteration profiles in 
glioma patients. Corresponding colors had annotations at the bottom which mean different mutation types. (B) Effect of genomic alteration 
on the disease-free survival (PFS) of gliomas. (C) Effect of genomic alteration on the overall survival (OS) of gliomas. (D) Expressions of 
pyroptosis-related regulators between normal tissues (n = 108) and glioma tissues (n = 660) in TCGA cohort. (E) Expressions of pyroptosis-
related regulators in 12 pair peritumoral brain tissues and corresponding glioma tissues from Guangdong Provincial People's Hospital. 
*p < 0.05; **p < 0.01; ***p < 0.001; ns, not statistically significant.
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F I G U R E  3   Subgroups of gliomas related by pyroptosis-related regulators. (A) Cumulative distribution function curve and (B) delta area 
of immune-related genes in TCGA cohort. (C) Consensus score matrix of all samples when k = 2 in TCGA cohorts. (D) OS curves for the two 
pyroptosis-related clusters based on 660 gliomas from TCGA cohorts. (E) Kaplan–Meier curves showing OS of pyroptosis-related clusters in 
CGGA cohort. (F) An aggregate of the potential biological interaction of pyroptosis-related regulators from STRING platform. The heatmap 
was used to visualize biological processes analyzed by GSVA which showed the active biological pathways in distinct pyroptosis-related 
clusters. ***p < 0.001.
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F I G U R E  4   Different pyroptosis-related clusters showed diverse clinical features and TME cell infiltration. (A) Principal component 
analysis for the expression of pyroptosis-related regulators to distinguish IS1 (n = 359) from IS2 (n = 301) in TCGA cohorts. (B). Consensus 
clustering of differential expression genes between the two pyroptosis-related clusters in the TCGA cohort. (C) The abundance of TME 
infiltrating cells between the two pyroptosis-related clusters analyzed by 28 previous reported immune signatures in the TCGA cohort. (D) 
CIBERSORT algorism showed the difference of immune infiltrates in two pyroptosis-related clusters. € Differential enrichment scores of 56 
immune signatures between two pyroptosis-related clusters. * < 0.05; **p < 0.01; ***p < 0.001; ns, not statistically significant.
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F I G U R E  5   Generation of a gene expression signature to predict patient survival based on pyroptosis-related clusters. (A, B) In the 
LASSO-Cox model of the TCGA cohort, the minimum standard was adopted to obtain the value of the super parameter λ by 10-fold cross-
validation. (C) OS curves for the different PS-score subgroups about 660 patients with glioma from the TCGA cohort. (D) OS curves for the 
different PS-score subgroups about 847 glioma samples from CGGA cohorts. (E, F). Time-dependent receiver operating characteristic (ROC) 
analysis of the PS-score in the TCGA cohort and CGGA cohort. (G) Expressions of pyroptosis-related regulators between different PS-
signature groups in the TCGA cohort. *p < 0.05; ** < 0.01; ***p < 0.001; ns, not statistically significant.
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finding (Figure  4E). Collectively, these results suggest 
that pyroptosis-related patterns with different molecular 
characteristics can be potential biomarkers for different 
tumoral immune statuses.

3.4  |  Development of a pyroptosis-related 
signature and exploring its biofunction

To apply the cluster method in glioma evaluation, we de-
veloped a gene signature that could predict the diagno-
sis and treatment of each glioma patient. Three of the 10 
pyroptosis-related regulators (CASP1, CASP3, and IL18) 
were filtered out in the LASSO-Cox regression model 
and used to construct a pyroptosis-related signature 
(Figure 5A,B and supplementary Figure 2). Coefficients 
of the three hub pyroptosis-related regulators were cal-
culated and listed in table  2. Next, we divided glioma 
patients into the low-risk group and high-risk group to 
determine the prognosis predicting value of “PS-score”. 
Low-risk group glioma patients had a survival advantage 
over those in the high-risk group (Figure  5C,D). Time-
dependent ROC analysis further proved that the PS-score 
had a good diagnostic performance in glioma patients 
(Figure  5E,F). Last but not least, ten pyroptosis-related 
regulators were upregulated in high-risk group compared 
to low-risk group, with exception of GSDMB (Figure 5G).

The association between risk-score and clinical fac-
tors was also assessed. The risk-score was at quanti-
tatively higher levels in IS2 than in IS1 (Figure S3A). 
However, it showed no difference between lower-grade 
glioma (LGG, grade II and grade III) and glioblastoma 
(GBM, grade IV) (Figure  S3B). Moreover, patients in 
the low-risk score group had better prognostic out-
comes than patients in the high-risk score group in 
both LGG and GBM (Figure 3C,D). Furthermore, the 
PS-score showed significant difference in the group-
ing of the other clinical factors (histologic type, age, 
IDH status, and 1p19q status) (Figure  3E–H). Given 
that the prognostic label of glioma plays a significant 
role in glioma treatment, we explored the function 
of the PS-score. In total, 1137 DGEs were detected 
in the TCGA-GETx cohort (p < 0.05, | log2FC | >2) 
(Figure 6A). A Spearman correlation analysis was then 
performed to assess the correlation between PS-score 

and prognostic DEGs. Target genes (Spearman's rank 
correlation analysis | r |>0.5, p < 0.001) was selected 
for further analysis (Figure 6B,C). Finally, functional 
enrichment analysis based on Gene Set Enrichment 
Analysis (GSEA) was performed on the detected tar-
get genes to determine their biofunction (p < 0.05, 
Figure 6D).

3.5  |  The PS-score could indicate TME 
differences

Subsequently, the association between immune infiltra-
tion and PS-score was investigated. The ESTIMATE anal-
ysis revealed that immune-related scores were higher in 
the high PS-score group than in the low PS-score group 
(Figure 7A–D). We found the high PS-score group showed 
more abundant immune infiltration than the low PS-
score group, which confirmed the pre-described result 
(Figure  7E). Importantly, anti-tumor immune cells, in-
cluding activated NK cells and follicular helper T cells, 
showed negative correlations with PS-score, whereas 
the resting memory cells and macrophages had a posi-
tive trend with PS-score (Figure  7F). It is worth noting 
that immune checkpoints reflect the immunosuppres-
sive status of a tumor. Herein, it was found that the im-
mune checkpoints were upregulated in the samples of the 
high PS-score group than those of the low PS-score group 
(Figure  7G). Furthermore, the TMB and stemness score 
of different PS-scores were calculated. The high PS-score 
group had a higher TMB and stemness score than the low 
PS-score group (Figure 7H,I), suggesting that the PS-score 
was positively correlated with higher glioma malignancy. 
However, immunotherapy still has potential in high PS-
score glioma patients.

3.6  |  The PS-score could predict 
prognosis in clinical scenarios

Furthermore, the risk-score and other clinicopathologic 
characteristics were incorporated into multivariate Cox 
regression analysis. Results showed that the PS-score can 
be regarded as an independent prognostic factor of gli-
oma (Figure 8A). Given the high predictive capability of 
the PS-score, a nomograph integrating PS-score and four 
clinicopathologic factors was constructed with the aim of 
predicting the survival rates of glioma patients at 1, 3, and 
5 years (Figure 8B). The calibrations showed good predic-
tive value for gliomas in both TCGA and CGGA cohorts 
(Figure  8C,D). Finally, the alluvial diagram displayed 
interaction of different characteristics in glioma patients 
(Figure 8E).

T A B L E  2   Coefficient of pyroptosis-related regulators

Pyroptosis-related regulators Coefficient

CASP1 0.214

IL18 0.052

CASP3 0.322

Abbreviations: CASP1, caspase 1; CASP3: caspase 3; IL18, interleukin 18.
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4   |   DISCUSSION

Pyrptosis is a special kind of programmed cell death 
in response to pathogens.38 Splicing of an important 

pyroptosis-related regulator, GSDMD, suppresses sev-
eral oncogenic pathways (MAPK, PI3K-mTOR, and 
WNT).39–41 It has been reported that cleavage of GSDMD 
can switch apoptosis to pyroptosis, which promotes 

F I G U R E  6   Function enrichment analysis of co-expressed genes associated with pyroptosis-related signature (PS-signature). (A) An 
overview of the differential gene expression between the gliomas and normal brain tissues in TCGA-GTEx cohorts. (B) Univariate Cox 
regression analyses of OS in TCGA cohorts. The p-values were obtained by Univariate Cox regression. (C) Venn plots show the PS-signature 
related genes. (D) Heatmap was used to visualize biological processes analyzed by GSEA which showed the active biological pathways in the 
distinct group of PS-signature.
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the function of lymphocytes in breast cancer cells, fa-
cilitates tumor necrosis, and predicts poor prognosis 
in patients.42 This suggests that the prognostic value of 

pyroptosis-related regulators in glioma cannot be judged 
based on their performance in other tumors. Therefore, 
studies should be conducted to further explore the 

F I G U R E  7   Different PS-signature showed diverse clinical features and TME cell infiltration. Association between PS-score and 
ESTIMATE signature: (A) Estimate score, (B) Stromal score, (C) Immune score, and (D) Tumor purity. (E) Abundance of TME infiltrating 
cells between different PS-signature groups by 28 previous reported immune signatures. Columns of the heatmap represented 660 glioma 
samples. (F) Correlation between TME infiltration and PS-signatures by CIBERSORT signature. (G) Differential expression of six immune 
checkpoints between different PS-signature groups. (H) Correlation analysis between PS-score and stemness score. (I) Correlation analysis 
between PS-score and TMB. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not statistically significant.
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pathways and pyroptosis associated molecules in gli-
oma, with the overarching goal of creating a prognos-
tic signature to help clinicians understand the impact of 
these genes' expression.

In our study, we detected ten differentially expressed 
pyroptosis-related regulators in glioma. Among them, 
TREM2 can inhibit CASP1-related pyroptosis and pro-
mote host resistance to inflammation.43 In glioma, 

F I G U R E  8   Characteristics of the PS-signature model. (A) Multivariate Cox regression analysis showing the risk signature as an 
independent prognostic factor in glioma. (B) Nomogram predicting 1-, 3- and 5-year OS in the TCGA cohort. (C) Calibration plots of the 
nomogram predicting OS at 1, 3, and 5 years in the TCGA cohorts. (D) Calibration plots of the nomogram predicting OS at 1, 3, and 5 years 
in the CGGA cohorts. (E) Alluvial diagram showing the changes of pyroptosis-related clusters, PS-score, age, gender, grades, pan-cancer 
immune subtypes in TCGA cohort. *p < 0.05; ***p < 0.001.
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overexpression of TREM2 enhances tumor cell prolifer-
ation and invasion.44 AIM2 takes part in the construction 
of inflammasomes who recognizes double-stranded DNA 
breaks (DSBs) and motivate CASP1 activation and pyro-
ptosis.45,46 In addition, AIM2 inhibited Gli1 expression 
through the smoothened homolog (SMO)-independent 
pathway and regulated tumor cell proliferation and mi-
gration in a Gli1-dependent manner.47 Recurrent gliomas 
often contain driver mutations in TP53, which are dis-
tinct from those observed in the initial tumor.48 CASP1 
is upregulated by TP53 in response to stress, thereby 
inducing cell necrosis and suppressing oncogenic trans-
formation.49,50 CHMP6 was reported to disrupt mito-
chondrial potential and reduce ATP synthesis, causing 
cellular swelling and cell death.51 However, CHMP6 also 
interacts with Ras to harbor it on the endosome, play-
ing a significant role in EGFR recycling and enhancing 
growth factor signaling.52 Furthermore, the expression 
of these pyroptosis-related regulators showed significant 
difference in two subtypes due to various heterogeneities. 
Interestingly, IS2 had more infiltration of immune cells 
than IS1, but it also had a worse prognosis. It was pre-
viously reported that inflammation and necrosis might 
promote the migration and invasion of glioma stem cells 
(GSCs).53 Therefore, we speculated that the complicated 
microenvironment caused by pyroptosis leads to genetic 
alteration and upregulation of oncogenes, thereby stimu-
lating tumor proliferation.

To accomplish better clinical application of the PS-
related cluster, a PS-related signature was constructed 
for predicting glioma prognosis based on pre-identified 
subtypes. Through Lasso regression analysis, three 
pyroptosis-related regulators (CASP1, CASP3, and IL18) 
was identified to construct the model. A previous study 
reported that CASP1 assists in regulating T cell immunity 
and innate immunity in three pyroptosis-related regula-
tors of PS-related signature, which might indicate their im-
portant roles in tumor checkpoint inhibition.54 IL-18 was 
also shown to elicit anti-glioma response in vivo through 
production of IFN-γ and NO from macrophages and NK 
cells.55 However, another study reported that microglia se-
crete IL-18 to promote migration of glioma in the tumor 
microenvironment.56 Although the high PS-score group 
showed abundant infiltration of immune cells, more im-
munosuppressive APCs and regulatory T cells were also 
localized in these samples, suggesting that pyroptosis in 
glioma indeed invoked more immune response. According 
to a previous study, patients with higher somatic TMB ex-
hibited enhanced responses, lasting clinical benefits, and 
long-term survival after treatment with immune check-
point blockade therapy.36 Fortunately, a high-risk score 
was positively correlated with TMB, providing hope for 

immunotherapy. In brief, the PS-signature was not only 
significantly associated with glioma prognosis, but it also 
had important reference value for immunotherapy.

In this study, we perform a comprehensive analysis of 
pyroptosis-related regulators and construct a pyroptosis-
related model to predict glioma prognosis. Actually, Gao 
et al have shown that increasing expression levels of 
GSDMD were associated with aggressiveness of NSCLC, 
including higher TNM stage and larger tumor volume.57 
Suppression of GSDMD inhibited the activation of EGFR/
Akt signal in cancer cells and impede their proliferation. 
Therefore, this finding suggested that some of pyroptosis 
regulators play cancer-promoting effect in glioma, which 
is consistent with the previous study. Chemotherapy and 
radiotherapy were important inducers of glioma pyropto-
sis for tumor necrosis and following immune response.58 
Nevertheless, CASP3 was reported to activate iPLA2 and 
stimulate tumor cell repopulation after radiotherapy, in-
creasing recurrence rate and deaths of patients.59 Besides, 
hypoxia is one of the most important factors in the tumor 
micro-environment because it modulates the anti-tumor 
immune response and is associated with tumor radio-
resistance. Hypoxia-induced formation of the PD-L1/
STAT3 complex promotes expression of GSDMC to in-
duce pyroptosis, followed by tumor necrosis in hypoxic 
regions, which suppress antitumor immune response 
from pyroptosis and is critical to tumor proliferation.42,60 
In conclusion, our findings of the unexpected effects of 
pyroptosis in glioma are intriguing and warrant further 
investigation.

5   |   CONCLUSION

Glioma exhibits complex immune microenvironment, 
such as immunosuppression of infiltrating macrophages 
and exhaustion of T cells. As an important immune re-
sponse, pyroptosis plays significant roles in tumor prolif-
eration, invasion, and metastasis. Our findings provide a 
novel insight on the biofunction of pyroptosis in glioma. 
Herein, a pyroptosis-related subtyping and a PS-signature 
of glioma was constructed for predicting the prognosis of 
glioma and reflecting the immune status of patients.
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