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ABSTRACT

Central nervous system (CNS) cancers account for approximately one
quarter of all pediatric tumors and are the leading cause of cancer-
related death in children. More than 4,000 brain and CNS tumors are di-
agnosed each year in children and teens, and the incidence rate has re-
mained stagnant in recent years. Themost commonmalignant pediatric
CNS tumors are gliomas, embryonal tumors consisting of predominately
medulloblastomas, and germ cell tumors. The inaugural version of the
NCCNGuidelines for Pediatric Central Nervous SystemCancers focuses
on the diagnosis and management of patients with pediatric diffuse
high-grade gliomas. The information contained in the NCCNGuidelines
is designed to help clinicians navigate the complex management of pe-
diatric patients with diffuse high-grade gliomas. The prognosis for these
highly aggressive tumors is generally poor, with 5-year survival rates of
,20%despite the use of combinedmodality therapies of surgery, radia-
tion therapy and systemic therapy. Recent advances in molecular profil-
ing has expanded the use of targeted therapies in patients whose
tumors harbor certain alterations. However, enrollment in a clinical trial is
the preferred treatment for eligible patients.

J Natl Compr Canc Netw 2022;20(12):1339–1362
doi: 10.6004/jnccn.2022.0062

NCCN CATEGORIES OF EVIDENCE AND CONSENSUS

Category 1: Based upon high-level evidence, there is uniform
NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform
NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is
NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major
NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise
noted.

Clinical trials: NCCN believes that the best management of
any patient with cancer is in a clinical trial. Participation in
clinical trials is especially encouraged.

PLEASE NOTE

The NCCN Clinical Practice Guidelines in Oncology (NCCN
Guidelines®) are a statement of evidence and consensus of the
authors regarding their views of currently accepted approaches
to treatment. Any clinician seeking to apply or consult the NCCN
Guidelines is expected to use independent medical judgment in
the context of individual clinical circumstances to determine any
patient’s care or treatment. The National Comprehensive
Cancer Network® (NCCN®)makes no representations orwarran-
ties of any kind regarding their content, use, or application and
disclaims any responsibility for their application or use in anyway.

The complete NCCN Guidelines for Pediatric Central Ner-
vous System Cancers are not printed in this issue of JNCCN
but can be accessed online at NCCN.org.

© National Comprehensive Cancer Network, Inc. 2022. All
rights reserved. The NCCN Guidelines and the illustrations
herein may not be reproduced in any form without the
express written permission of NCCN.
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Overview
Pediatric central nervous system (CNS) tumors are fun-
damentally different than adult CNS tumors in terms of
tumor type, histology, tumor location, molecular char-
acterization, and treatment options. Although pediatric
tumors are rare, accounting for only 1% of all tumor di-
agnoses, they are the leading cause of disease-related
death in children. CNS cancers are the second most
common malignancy in children after leukemia and
lymphoma combined.1 They account for 26% of all pe-
diatric tumors and are the leading cause of cancer-re-
lated death in children.2 More than 4,000 brain and
spinal cord tumors are diagnosed each year in children
and teens, and the incidence rate has remained stag-
nant in recent years.1 According to the Central Brain
Tumor Registry of the United States Statistical Report,
the incidence rate of primary CNS tumors in children
,14 years of age was 5.83 per 100,000 population be-
tween 2013 and 2017.3 The most common malignant
pediatric CNS tumors are gliomas, embryonal tumors
consisting of predominately medulloblastomas, and
germ cell tumors.3 Information on the literature search
criteria and guidelines update methodology, using the
PubMed database,4 are available in these guidelines at
NCCN.org.

Tumor Types
TheNCCNGuidelines for Pediatric Central Nervous System
Cancers focus on the management of pediatric patients
with malignant diseases of the CNS. These guidelines will
be updated annually to include new information or treat-
ment philosophies as they become available. However, be-
cause this field continually evolves, practitioners should
use all available information to determine the best clinical
options for their patients. The initial version of the guide-
lines addresses pediatric diffuse high-grade gliomas. Addi-
tional tumor types will be addressed in subsequent
versions of theNCCNGuidelines.

Principles of Management
Several important principles guide surgical management
and treatment with radiation therapy (RT) and systemic
therapy for children with CNS tumors, including tumor
histology, patient age and performance status, location of
the tumor in the brain, resectability of the tumor, and prior
management. All patients with pediatric diffuse high-grade
gliomas should be cared for by a multidisciplinary team
with experiencemanagingCNS tumors. The involvement of
pediatric oncologists/neuro-oncologists, pediatric radiation
oncologists, pathologists with expertise in neuropathology
and molecular pathology, pediatric neuroradiologists, and
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pediatric neurosurgeons is strongly encouraged. The patho-
logic diagnosis is critical and may be difficult to accurately
determinewithout sufficient tumor tissue. Review of the tu-
mor tissue by an experienced neuropathologist is highly
recommended.

The information contained in the algorithms and prin-
ciples of management sections are designed to help clini-
cians navigate the complex management of pediatric
patients with CNS tumors. Systemic therapy options are
listed in “Principles of Systemic Therapy” (page 1352); how-
ever, enrollment in a clinical trial is the preferred treatment
for eligible patients.

WHO Classification of Pediatric CNS Tumors
Due to the unique nature of childhood tumors made clear
by advancements in molecular analyses, pediatric tumors
are now covered in a separate volume of the recently pub-
lished fifth edition of the WHO Classification of Tumors of
the Central Nervous System (WHOCNS5).5,6 The inaugural
WHO Classification of Pediatric CNS Tumors featured fun-
damental paradigm shifts affecting pediatric CNS tumor
classification, including the use of a layered, integrated di-
agnostic approach involving both histologic andmolecular
analyses; the inclusion of novel, molecularly defined tumor
entities; the adaptation of tumor grading as a measure of

differential aggressiveness within a tumor type rather than
between tumor types; and the widespread introduction of
novelmolecular diagnostic tools for tumor classification.

Pediatric Diffuse High-Grade Gliomas
In WHO CNS5, gliomas are divided into 4 distinct catego-
ries: adult-type diffuse gliomas (the majority of primary
brain tumors in adults), pediatric-type diffuse low-grade
gliomas (expected to have good prognoses), pediatric-
type diffuse high-grade gliomas (expected to have poor
prognosis), and circumscribed astrocytic gliomas (refer-
ring to their more concentrated growth pattern).5

The NCCN Guidelines for Pediatric CNS Cancers
currently include recommendations for the management
of the 4 types of pediatric-type diffuse high-grade glio-
mas recognized in WHO CNS55:

� diffuse hemispheric glioma, H3 G34-mutant
� diffuse pediatric-type high-grade glioma, H3–wild-types

and IDH–wild-type
� infant-type hemispheric glioma
� diffuse midline glioma (DMG), H3 K27-altered

The first 3 are newly recognized tumor entities. Dif-
fuse hemispheric glioma, H3 G34-mutant is a malignant,
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infiltrative glioma of the cerebral hemispheres with a
missense mutation in the H3F3A gene that results in a
G34R/V substitution of histone H3. Diffuse pediatric-type
high-grade glioma, H3–wild-type and IDH–wild-type rep-
resents a mixture of distinct molecular subtypes specified
as being wild-type for both H3 and IDH gene families. In-
fant-type hemispheric glioma is a novel tumor type typi-
cally occurring in newborns and very young children and
is associated with fusion genes involving ALK, ROS1,
NTRK1/2/3, or MET. Although this is not a new entity, the
nomenclature was changed from DMG, H3 K27-mutant
to DMG, H3 K27-altered to include subtypes with a dif-
ferent mechanism for the loss of H3K27 trimethylation
(eg, EZHIP protein overexpression).5,6

Introduction to Pediatric Diffuse High-Grade Glioma

Epidemiology
Pediatric diffuse high-grade glioma has an incidence rate
of roughly 1.8 per 100,000 population and represents ap-
proximately 15% of all intracranial neoplasms diagnosed
in children and adolescents,19 years of age (see INTRO,
page 1340).1,7 Although incidence rates generally decrease
with age from 0–19 years, they are highest for age groups
0–4 years (6.18/100,000 population) and 15–19 years (7.09/

100,000 population).3 The prognosis for these highly ag-
gressive tumors is generally poor, with 5-year survival rates
of,20% despite the use of combinedmodality therapies of
surgery, RT, and systemic therapy.7 Prognosis and survival
rates depend onmultiple factors, including age at presenta-
tion, tumor location, sex, extent of resection, histologic sub-
type and genomic profile.8 Although diagnosis is more
common in females, males typically have higher mortality
rates fromCNS tumors.3

Risk Factors
Although the cause of most pediatric CNS tumors is un-
known, several genetic and environmental factors havebeen
linked to an increased risk of primary brain tumor develop-
ment in children. Certain inherited cancer predisposition
syndromes, including neurofibromatosis type-1, Li-Frau-
meni syndrome, and Turcot syndrome/Lynch syndrome/
constitutional mismatch repair deficiency (cMMRD), are
associated with increased susceptibility to pediatric dif-
fuse high-grade gliomas (see INTRO, page 1340).9–11 Ex-
posure to high-dose ionizing radiation has also been
linked to pediatric brainmalignancies.9,12,13 Ionizing radi-
ation has more carcinogenic potential in children be-
cause they are more radiosensitive than adults and have
more potential years of life to express the risk.13 Estimated
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risk is higher for younger children, and the estimated la-
tency between radiation exposure and brain tumor devel-
opment is 7–9 years, withmeningiomas and gliomas being
themost common radiation-induced tumor types.3,8,9,13

Clinical Presentation
Presentation and symptoms depend largely on tumor loca-
tion and patient age at the time of diagnosis.14 The most
common symptoms include effects of increased intracra-
nial pressure, such as headaches that get worse over time,
nausea, vomiting, and blurred vision. Thesemay be caused
by growth of the tumor, swelling in the brain, or blocked
flowof cerebrospinalfluid.1 Other presenting symptoms in-
clude seizure, hemiparesis, monoparesis, cranial nerve def-
icits, ataxia, hemisensory loss, dysphasia, aphasia, and
memory impairment. Presenting symptoms among infants
include increasing head circumference and loss of develop-
mental milestones. School-age children may experience
poor school performance, fatigue, and personality changes.
Symptoms may occur gradually and worsen over time or
happen suddenly, such aswith a seizure.1

Treatment Overview
Treatment of pediatric diffuse high-grade glioma de-
pends on many factors such as the type of tumor, its

location and size, how far it has spread, and the age and
overall health of the patient.1 The main treatment para-
digm includes surgery followed by systemic therapy with
or without RT. The goals of surgery include the safe re-
duction of tumor-associated mass effect and obtaining
adequate tissue for histologic and molecular classifica-
tion. The location and size of the tumor and the general
condition of the patient are important determinants of
surgical outcome.8,9,15,16 Cranial radiation may result in
developmental impairments in young children; therefore,
omitting RT in children ,3 years of age is reasonable.8

Despite surgery and adjuvant therapy, pediatric diffuse
high-grade gliomas typically have a poor prognosis. Re-
ferral for cancer predisposition evaluation and/or genetic
counseling should be considered.

Principles of Brain and Spine Tumor Imaging
Conventional MRI is recommended for tumor diagnosis,
surgical guidance, and therapeutic monitoring. It may be
complemented by advanced neuroimaging techniques
such as MR perfusion imaging, MR spectroscopy, and
PET to enhance diagnostic capability, differentiate radia-
tion necrosis from active neoplasm, and guide biopsy.
Imaging is always recommended to investigate the etiol-
ogy of emergent signs and symptoms. The subsequent
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sections list imaging modalities used in neuro-oncology
to make treatment decisions (see PEDCNS-A, page 1346).

MRI of the Brain and/or Spine
Conventional MRI of the entire neural axis (with and
without intravenous contrast) is the imaging modality of
choice for the evaluation of pediatric diffuse high-grade
gliomas.17 MRI offers excellent soft tissue contrast and
depiction of neoplasms through a combination of stan-
dard, universally available pulse sequences. An additional
benefit of MRI is that the patients is not exposed to ioniz-
ing radiation. Pediatric diffuse high-grade gliomas typi-
cally show an infiltrative growth pattern and present as
large, heterogeneous, poorly differentiated, intracranial
masses with indistinct borders occupying most of one
hemisphere or spread through the corpus callosum into
the other hemisphere.8 They may demonstrate mass ef-
fect on surrounding structures, hemorrhage, increased
perfusion, vasogenic edema, and a variable degree of
contrast enhancement.17 Higher grade components com-
monly enhance and demonstrate restricted diffusion,
which is a key feature that reflects the high-grade nature
of the tumor.8 Limitations of MRI include the relatively
long examination time; requirement of deep sedation/
anesthesia for younger children; metal from surgery and

implants causing artifacts; and the fact that some im-
plants are unsafe in the MRI environment.

Compared with gray matter, pediatric diffuse high-
grade gliomas may demonstrate iso- to hypointense T1
signal and hyperintense T2 signal with surrounding
edema, which is apparent on fluid attenuation inversion
recovery images. Different signal characteristics can be
seen in the case of tumor hemorrhage, such as T1 hyper-
intense, T2 hypointense, and low signal on susceptibility-
weighted imaging.17 Therefore, basic MRI sequences of
the brain should include T1-weighted images before con-
trast, T1-weighted images in 2 planes after contrast (one
of which would ideally be acquired as a 3D sequence),
T2-weighted, T2-fluid attenuation inversion recovery,
and diffusion-weighted imaging, and gradient echo or
susceptibility-weighted (blood-sensitive) imaging. These
images should be used for preliminary diagnostic evalua-
tion and immediate postoperative follow-up (ideally
within 24–48 hours after surgery, if clinically feasible) to
evaluate disease burden (measurable and nonmeasura-
ble disease) on initial examination and extent of resec-
tion on immediate postoperative scan.18–21

BasicMRI of the spine should includepostcontrast sag-
ittal and axial T1-weighted images of the entire neural axis;
additional sequences such as heavily T2-weighted images
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and/or diffusion-weighted imaging may be considered.
These images should be used to evaluate for leptomenin-
geal metastasis. Preoperative spine imaging should be per-
formed at the time of brain imaging becausemany children
require sedation to tolerate the examination.

Follow-up studies of the brain and spine should be
performed at intervals defined by the treatment algo-
rithms (see “NCCN Recommendations,” page 1356).
More frequent imaging may be necessary in the event of
clinical deterioration or evolving imaging findings con-
cerning for recurrent or residual disease. Longitudinal
follow-up studies may be complemented by MR perfu-
sion or MR spectroscopy to assess response to therapy
or to evaluate for progression, pseudoprogression, or
radiation necrosis. Postoperative spine MRI evaluating
for leptomeningeal spread of neoplasm should be de-
layed 2–3 weeks to avoid confusion with blood
byproducts.

MR Perfusion
MR perfusion refers to a group of techniques which mea-
sure cerebral blood volume and/or cerebral blood flow
(CBF) in neoplasms. These techniques may be useful for
grading, response assessment, identifyingmalignant degen-
eration and pseudo-progression, distinguishing radiation

necrosis from recurrent neoplasm, and choosing bi-
opsy site.22–24 Limitations of MR perfusion include the
degradation of reliability by adjacent metal, blood by-
products, air, and bone/soft tissue interface; and other
general limitations of MRI as listed previously. Gener-
ally, most high-grade gliomas show higher perfusion
(increased cerebral blood volume and/or CBF) than
low-grade gliomas.17,25

Various MR perfusion techniques include dynamic
susceptibility contrast-enhanced (DSC), dynamic con-
trast-enhanced (DCE), and arterial spin labeling (ASL)
perfusion. The choice among these will depend on user
availability and preference. DSC perfusion is the most
commonly used technique. Due to the need for power
injectors and large-bore intravenous access, DSC is chal-
lenging to perform on infants but is feasible in young chil-
dren.17 Other limitations include calcification and
hemorrhage-induced susceptibility within the tumor and
contrast leakagedue to breakdownof the blood-brain bar-
rier.17 DCE can be used as an alternative or complemen-
tary technique toDSC, although few studies have assessed
its use in children.26,27 The advantages of DCE over DSC
are fewer artifacts, multiparametric characterization of
tumor microvasculature, and the quantification of leak-
age to assess blood-brain barrier integrity28; however,
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DSC typically offers better blood volume estimation than
DCE.29

ASL perfusion, which uses magnetically labeled wa-
ter as contrast, has been shown to be effective in grading
and choosing biopsy site in children with brain tu-
mors.30–32 ASL lacks contrast injection and high-flow in-
jections making it advantageous for pediatric use. Other
advantages include easier potential for CBF quantifica-
tion, better image quality in younger children due to their
immature sinus cavities, and the ability to repeat the test
if the patient moves.17,33 Limitations of ASL perfusion in-
clude a low signal-to-noise ratio, the need for greater
magnetic field strength and the fact that assessment is
limited to CBF.34

MR Spectroscopy
MR spectroscopy is used to assess the metabolites of
tissues including neoplasms and may be useful for
grading, response assessment, identifying malignant
degeneration and pseudo-progression, distinguishing
radiation necrosis from recurrent neoplasm, and
choosing biopsy site.17,24,35 The choice between single
voxel and multivoxel spectroscopy will depend on user
preference and availability. The limitations of MR
spectroscopy include the degradation of reliability by
adjacent metal, blood by-products, and bone/soft

tissue/air interfaces; long and complex acquisitions;
nonstandard acquisitions; nonstandard postprocess-
ing; and postprocessing time.

A systematic review and meta-analysis comprising
455 patients across 18 studies showed that MR spec-
troscopy alone has only moderate diagnostic ability to
differentiate glioma recurrence from radiation necro-
sis, and should therefore be combined with other
techniques for this purpose.35 Conversely, another
systematic review and meta-analysis comparing the
diagnostic accuracy of advanced MRI techniques to
conventional MRI found that MR spectroscopy had
the highest diagnostic accuracy for treatment re-
sponse evaluation in patients with high-grade glioma,
supporting its use for this purpose.24

CT of the Brain
MRI scans are used more often than CT scans for brain
and spine imaging because they are more detailed and do
not use radiation. However, there are some circumstances
in which CT scan provides advantages over MRI. CT offers
higher sensitivity to dystrophic calcification in neoplasms.
It also provides greater detail of bone structures and
therefore might show the effects of tumors on the skull.1

CT also has a shorter acquisition time, and sedation is
generally not needed. Limitations of CT include limited
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soft tissue contrast; patient exposure to ionizing radiation;
and metal-caused artifacts.

On CT, pediatric diffuse high-grade gliomas typi-
cally present as heterogeneous lesions with mass ef-
fect, poorly defined margins, and variable areas of
hyperattenuation, which may reflect hemorrhage, ne-
crosis, or surrounding edema. Contrast-enhanced CT
features are variable.17

CT of the brain (without contrast or with and without
contrast) is ideal for rapid assessment in the acute or im-
mediate postoperative setting and for the evaluation of
acute intracranial hemorrhage, ventriculomegaly, and
shunt related issues. CT should also be used in patients
in whom an MRI is contraindicated because of unsafe
implants or foreign bodies.

Brain PET Studies
Brain PET studies assess brain tissue metabolism using
a radiopharmaceutical, usually the glucose metabolism
tracer FDG. PET is typically combined with anatomic
imaging and may be useful in differentiating between
neoplasm and radiation necrosis, tumor grading, or
identifying more aggressive focus for biopsy. Since PET
scan images are not as detailed as CT or MRI, it is used
mostly as a complementary test to provide information
about whether abnormal areas seen on other imaging

tests are likely to be tumors.36 PET is more likely to be
helpful for identifying high-grade tumors than low-
grade tumors.36 Additional limitations of PET include
availability of radioisotopes and radiation exposure to
the patient.

Supplemental Imaging for Preoperative Planning
Isotropic volumetric MRI may be used for preoperative
planning to accurately localize the neoplasms by coregis-
tering the data with intraoperative guidance software.
This technique is often complemented with isotropic CT
studies to improve localization. Functional MRI studies
can be used to depict spatial relationships between elo-
quent cortex (eg, regions of the brain primarily responsi-
ble for speech, vision, and motor and sensory function)
and the neoplasms to serve as a road map and promote
safe resections. Diffusion tensor imaging may also be
used to localize major white matter tracts underlying the
eloquent cortex that could also compromise vital func-
tions if injured during surgery.

Principles of Pathology
Major molecular and genetic differences exist between
pediatric and adult CNS tumors, which are established
in WHO CNS5.5,6,17 In contrast to tumors in adults, tu-
mors in children typically carry a much lower burden
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of genetic aberrations (except for hypermutant tu-
mors) and are often driven by a single genetic driver
event, such as a point mutation or translocation lead-
ing to an oncogenic fusion.5,6 The NCCN Guidelines
describe guiding principles for the diagnosis of pediat-
ric CNS tumors according to the parameters of WHO
CNS5.5,6 A general workflow for processing of tissue
and tumor characterization using histologic, immuno-
histochemical (IHC), and molecular data are pre-
sented in the “Principles of Pathology” section of the
algorithm (see PEDCNS-B, page 1349). However, this
is not meant to serve as an exhaustive algorithm for di-
agnosis and classification of the multitude of subtypes
of pediatric diffuse high-grade gliomas that have pres-
ently been described.

StandardHistopathologic Examination andClassification
Integrated histopathologic and molecular characterization
of gliomas per WHO CNS5 should be standard practice.5

Molecular and genetic characterization complements
standard histopathologic analysis, providing additional
diagnostic and prognostic information that improves di-
agnostic accuracy and aids in treatment and clinical trial
selection. Therefore, histologic and IHC examination
should be performed on all tumors. Care should be taken
to conserve tissue, and IHC studies formolecularmarkers

may be skipped in lieu of submitting tissue directly for
molecular studies in cases where the specimen is scant.
Commonly used IHC markers for molecular alterations,
and broad indications for using them, are listed in the al-
gorithm (see PEDCNS-B 1 of 4, page 1349). However, as
stated previously, this is not intended to be an exhaustive
list. Molecular alterations demonstrated by IHC may
require confirmation bymolecularmethods (see “Molecular
Characterization,” next section).

Molecular Characterization
Pediatric diffuse high-grade gliomas comprise a biologi-
cally diverse group of tumors. There is a high degree of
histologic overlap and nonspecificity of histologic features
among the numerous recognized pathologic entities of
pediatric tumors, and underlying molecular alterations in
pediatric gliomas are distinct from those seen in adults.
This uncertainty that can be posed by overlapping tumor
features underscores the immense importance of molecu-
lar testing in pediatric tumor diagnostics. Molecular test-
ing in many cases is critical to diagnosis, distinguishing
high-grade tumors from lower grade counterparts, and
uncovering alterations that have been demonstrated to
be prognostically relevant.37–42 In addition, clinical trial
stratification is becoming increasingly dependent on mo-
lecular characterization. See Table 1 on PEDCNS-B 3 of 4
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(page 1351) for molecular alterations of significance in pe-
diatric gliomas.

In light of the sheer number of genes of interest, in
conjunction with the many types of recurrent alterations
(including point mutations, insertion/deletions, copy
number variations, and fusions), broad molecular testing
is required for comprehensive classification of pediatric
diffuse high-grade gliomas. Broad molecular testing
should include detection of copy number and gene fu-
sions via next-generation sequencing (NGS) with fu-
sion detection (ROS1, MET, NTRK1/2/3, ALK, FGFR1/2/
3), RNA sequencing, or high-resolution copy number
array. DNA methylation-based analysis may offer ob-
jective, more precise tumor classification; however, it
should not be used as a first-line molecular test. In
the pediatric population, dedicated germline testing
should be strongly considered in the appropriate clini-
cal context, recognizing that not all sequencing assays
readily distinguish between germline and somatic
variants.43,44

Limited Tissue Sample/Specimen
In cases where tissue available for processing is limited,
care should be taken to prioritize obtaining the following
tests: hematoxylin and eosin histology, limited IHC panel,

NGS and methylation profiling. The limited IHC panels
should only use stains that would provide essential diag-
nostic information. In cases of particularly limited tissue,
stains for mutations (such as IDH1 R132H or BRAF V600E)
already covered by NGS can be omitted if redundant.

Principles of Surgery
Surgical resection plays an important role in the primary
treatment of nonpontine pediatric diffuse high-grade glio-
mas. The goals of surgery aremaximal safe tumor resection,
alleviation of symptoms related to increased intracranial
pressure or tumor mass effect, increased survival, de-
creased need for corticosteroids, and obtainment of ade-
quate tissue for a pathologic diagnosis and molecular
genetic characterization (see PEDCNS-C, page 1353). The
histology and location of the tumor, as well as the extent of
possible resection, are significant prognostic factors that in-
fluence thedecision for surgicalmanagement.45 Surgical re-
section is not feasible for patients with DMG of the pons
(previously called diffuse intrinsic pontine glioma) or most
other brainstem tumors.

Preoperative Assessment
All patients being considered for surgery should undergo
a preoperative assessment including laboratory work,
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imaging, and multidisciplinary consult. Advanced imag-
ing can be considered in cases where patients may bene-
fit from it. Emergent situations should be treated before
further investigative studies or interventions. Consider
medical management to treat focal neurologic deficits,
seizure, and pain (ie, dexamethasone, antiepileptics,
acetaminophen). However, medications that may alter
the patient's neurologic examination or increase surgi-
cal risks (eg, narcotics) should be avoided. Outside of
emergent clinical presentations, multidisciplinary case
discussion should be used for treatment planning and
optimization of patient care, including radiation on-
cology, neurosurgery, radiology, and oncology/neuro-
oncology. Physical therapy/occupational therapy and
sleep and swallow assessments can be considered to
assist with comorbidity management and referral to a
child life social worker can be considered for family/
patient support.

Surgical Procedure
Study-level and individual patient data meta-analyses, as
well as a small number of prospective and retrospective
studies have demonstrated an association between
greater extent of resection and improved overall survival
(OS) and progression-free survival in patients with pedi-
atric diffuse high-grade gliomas.46–53 In the HIT-GBM

study of 85 pediatric patients with malignant nonpon-
tine gliomas, gross total resection was the strongest
predictor of OS and event-free survival (EFS).52 In the
HIT-GBM-C study, 5-year OS was significantly im-
proved in patients with tumors that were completely
resected before combination chemoradiotherapy
(63%; n521) when compared with historical controls
(17%; P5.003).51

Nearly all diffuse high-grade gliomas recur. Reresec-
tion at recurrence may improve outcomes, although evi-
dence varies widely.48,54 As in adult patients with diffuse
high-grade gliomas, tumor involvement in specific criti-
cal brain areas and poor performance status may be as-
sociated with unfavorable reresection outcomes.54

Postoperative Management
After surgical resection, patients should be monitored for
signs and symptoms of increased intracranial pressure,
fluctuations in blood pressure, and sodium and serum
osmolarity. Prophylaxis for seizures, infections and deep
vein thrombosis can be considered.55

Principles of RT Management
RT plays an essential role in the adjuvant treatment of
patients with pediatric diffuse high-grade gliomas who
are 3 years of age and older.56,57 Out of concern for long

NCCN GUIDELINES® Pediatric Central Nervous System Cancers, Version 2.2023

1350 © JNCCN—Journal of the National Comprehensive Cancer Network | Volume 20 Issue 12 | December 2022

http://www.jnccn.org


term complications with brain development, it is rea-
sonable to omit RT in patients ,3 years of age.8,9,15,16

Child life specialists, audio and video distraction tech-
niques, and other pediatric-friendly interventions are
recommended to improve pediatric tolerance of RT
without anesthesia. The dose of RT administered varies
depending on the setting and pathology (see PEDCNS-D,
page 1354).

After surgery, patients aged $3 years with pediatric
diffuse high-grade gliomas (except for those with pontine
DMG) are treated with RT combined with concurrent
and/or adjuvant systemic therapy.56,57 Initiation of RT is
recommended whenever the patient has recovered from
surgery and should begin within 4 to 8 weeks of resection.
Intensity-modulated RT (IMRT) is used in most instances
to allow reduction of risk ormagnitude of side effects from
treatment. Accepted normal tissue constraints should be
used, and although the prognosis of these patients is often
poor, as low as reasonably achievable principle still ap-
plies to the lenses, retina, pituitary gland/hypothalamus,
cochlea, lacrimal glands, hippocampi, temporal lobes,
spinal cord, and uninvolved brain. Normal tissue con-
straints can be found in PEDCNS-D (page 1354). Proton
therapy, which offers maximal sparing of normal tissue,
may be considered for patients with better prognoses (eg,
IDH1-mutated tumors, 1p/19q-codeleted, younger age),

since most of the data are derived from studies involving
pediatric patients with low-grade glioma.58–62

Most studies on reirradiation are from adult high-
grade glioma studies of recurrent glioblastoma multi-
forme (GBM) and have suggested improvements in
progression-free survival, but limited OS gains.54,63–66

Multiple dosing schedules have been reported for reir-
radiation, including stereotactic radiosurgery.54,64–67

One of the few pediatric studies conducted was a retro-
spective cohort study of 40 children with recurrent
supratentorial high-grade glioma who had received $1
course of RT.68 Of the 40, 14 children received reirradia-
tion and had improved median survival from the time
of first disease progression when compared with the 26
patients who were not offered reirradiation (9.4 vs 3.8
months; P5.005), suggesting that reirradiation can be
effective for short-term disease control.

Patients with pontineDMG should begin RT as soon as
possible after diagnosis, regardless of age, given the highly
effective nature of this modality for symptom control.16

Dose-escalated RT and concurrent or adjuvant systemic
therapy have produced disappointing results in pa-
tients with pontine DMG, and are therefore not recom-
mended.16,69–73 The NCCN Panel recommends using
IMRT, but 3D conformal RT is an also acceptable option.15

Hypofractionated RT has been evaluated as an alternative
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to standard fractionation in the first-line and reirradiation
settings, although data are limited and studies are ongoing
to assess the benefits and safety of this approach.74–76 Al-
though recent data have shown hypofractionated RT to be
statistically noninferior to conventional RT,77,78 larger,
multi-institutional trials are needed to elucidate the
optimal technique, dose, and fractionation for RT in
the treatment of pediatric patients with pontine DMG.
Patients with pontine DMG whose tumors progress or
recur after initial RT have poor prognosis and limited
treatment options. Palliative reirradiation has been
shown to alleviate symptoms in these patients and im-
prove quality of life.79–81

Principles of Systemic Therapy

Combined Modality Therapy
The panel’s preference for the use of RT with concurrent
and adjuvant temozolomide (TMZ) and lomustine for
patients 3 years of age or older is supported by the results
of the phase II COG ACNS0423 trial, which reported the
results of 108 pediatric patients with high-grade gliomas
who received RT with concurrent and adjuvant TMZ plus
lomustine for 6 cycles after maximal surgical resection
(see PEDCNS-E, page 1357).56 The 3-year EFS and OS were
significantly improved compared with the participants of

the ACNS0126 study who received adjuvant TMZ alone
without lomustine (0.22 vs 0.11; P5.019 and 0.28 vs 0.19;
P5.019, respectively).56,57 The addition of lomustine also
resulted in significantly better EFS and OS in participants
without gross-total resection (P5.019 and .00085, respec-
tively). Although the addition of lomustine resulted in
modest outcome benefits compared with TMZ alone, sur-
vival rates remained low. Therefore, use of this regimen
without lomustine is also an option for adjuvant therapy.57

Chemotherapy
Avoiding RT in patients ,3 years of age is reasonable due
to the risk of brain injury; therefore, chemotherapy alone is
recommended for these patients. The chemotherapy regi-
mens recommended by the panel in this setting are cyclo-
phosphamide, vincristine, cisplatin, and etoposide and
vincristine, carboplatin, and TMZ (see PEDCNS-E, page
1357).82,83 A Pediatric Oncology Group study showed that
high-grade gliomas in children,3 years of age are sensitive
to chemotherapy.82 In this study, 18 children ,3 years of
age withmalignant gliomas were treated with postoperative
chemotherapy with cyclophosphamide and vincristine for
2 cycles. Of the 10 patients evaluated for neuroradiologic re-
sponse, the partial response rate was 60% and the 5-year
progression-free survival rate was 43%. In the Head Start II
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and III trials, 32 children ,6 years of age with newly-
diagnosed high-grade gliomas were treated with 4 cycles
of induction chemotherapy with vincristine, carboplatin,
and TMZ followed by myeloablative chemotherapy and
stem cell rescue.83 The 5-year EFS and OS rates were
25% and 36%, respectively. Children ,3 years of age had
improved 5-year EFS and OS (44% and 63%, respec-
tively) compared with older children (31% and 38% for
children aged 36–71 months and 0% and 13% for chil-
dren$72 months).

Targeted Therapy
Recent advances inmolecular technology have enabled the
development of molecular agents capable of targeting the
biologic drivers of pediatric diffuse high-grade gliomas.84

These targeted therapies provide ameans for treating pedi-
atric patients without the involvement of cytotoxic chemo-
therapy and radiation. Evidence for the use of several
targeted therapies in the treatment of patients with pediat-
ric diffusehigh-grade gliomaswith variousmolecular signa-
tures is discussed in further detail subsequently.

BRAF V600E Mutated Tumor
The BRAF V600E point mutation, which results in con-
stitutive activation of the MEK/ERK pathway, is detected in
approximately 10%–15%of pediatric high-grade gliomas.85–87

Many tumors that initially respond to BRAF inhibition
eventually develop resistance due to reactivation of the
MAPK pathway.88,89 Combined therapy targeting BRAF and
downstreamMEK has shown success in several clinical tri-
als in adultswith cancer.88–90 However, data on this regimen
in the pediatric population are limited to small case series
and reports.91,92 In one such case series, 3 pediatric patients
with BRAF V600E–mutated high-grade gliomas exhibited
clinical responses to combined BRAF/MEK blockade using
dabrafenib and trametinib.91 One patient who received the
combination as maintenance therapy after resection and RT
remained disease-free for 20 months, at which time disease
progressionwasnoted. Theother 2patientswhowere treated
with the combined regimenat the timeofdiseaseprogression
or at initial diagnosis, experienced a reduction in tumor size
and stabilized disease for 32 and 23 months, respectively.
Noneof thepatients exhibited significant toxicities.

BRAF blockade with vemurafenib has also shown early
success in treating patients with pediatric diffuse high-
grade gliomas.84,93,94 In the phase I trial of the Pacific Pedi-
atric Neuro-Oncology Consortium study (PNOC-002), 19
pediatric patients with recurrent or progressive BRAF
V600E–mutated high-grade gliomas were treated with ve-
murafenib for a median of 23 cycles.84 One patient had a
complete response, 5 patients had partial responses and
13 patients experienced stabilized disease. Grade $3
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adverse events included secondary keratoacanthoma, rash,
and fever. Due to promising antitumor activity and man-
ageable toxicities, the phase II part of the trial is currently
ongoing (ClinicalTrials.gov identifier: NCT01748149).

TRK-Fusion–Positive Tumor
Gene fusions involving NTRK1, NTRK2, or NTRK3 encode
for TRK fusion proteins (TRKA, TRKB, TRKC) which have in-
creased kinase function and are implicated in the onco-
genesis of many solid tumors.95,96 The small-molecule TRK
inhibitors larotrectinib and entrectinib have demonstrated
activity in several trials of adults and children with vari-
ous cancers.97–100 In the multicenter phase I SCOUT trial,
24 pediatric and adolescent patients (aged 1 month to
21 years; median age, 4.5 years) with advanced solid or
primary CNS tumors were treated with larotrectinib, re-
gardless of TRK fusion status.99 In patients with TRK-fusion
positive tumors, the objective response rate (ORR) was 93%
compared with 0% in patients without TRK fusion. In addi-
tion to a high ORR, larotrectinib was also well tolerated,
with most patients experiencing only grade 1 adverse
events and dose-limiting toxicity in one patient. The phase
II part of this trial is currently ongoing and recruiting pa-
tients (ClinicalTrials.gov identifier: NCT02637687).

The phase I/II STARTRK-NG trial assessed the activity
of entrectinib in 43 pediatric patients (aged,22 years) with

solid tumors including primary CNS tumors, regardless of
TRK fusion status.98 In patients with TRK-fusion–positive
tumors, theORRwas 58%and themediandurationof treat-
ment was 11 months. The median duration of response
was not reached. Treatment with entrectinib resulted in
antitumor activity in patients with TRK-fusion–positive
tumors; however, it also led to dose-limiting toxicities in
4 patients (9%). The most common treatment-related ad-
verse events were weight gain (49%) and bone fractures
(21%). The phase II part of this trial is currently ongoing
(ClinicalTrials.gov identifier: NCT02650401).

Hypermutant Tumor
The inherited cancer predisposition syndrome cMMRD
often leads to the development of pediatric diffuse high-
grade gliomas characterized by a higher mutational bur-
den than typically seen in sporadically occurring brain
tumors or other solid tumors.101 The resultant hypermu-
tant tumors may be amenable to immune checkpoint in-
hibition; however, evidence of their efficacy is currently
limited to small case reports and single-institution experi-
ences.101–103 In one such case report, 2 siblings with recur-
rent hypermutant pediatric diffuse high-grade gliomas
were treated with the antiprogrammed death-1 inhibitor
nivolumab, which resulted in significant clinical and ra-
diologic responses in both children after several months
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of treatment.101 A retrospective chart review of 11 pediat-
ric patients with recurrent or refractory CNS tumors
treated with ipilimumab, nivolumab, and/or pembrolizu-
mab at Dana-Farber/Boston Children's Hospital showed
that immune checkpoint inhibitors are reasonably well
tolerated in pediatric patients and warrant further study
in clinical trials.103

Palliative Systemic Therapy for Recurrent or
Progressive Disease
Despite aggressive primary management, most patients
with pediatric diffuse high-grade gliomas will experience
recurrence or disease progression.101 Patients with recur-
rent or progressive disease have a median OS of ,6
months, and no effective therapies currently exist.101 The
use of systemic therapy for the management of recurrent
or progressive disease depends on the extent of disease
and the patient’s condition. Targeted therapy based
on the molecular composition of the tumor is recom-
mended for patients with good performance status
(see PEDCNS-E, page 1357). This includes but is not
limited to the following: checkpoint blockade for high
tumor mutational burden or personal or family history
of cMMRD; RAF and MEK inhibition for tumors with
BRAF V600E mutation, and TRK inhibitors for tumors
with NTRK gene fusion.

Patients with poor performance status may receive
palliative chemotherapy with oral etoposide,104 bevacizu-
mab (or an FDA-approved biosimilar),105 or single-agent
nitrosoureas (lomustine or carmustine).56 In a phase II
trial, 28 children with recurrent brain and solid tumors
received daily oral etoposide for 21 consecutive days with
courses repeating every 28 days pending bone marrow
recovery.104 Three of the 4 patients with medulloblastoma
exhibited a partial response and 2 of the 5 patients with
ependymoma showed response (one with a complete re-
sponse and one with a partial response), demonstrating
activity for etoposide in recurrent brain tumors. Toxicity
was manageable, with only 1 hospitalization for neutro-
penic fever and 2 patients whowithdrew due to treatment-
related adverse events (onewith grade 4 thrombocytopenia
andonewith grade 2mucositis).

The multicenter phase II HERBY trial evaluated
the addition of bevacizumab to RT plus TMZ for treat-
ment of pediatric patients (n5121, aged between 3
and 18 years) with newly diagnosed nonpontine high-
grade gliomas.105 Median EFS did not differ signifi-
cantly between the treatment groups, and the addition
of bevacizumab did not reduce the risk of death. Be-
cause adding BEV to RT1TMZ did not improve EFS in
pediatric patients with newly diagnosed high-grade
glioma, the panel has reserved use of bevacizumab (or
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an FDA-approved biosimilar) as a single agent in the
palliative setting for patients with recurrent or progres-
sive disease.

NCCN Recommendations

Radiologic Presentation and Multidisciplinary Review
When a patient presents with a clinical and radiologic pic-
ture suggestive of pediatric diffuse high-grade gliomas, in-
put from a multidisciplinary team is needed for treatment
planning (see PGLIO-1, page 1342). The involvement of pe-
diatric oncologists/neuro-oncologists, pediatric radiation
oncologists, pathologists with expertise in neuropathology
and molecular pathology, pediatric neuroradiologists, and
pediatric neurosurgeons with specific expertise in the
management of pediatric high-grade gliomas is strongly
encouraged. Neurosurgical input is needed to determine
the feasibility of maximal safe resection. A pathologic
diagnosis is critical and may be difficult to accurately de-
termine without sufficient tumor tissue obtained during
biopsy. Review of the tumor tissue by an experienced neu-
ropathologist is highly recommended.

Primary Treatment and Pathologic Diagnosis
For primary treatment of pediatric diffuse high-grade
gliomas, the NCCN Guidelines recommend maximal

safe resection with the goal of image-verified complete
resection, whenever possible (see PGLIO-1, page
1342). If the patient is symptomatic because of mass
tumor effect but complete resection is not feasible,
then subtotal resection is recommended for tissue di-
agnosis and debulking. A postoperative MRI is recom-
mended, ideally within 24 to 48 hours after surgery, to
confirm extent of resection.18–21 If a clinically benefi-
cial cytoreduction is not feasible, then a stereotactic
biopsy or open biopsy is recommended for pathologic
analysis. Recommendations for molecular testing of
diffuse high-grade glioma tumors are provided in the
“Principles of Brain Tumor Pathology” section (see
page 1351). The resulting information should be used
to form a pathologic diagnosis. Detection of genetic al-
terations may also expand clinical trial options for the
patient.

Adjuvant Therapy
The NCCN Panel recommends clinical trial enrollment
whenever possible as the preferred treatment option for
all pediatric patients with diffuse high-grade gliomas (see
PGLIO-2, page 1343). Outside of a clinical trial, patients
$3 years of age with pediatric diffuse high-grade gliomas,
except DMG, H3 K27-altered or other tumor with a
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pontine tumor location, can receive standard brain RT
with concurrent and adjuvant TMZ without lomustine or
with lomustine (preferred).56,57 Standard brain RT alone
and standard brain RT with concurrent TMZ and adju-
vant targeted therapy based on the molecular composi-
tion of the tumor are also options in this setting.
Patients ,3 years of age can receive systemic chemo-
therapy with either cyclophosphamide, vincristine, cis-
platin, and etoposide82 or vincristine, carboplatin, and
TMZ83 to delay the need for RT or with adjuvant tar-
geted therapy based on the molecular composition of
the tumor.

Patients with nonpontine DMG, H3 K27-altered can
receive either standard brain RT alone or standard brain
RTwith concurrent andadjuvant TMZaloneorwith lomus-
tine (see PLGIO-3, page 1344). Patientswithpontine located
tumors, includingDMG,H3 K27-altered or pediatric diffuse
high-grade glioma, H3–wild-type and IDH– wild-type,
should receive standard brain RT alone if clinical trial
enrollment is not possible.

Follow-up and Recurrence
Most pediatric patients with diffuse high-grade gliomas
eventually develop tumor recurrence or progression.
Therefore, patients with recurrent or progressive disease

should be followed closely with brain MRI scans starting
at 2–6 weeks postirradiation, then every 2–3 months for
1 year, then every 3–6 months indefinitely after the com-
pletion of treatment of newly diagnosed disease. Pseudo-
progression may occur within 6–9 months after RT and
can be seen on MRI; therefore, pseudoprogression
should be considered if MRI changes are noted in this
time period. Management of recurrent or progressive dis-
ease depends on the extent of disease and the patient’s
condition. The efficacy of current treatment options re-
mains poor; therefore, enrollment in a clinical trial,
whenever possible, is preferred for the management of
recurrent or progressive disease (see PGLIO-4, page 1345).
Surgical resection of locally recurrent disease is reasonable
followedby an additional brainMRI scan.However, enroll-
ment in a phase 0 or preoperative clinical trial should be
considered before resection. If recurrent or progressive lo-
cal disease is not resectable or if it is diffuse with multiple
lesions, then surgery can still be considered for large symp-
tomatic lesions. Reresection at the time of recurrence may
improve outcomes; however, tumor involvement in spe-
cific critical brain areas and poor performance status may
be associatedwith unfavorable reresection outcomes.

Preferred systemic therapy options for recurrent dis-
ease include but are not limited to dabrafenib/trametinib91
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or vemurafenib84 for BRAF V600E-mutated tumors, laro-
trectinib99 or entrectinib98 for TRK-fusion–positive tumors,
and nivolumab101,102 or pembrolizumab103 for hypermutant
tumors. Reirradiation, if feasible, is an alternative option.
Patients with poor performance status should receive palli-
ative/best supportive care. Recommended regimens for
palliation are oral etoposide,104 bevacizumab (or an FDA-
approved biosimilar),105 or nitrosoureas (lomustine or
carmustine).56

Summary
Pediatric CNS cancers are the leading cause of cancer-
related death in children. The initial version of the NCCN
Guidelines for Pediatric CNS Cancers provides an evi-
dence- and consensus-based treatment approach for the
management of patients with pediatric diffuse high-
grade gliomas, which are highly aggressive tumors with a

poor prognosis. Referral for cancer predisposition evalua-
tion and/or genetic counseling should be considered for
patients with pediatric diffuse high-grade gliomas linked
to certain inherited cancer predisposition syndromes. All
patients should be cared for by a multidisciplinary team
with experience managing pediatric CNS tumors. The
NCCN panel recommends clinical trial participation as
the preferred treatment option for patients with pediatric
diffuse high-grade gliomas. Outside of a clinical trial, the
main treatment paradigm includes surgery followed by
systemic therapy with or without RT. Recent advances in
molecular profiling has expanded the use of targeted
therapies in patients whose tumors harbor certain altera-
tions. However, nearly all patients will experience recurrent
disease, which has limited treatment options. Subsequent
versions of the guidelines will address additional tumor
types.
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