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SUMMARY
Medulloblastoma is currently subclassified into distinct DNA methylation subgroups/subtypes with partic-
ular clinico-molecular features. Using RNA sequencing (RNA-seq) in large, well-annotated cohorts of medul-
loblastoma, we show that transcriptionally group 3 and group 4 medulloblastomas exist as intermediates on
a bipolar continuum between archetypal group 3 and group 4 entities. Continuum position is prognostic,
reflecting a propensity for specific DNA copy-number changes, and specific switches in isoform/enhancer
usage and RNA editing. Examining single-cell RNA-seq (scRNA-seq) profiles, we show that intratumoral tran-
scriptional heterogeneity along the continuum is limited in a subtype-dependent manner. By integrating with
a human scRNA-seq reference atlas, we show that this continuum is mirrored by an equivalent continuum of
transcriptional cell types in early fetal cerebellar development. We identify distinct developmental niches for
all four major subgroups and link each to a common developmental antecedent. Our findings show a tran-
scriptional continuum arising from oncogenic disruption of highly specific fetal cerebellar cell types, linked
to almost every aspect of group 3/group 4 molecular biology and clinico-pathology.
INTRODUCTION

The division of medulloblastoma (MB) into molecular subgroups

has defined the past decade of MB research, making it all but

impossible to interpret future findings except through the prism

of these fundamental biological subdivisions. MB was first

divided into subgroups on the basis of profiling by expression

array (Cho et al., 2011; Fattet et al., 2009; Kool et al., 2008; North-

cott et al., 2011; Thompson et al., 2006) and, subsequently, DNA

methylation array (Hovestadt et al., 2014; Schwalbe et al., 2013).

The current consensus is that there exist four major MB sub-

groups (MBSHH, MBWNT, MBGrp3, MBGrp4), each with unique clin-

ico-biological characteristics (Taylor et al., 2012); MBWNT and

MBSHH are named after characteristic disruptions in the WNT

(CTNNB1 mutation (Clifford et al., 2006; Ellison et al., 2005))

and SHH (PTCH, SUFU, SMO mutation, or GLI2 amplification
This is an open access article und
(Kool et al., 2014)) pathways, respectively. MBWNT denotes an

almost entirely curable disease (Ellison et al., 2005), and

MBSHH occur more frequently in infants (Kool et al., 2014). The

remaining two subgroups, group 3 (MBGrp3) and group 4

(MBGrp4), do not exhibit subgroup-defining mutations (Northcott

et al., 2017) but nonetheless possess distinct clinico-biological

characteristics; MBGrp3 patients have a greater incidence of

‘‘high-risk’’ features such as LCA (large-cell/anaplastic) histology

and MYC amplification (Kool et al., 2012; Northcott et al., 2012;

Ryan et al., 2012; Taylor et al., 2012). MBGrp4 tumors more

frequently demonstrate isochromosome 17q (i17q) (Sharma

et al., 2019). Some overlap in mutational spectrum, DNAmethyl-

ation, and expression characteristics between MBGrp3 and

MBGrp4 has often been noted, and these are considered

more closely related molecularly to one another than to

MBSHH and MBWNT, leading them to be considered as a
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non-WNT/non-SHH group in the latest World Health Organiza-

tion (WHO) classification (Louis et al., 2021). The advent of

routine MBmolecular subgrouping has enabled the current gen-

eration of molecularly driven trials (e.g., NCT02066220,

NCT01878617, NCT02724579, NCT01125800) (Li et al., 2019;

Robinson et al., 2015), which exploit MBWNT/MBSHH biology to

stratify treatments or direct biological therapeutics.

Further elaborations of the consensus subgroups were

published, based primarily upon methylomic definitions (Cavalli

et al., 2017; Northcott et al., 2017; Schwalbe et al., 2017). These

were followed by a second consensus study that defined 8 sub-

types within MBGrp3/MBGrp4, I–VIII, a number of which comprised

amix ofMBGrp3 andMBGrp4 tumors (Sharma et al., 2019). Further-

more, MBSHH can be further divided into subtypes broadly asso-

ciated with age at diagnosis (Kool et al., 2014; Schwalbe et al.,

2017). The fact that certain MBGrp3/MBGrp4 subtypes (e.g., I, V)

overlap between MBGrp3 and MBGrp4 further supports a relation-

ship between the two subtypes. A recent study of MB used

single-cell RNA sequencing (scRNA-seq) analysis (Hovestadt

et al., 2019) of 4,873 individual cells from 17 MBGrp3/MBGrp4

patients to define two transcriptional meta-programs represent-

ing a continuum of neuronal cellular differentiation states. This

was mirrored in the transcriptional differences between bulk

MBGrp3 and MBGrp4 patients and concluded that MBGrp3/Grp4

contain cells along a common continuum of neuronal differentia-

tion, providing further rationale to support this relationship.

Based on murine modeling, expression, and imaging studies

(Gibson et al., 2010), MBWNT and MBSHH are believed to derive

from two spatially distinct developmental origins in the early hind-

brain, lower rhombic lip (RL)/dorsal brainstem, and upper RL/early

cerebellum, respectively. The developmental origins of MBGrp3

and MBGrp4 were investigated in a study mapping subgroup-spe-

cific super-enhancer elements, suggesting deep cerebellar nuclei

residing in the nuclear transitory zone as the cell of origin for

MBGrp4 (Lin et al., 2016).More recently, twostudies that compared

bulk and single-cell transcriptomic (scRNA-seq) MB profiles with

developing murine cerebellar scRNA-seq reference datasets

described MBGrp3 and MBGrp4 as most closely resembling

Nestin+ stem cells (Vladoiu et al., 2019) and unipolar brush cells

(UBCs), respectively, highlighting putative cells of origin (Hoves-

tadt et al., 2019; Vladoiu et al., 2019). It is notable that the conclu-

sions of each of these studies rely principally upon cross-species

comparisons with murine as opposed to human developmental

references. Human RL development is more complex and pro-

longed than that of the mouse, possessing unique features not

shared with any other vertebrates (Haldipur et al., 2019).

Here, we characterize the transcriptomic landscape of 331

primary MB, with clinico-pathological annotation, DNA methyl-

ation, and copy-number profiles, and we catalog subgroup-spe-

cific isoforms andRNA-editing events.We show that, despite the

discrete methylomic subdivisions of the MBGrp3/MBGrp4 methyl-

ation subtypes I–VIII, these tumors manifest transcriptionally on

a bipolar continuum between MBGrp3 and MBGrp4 archetypes.

Moreover, the position of an individual tumor on this continuum

is predictive of methylation subtype, prognosis, specific copy-

number and mutational alterations, and activation of key

molecular pathways and regulatory events. By using human

scRNA-seq fetal cerebellar reference data, we show that this
2 Cell Reports 40, 111162, August 2, 2022
continuum mirrors and recapitulates the major developmental

trajectories within early human cerebellar development, allowing

us to map the interplay between key oncogenic events and

putative cells of origin for each MB subtype.

RESULTS

MB shows a continuum of expression between MBGrp3

and MBGrp4

RNA-seq (�90 million paired-end reads) was performed on 331

snap-frozen primary samples from patients with a diagnosis of

MB (Table S1). Transformed gene-level read counts were

subject to consensus non-negative matrix factorization (NMF)

clustering with resampling to determine the most stable number

of clusters and metagenes (i.e., major biological effects

described by multiple genes and summarized as a single score).

As expected, a four-metagene/four-cluster solution was opti-

mally stable, reflecting the four major consensus subgroups as

currently understood (Figure 1A). Approximately 3% (10/331)

of samples were defined as non-classifiable (i.e., low probability

of classification). Approximately 4% (13/331) samples could only

be classified as indeterminate MBGrp3/MBGrp4 (i.e., confidently

classifiable as either MBGrp3 or MBGrp4 but not specific as to

which). The distribution of clinico-biological features was consis-

tent with previously described features of the consensus MB

subgroups (Figures 1A and S1A); for instance, chromosome 6

loss in 83% (24/29) of MBWNT.

The two metagenes that described MBGrp3 and MBGrp4 sam-

ples were notably gradated and overlapping in an anticorrelative

manner (Figure 1A), implying that, contrary to some previous de-

scriptions using expression microarrays (Cavalli et al., 2017),

MBGrp3 and MBGrp4 are not distinct transcriptional entities but

rather exist as a continuum between two transcriptional polar-

ities that we refer to here as G3 and G4. To describe this contin-

uum, we created a continuous score (G3/G4 score) scaled be-

tween 0 and 1 to reflect the proportionate amount of G3/G4

metagene expression in each MBGrp3/MBGrp4 (i.e., all non-

WNT/non-SHH tumors) whereby a score of ‘‘0’’ indicates a

100% G4 tumor and ‘‘1’’ indicates a 100% G3 (Figure 1A). This

was applied to the 223 samples classified as MBGrp3, MBGrp4,

or intermediate MBGrp3/MBGrp4.

We regard these results as showing that no individuals fall into

discrete transcriptional subtypes with respect to the G3/G4

continuum, but for convenient comparison, we subdivided the

expression continuum (G3/G4 score) into five purely notional

quantiles: highG4 (0–0.2, n = 69/223 [31%]), lowG4 (0.2–0.4,

n = 60/223 [27%]), G3.5 (0.4–0.6, n = 39/223 [17%]), lowG3

(0.6–0.8, n = 22/223 [10%]), and highG3 (0.8–1 G3/G4 score,

n = 33/223 [15%]). All of the samples with >0.5 G3/G4 score

were classified as MBGrp3. Notably, 15/20 (75%) MBGrp3/MBGrp4

samples, which showed disagreement in classification between

RNA-seq and DNA methylation array, were classified as indeter-

minate MBGrp3/MBGrp4 by RNA-seq (Figure 1A). Examining the

MBGrp3/MBGrp4 subtype (I–VIII) calls by t-distributed stochastic

neighbor embedding (t-SNE) (Figure 1B) shows clustering by sub-

type, suggesting that each methylation subtype imparts distinct

secondary expression characteristics beyond the primary

G3/G4 continuum metagene. Regardless, the MBGrp3/MBGrp4
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subtypes may be broadly ordered upon the G3/G4 continuum in

partially overlapping domains from most group 4-like to most

group 3-like (VIII, VI, VII, V, I, III, IV, II, respectively) (Figure 1C).

Specific clinico-biological features were significantly non-

randomly distributed across the G3/G4 continuum (Figure 2A).

For instance, the distribution of patients with LCA pathology

along the continuum is significantly different from those without

LCA pathology (D = 0.339, p = 0.046, n = 158); there appears to

be more LCA patients toward the G3 end of the continuum. The

distribution along the continuum of patients with certain large

(arm level/chromosomal) copy-number alterations are signifi-

cantly differently distributed compared to those without. Most

notably, patients with i17q (D = 0.402, p < 0.001, n = 201) and

chromosome 8 gain (D = 0.69, p < 0.001, n = 201) are more

frequent toward the G4 and G3 poles, respectively (Figure S1).

Mutations are not frequent in MBGrp3/MBGrp4 (Northcott et al.,

2017); however, non-synonymous mutations of ZMYM3 and

KDM6A are significantly non-randomly distributed with respect

to the continuum (each p < 0.01) (Figure S2).

We examined the relationship between the G3/G4 score and

prognosis. Again, we divided the G3/G4 score into notional

quantiles for the purposes of visualization/description showing

a progressively poorer 5-year overall survival (OS) across the

continuum: Log rank (test for trend) Z = �2.97, p = 0.003,

n = 191, highG3 = 46%, lowG3 = 57%, G3.5 = 71%, lowG4 =

81%, and highG4 = 76% (Figure 2B). Most important, Cox

regression indicates that a continuous G3/G4 score is highly sig-

nificant (relative risk [RR] 4.7, p = 0.003, n = 191) showing an in-

crease in RR of death of 4.7 times greater for a patient with a G3/

G4 score of 0 compared to a score of 1.

To assess any independent prognostic significance, we used

multivariable Cox regression analysis of progression-free sur-

vival, including highG3 status alongside other risk factors (MYC

amplification, LCA histology, and metastatic disease). The anal-

ysis showed that the highG3 status—chosen over a continuous

variable in this instance as it overlaps most with other risk

factors—retains significance (RR = 2.4, p = 0.014, n = 135), indi-

cating that the G3/G4 score possesses significant independent

prognostic power that is distinct from its association with other

‘‘high-risk’’ disease features (Figure 2C).

A G3/G4 continuum score can be reverse-engineered
from DNA methylation profiles to validate clinico-
pathological associations
A series of sample cohorts of MBGrp3/MBGrp4 with DNA methyl-

ation profiles have previously been published by our group and
Figure 1. Group 3/group 4 medulloblastoma (MB) form a transcription

(A) Heatmap showing 4 consensus NMFmetagenes calculated for n = 331MBand

Annotation shows subgroup as determined by RNA-seq (expression subgroup), su

MBGrp3/MBGrp4 subtype (I–VIII) as per Sharma et al. (2019) defined using Molecul

subtype). All of the other characteristics are indicated to be present or not by d

younger than 3 years; Adult, age at diagnosis older than 16 years; DN, desmopl

of disease. Side annotation (top left) shows a heatmap of chi-square residuals i

(bottom) shows the G3/G4 score.

(B) t-SNE plot showing MBGrp3/MBGrp4 samples shaded by subgroup (top) andme

could not be determined confidently are not shown.

(C) Violin plot showing G3/G4 score by MBGrp3/MBGrp4 subtype (I–VIII).
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others (Cavalli et al., 2017; Northcott et al., 2017; Schwalbe

et al., 2017; Sharma et al., 2019). To these we added 166 profiles

to produce a large cohort (n = 1,670) better powered to validate

and further expand the findingswemadeusing transcriptomic da-

tasets. We therefore explored the possibility of reverse-engineer-

ing a G3/G4 score from DNA methylation data. Using the same

method as used for expression was impossible, given that the

constrained range (i.e., 0-1 [fully unmethylated]–[fully methylated])

and bimodal distribution of CpG methylation does not lend itself

straightforwardly to a continuous score (Figure S3A). Unlike

expression, which tends to follow a log-linear association with

G3/G4 score, methylation follows a sigmoidal distribution from

hypo- to hypermethylation or vice versa. The inflection point along

the G3/G4 continuum at which these CpGs ‘‘switch’’ from one

state to the other varies by CpG (Figures S3B–S3D). We trained

a classifier using a training cohort of MBGrp3/MBGrp4 samples for

whichwe possessed both RNA-seq andDNAmethylation profiles

(n = 192). Pre-selecting 400 cross-validated CpG features that

distinguish between each of the G3/G4 categorical states, we

used these to train a random forest classifier to accurately predict

(root-mean-squareerror [RMSE]=0.036) aG3/G4score fromDNA

methylation data alone (Figure S3E).

Using this larger MBGrp3/MBGrp4 methylation cohort, we were

able to demonstrate significant differences in distribution along

the continuum for patients with infant status (<3 years), metasta-

ses, LCA, and MYC amplification (each progressively more

frequent toward the G3 pole), and mutations of PRDM6,

KDM6A, KMT2C, and ZMYM3 (progressively more frequent to-

ward the G4 pole) compared to patients who lack those features

(each p < 0.001; Figure S4A). Likewise, chromosomal gains of

1q, 5, 6, 8, and 16q (each p < 0.001) were progressively more

frequent toward the G3 pole, and i17q (p < 0.001) was progres-

sively more frequent toward the G4 pole (Figure S4A). These

findings thus validated our findings from the initial RNA-seq

cohort.

The larger cohort size allowed us to also explore the relation-

ship between the G3/G4 continuum and the MBGrp3/MBGrp4

subtypes (I–VIII) as well as their previously reported clinico-path-

ological/mutational characteristics (Sharma et al., 2019). The

MBGrp3/MBGrp4 subtypes as predicted from DNA methylation

data once again occupy discrete but partly overlapping

domains within the G3/G4 continuum, broadly ordered, as per

the RNA-seq-only cohort, from most archetypally MBGrp4 to

MBGrp3 - VIII, VI, VII, V, I, III, IV, II, respectively (Figure 2D).

We next asked whether the variation in the distribution of

clinicopathological features and mutation previously described
al continuum

grouped by subgroup.MBGrp3/MBGrp4 individuals are ordered byG3/G4 score.

bgroup as determined bymethylation (methylation subgroup), andmethylation

ar Neuropathology version 2.0 (MNPv2) classifier (Capper et al., 2018) (Grp3/4

ark gray shading according to the following scheme: Infant, age at diagnosis

astic/nodular; LCA, large-cell/anaplastic; STR, subtotal resection; DOD, dead

ndicating subgroup enrichment and significance where relevant. The line plot

thylationMBGrp3/MBGrp4 subtype (I–VIII) (bottom). Points where subtype (I–VIII)
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as being characteristic of MBGrp3/MBGrp4 subtypes (I-VIII)

(Sharma et al., 2019) were attributable to their position on the

G3/G4 continuum, theMBGrp3/MBGrp4 subtype (I–VIII), or, indeed,

both. Certain frequent clinicopathological features and copy-

number changes (e.g., metastatic disease, MYC amplification,

LCA histology, i17q, loss of chromosome 8, gain of chromosome

5) are significantly non-randomly distributed with respect to G3/

G4 continuum, even within individual subtypes (Figures S4B

and S4C). For example, 100% (11/11) of subtype III withMYC am-

plifications are highG3 compared to 59% (69/117) without MYC

amplification. The presence of i17q as the only major chromo-

somal alteration is a highly characteristic change in subtype VIII,

but when considering onlyMB subtype, VIII is still significantly en-

riched at the highG4 end of the continuum (D = 0.162, p = 0.014).

The relationship between G3/G4 score and risk of death is

significant and striking, allowing us to validate the findings

of our RNA-seq cohort with greater confidence. Again, for

the purposes of visualization/description, we divided patient

G3/G4 scores into notional quantiles: Patients older than 3

years log rank (test for trend) Z = �4.89, p < 0.0001,

n = 589, highG3 = 49%, lowG3 = 59%, G3.5 = 64%,

lowG4 = 77%, and highG4 = 83% (Figure 2E). A similar result

is found in patients of all ages: Log rank (test for trend)

Z = �5.49, p < 0.0001, n = 654 (Figures S5A and S5B).

Most important, G3/G4 score is efficiently modeled as a

continuous variable using Cox proportional hazards. Again,

patients older than 3 years shows a 33 increased risk of death

from one end of the continuum to the other (RR = 3, n = 589,

p < 0.001). We also note that MBGrp3/MBGrp4 subtypes (I–VIII)

are significantly associated with OS (n = 524, p < 0.001)

(Figure S5C).

The G3/G4 continuum is associated with differential
regulation of oncogenic/developmental pathways
The expression of 590 genes is significantly correlated with the

G3/G4 score in our RNA-seq cohort (p < 0.01, log2 fold change

>10, n = 223), increasing/decreasing log linearly across the

continuum. Most notably, MYC expression correlates signifi-

cantly with the G3/G4 score (rho = 0.73, p < 0.001,

n = 223)—approximately 463 greater from the G4 end of the

continuum to the G3 (Figure 3A). Performing gene set enrich-

ment analysis (GSEA), we observed that transcriptional targets

of MYC were also significantly upregulated (NES = 3.37,

p = 0.007) (Figure 3B). Single-sample GSEA (ssGSEA) analysis

(Hänzelmann et al., 2013) was used to represent the activa-
Figure 2. Clinico-pathology, subtype, and survival are related to an ind

(A) Rug plot showing distribution of clinico-pathological features with respect to G

lowG4, G3.5, lowG3, and highG3 (these categories are arbitrary divisions of the co

‘‘real’’ subgroups) and reflected by the red line plots. The presence of a feature

methylation subtype (I–VIII). Adjusted p values for a Kolmogorov-Smirnoff statis

to G3/G4 score. Mismatch, mismatch between methylation and expression call;

disease; LCA, large-cell/anaplastic; PRDM6, PRDM6 rearrangement.

(B) Kaplan-Meier plot showing significant differences (Log-Rank test for trend) in

(C) Forest plot showing a multivariate Cox model fitted to progression-free s

amplification, LCA, and M+.

(D) Violin plot showing G3/G4 score (derived from methylation) by MBGrp3/MBGrp

(E) Kaplan-Meier plot showing significant differences (Log-Rank test for trend) in

score (as derived from methylation values); n = 589.
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tion/repression of pathways/signatures for each individual

and found several oncogenic pathways that were progres-

sively activated or repressed in a manner significantly corre-

lated (each p < 0.001) with the G3/G4 continuum, including

MYC, cell cycle, mammalian target of rapamycin (mTOR),

transforming growth factor b (TGF-b) (activated at the G3

pole), and NOTCH (activated at the G4 pole) (Figure 3C). In

addition, a broad pattern of progressive neuronal differentia-

tion at the G4 pole and photoreceptor (CRX/NRL) characteris-

tics at the G3 pole of the G3/G4 continuum were observed.

We examined differentially methylated regions (DMRs) within

previously identified MBGrp3/MBGrp4 specific enhancer loci (Lin

et al., 2016), identifying 45 that also overlapped with gene pro-

moters; each ‘‘switched’’ from hypomethylated to hypermethy-

lated or vice versa at specific points along the G3/G4 continuum.

The expression of 33/45 of these genes is significantly correlated

with the G3/G4 continuum (p < 0.01). This switching appears

progressive, with certain MBGrp3/MBGrp4 enhancer loci ‘‘switch-

ing’’ earlier and others later. For instance, the enhancer/DMR loci

overlapping with the promoters of MB lineage development/dif-

ferentiation genes LHX1, NEUROD2, LMX1A, and HLX on

average ‘‘switch’’ at points 0.23, 0.49, 0.56, 0.87, respectively,

on the G3/G4 continuum (Figures 3D and 3E). We note also

that the expression of each of these genes is significantly corre-

lated with the G3/G4 continuum and DMR methylation (each

p < 0.01). If we presuppose a model by which the G3/G4 contin-

uum reflects interruption of early developmental cell fate at

different points in different patients, then this observed switching

is consistent with a developmental identity controlled by cumu-

lative changes in underlying epigenetic architecture (i.e.,

patterns of methylation and/or enhancer usage) throughout a

transition from an MBGrp3 to a MBGrp4 cell state.

The G3/G4 continuum is associated with post-
transcriptional regulation of isoform expression and
RNA editing
To explore the clinico-biological significance of differentially ex-

pressed transcriptional isoforms across subgroups, Kallisto

(Bray et al., 2016) was used to estimate their abundance. Taking

transcripts per million (TPM) >10 as indicative of a moderate-to-

highly expressed isoform, it is notable that the diversity of iso-

forms being expressed across subgroups was significantly

greater inMBGrp4 thanMBGrp3 (p < 0.001, F = 9.877) (Figure S6A).

A total of 153 genes were identified whose expression overall

is invariant but for which the expression of specific isoforms
ividual’s position on the group 3/group 4 continuum

3/G4 score. Summary counts are given according to the divisions of highG4,

ntinuum for the purposes of visualization and comparison and do not represent

is indicated by a bold tick mark, the color of which indicates MBGrp3/MBGrp4

tic (D) are shown to denote non-random distribution of features with respect

Infant, age at diagnosis younger than 3 years; M+, metastatic; DOD, dead of

MBGrp3/MBGrp4 overall survival by G3/G4 continuum position.

urvival and containing the independently significant variables highG3, MYC

4 (I–VIII) subtype.

MBGrp3/MBGrp4 overall survival in patients aged older than 3 years by G3/G4
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correlates significantly with G3/G4 score (Figure 4A). For

instance, the overall expression of general transcription factor

IIi (GTF2I) is ubiquitous, but a progressive isoform switch corre-

sponding to the balance between b/d (GTF2I-215/GTF2I-218)

and a/g (GTF2I-221/GTF2I-212) isoforms correlates significantly

to G3/G4 score (Figure 4B). These isoform switches are known to

alter protein stability (Shirai et al., 2015) and subcellular localiza-

tion (Shirai et al., 2017).

A total of 4,668,508 established RNA editing sites were profiled

using the QEdit/Reditools pipeline (Lo Giudice et al., 2020). We

observed significant differences in overall A-I editing level. The

Overall Editing Index (OEI, i.e., the total number of reads with G

at all known editing positions over the number of all reads covering

the positions) differs significantly with respect to subgroup (F =

9.761, n = 223, p < 0.001). Post hoc testing showed RNA editing

events in MBGrp4 to be significantly more numerous than in

MBGrp3 and MBSHH (each p < 0.01) (Figure S6B). Analysis of

5,174 non-synonymous RNA editing sites showed 32 significantly

differentially editedwith respect to theG3/G4 continuum (p< 0.05;

Figure 4C), the majority of which were more highly edited in

MBGrp3. One such RNA editing site isAZIN1 chr8:103841636T>C,

known to result in a S367G substitution that causes conforma-

tional changes, cytoplasmic-to-nuclear translocation, and gain

of function, increasing tumor potential in hepatocellular carcinoma

(Chen et al., 2013), non-small cell lung cancer (Hu et al., 2017),

colorectal cancer (Shigeyasu et al., 2018), and gastric cancer

(Okugawa et al., 2018) (Figure 4D). It is also notable that ADAR1

and ADAR2 expression are both correlated with G3/G4 score

(rho = 0.54, p < 0.001 and rho = 0.33, p < 0.001, n = 223, respec-

tively), although expression was higher in MBGrp3, which may

speak to a context-dependent effect on specific loci.

Intratumoral cellular heterogeneity with respect to the
G3/G4 continuum is apparent but constrained by
subtype
We projected our MBGrp3/MBGrp4 metagenes onto a MBGrp3/

MBGrp4 scRNA-seq dataset comprising 4,256 cells from 15 indi-

viduals (5xSubtype-II, 2xSubtype-III, 1xSubtype-I, 2xSubtype-V,

4xSubtype-VIII) previously published by Hovestadt et al. (2019).

The approach used to derive these metagenes is very similar

methodologically to the way Hovestadt et al. derived their meta-

programs (e.g., use of NMF, projection between bulk and single

cell) and both indicate a continuum of scores at both the bulk

and single-cell level. We projected our bulk metagenes

(describing group 3/group 4 transcriptional variability in 223 bulk
Figure 3. Position on the group 3/group 4 continuum corresponds lin

specific enhancers
(A) Scatterplot showing significant correlation (p < 0.001) betweenMYC expressio

highG4, lowG4, G3.5, lowG3, and highG3 (these categories are arbitrary divisions

represent ‘‘real’’ subgroups), and log2 fold changes for each category relative to

(B) GSEA enrichment plot showing significant enrichment of MYC target genes.

(C) Heatmap of ssGSEA results showing level of pathway enrichment for 223 MBG

into pathways (see STAR Methods).

(D) Lollipop plot showing mean beta fold change for DMRs within MBGrp3/MBGrp

average point on the continuum at which the methylation level switches from hyp

(E) Plot showing anMBGrp3/MBGrp4-specific enhancer within theMBGrp3-specific g

associated with the G3/G4 continuum. The mean beta value per G3/G4 category

shown by line and the 95% confidence interval (CI) by shaded area.
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tumor profiles) onto scRNA-seq data. In contrast, Hovestadt

et al. projected their scRNA-seq metagenes (describing neuronal

cellular differentiation and calculated from 17 MBGrp3/Grp4) onto

bulk expression microarray samples. Our approach allowed us

to impose a limit and scale between the extremities of tumor

MBGrp3 and MBGrp4 transcriptional states, and in so doing, place

each cell within a given sample on a common scale with our

bulk tumors, allowing us to align cells with key tumor features

such as subtype.

MBGrp3 individuals were described by Hovestadt et al. as being

dominated by cells with an undifferentiated progenitor-like

expression program and MBGrp4 dominated by a differentiated

neuronal-like program; to some extent our MBGrp3 and MBGrp4

metagenes appear to equate with the meta-programs described

byHovestadt et al., and it is quite possible that both are describing

similar phenomena. Of the 100 genes selected as the top genes

by Hovestadt et al., 7/100 (metaprogram B—undifferentiated;

e.g. LAPTM4B,MYC, HLX) and 8/100 (metaprogram C—differen-

tiated; e.g.KCNA1, ABLIM1, SPOCK2) would have been selected

in the equivalent top 100 from our analysis. Notably, 31 Hovestadt

et al. metaprogram B/C genes (e.g., ORC4, H3F3B, GNB2L1)

were invariant with respect to the G3/G4 continuum.

By placing bulk and scRNA-seq on a common scale, we show

that the distribution of G3/G4 scores at the single-cell level indi-

cates a certain amount of intratumoral cellular variation

(Figure 5A), but that the majority of cells fall within the same

G3/G4 range observed in the equivalent subtype bulk RNA-seq

profiles (Figure 5B). For example, among MB subtype VIII individ-

uals, 78% (667/853) of cells fall within the G3/G4 score 0–0.25

range, as per the equivalent subtype VIII bulk profiles (Figure 5B).

We should note that different bulk MBGrp3/Grp4 subtypes and their

respective scRNA-seq populations occupy either a broader or

narrower space on the G3/G4 continuum depending on the sub-

type; subtype V, for instance, is comparatively broad. In short,

the phenomenon of a G3/G4 continuum observed in bulk RNA-

seq analysis is produced by populations of individual cells, which

themselves display continuousG3/G4 expression characteristics.

These are constrained tooccupy a discrete part of theG3/G4 con-

tinuum as dictated by their MBGrp3/MBGrp4 (I–VIII) subtype.

MB subtypes and the G3/G4 continuum are mirrored in
early human cerebellar development
The origins of MB within spatially and temporally distinct regions

of the fetal cerebellum (upper RL/granule cell [GC] lineage for

MBSHH and lower RL for MBWNT) have been established primarily
early to oncogenic pathway activation and methylation of lineage-

n and G3/G4 score. Log-linear line of best fit is shown. Dotted lines divide into

of the continuum for the purposes of visualization and comparison and do not

highG4 are shown. Error bars represent standard error of mean.

Genes were ranked by correlation with G3/G4 score.

rp3/MBGrp4 individuals ordered by G3/G4 score. MsigDB pathways are curated

4 specific enhancers/super-enhancers. The position on the x axis reflects the

o- to hypermethylation.

ene, LMX1A, which overlaps with a differentially methylated region significantly

(highG4, lowG4, G3.5, lowG3, highG3) and MBGrp3/MBGrp4 subtype (I–VIII) are



Figure 4. Position on the group 3/group 4 continuum is linearly associated with isoform usage and non-synonymous RNA editing events

(A) Heatmap showing expression of top significantly differentially expressed isoforms of genes whose overall expression is otherwise not significantly differ-

entially expressed with respect to G3/G4 score.

(B) Schematic showing exon structure of 4 GTF2I isoforms significantly differentially expressed with respect to G3/G4 score (left) and scatterplot showing

expression of these GTF2I isoforms versus G3/G4 score; line represents fitted log-linear model NB: GTF2I is not significantly differentially expressed at the gene

level.

(legend continued on next page)
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bymousemodeling (Gibson et al., 2010; Lin et al., 2016) and,more

recently, by comparison with reference to mouse fetal cerebellum

scRNA-seq datasets, which suggest a UBC origin for MBGrp4

(Hovestadt et al., 2019; Vladoiu et al., 2019). Such comparisons

in embryonal tumors are predicated on the idea that partial trans-

formation in an early prenatal cell interrupts development/differen-

tiation, resulting in a proportion of the expression characteristics

of the tumor-initiating cell being retained.

Here, we avoid any cross-species comparisons by using

instead a human fetal cerebellum scRNA-seq reference set

(69,174 cerebellar cells 9–21 post-conception weeks [PCWs]).

We reconstructed a pseudotemporal cellular trajectory within

a broadly defined RL lineage (12,243 cells, comprising RL pre-

cursors, excitatory cerebellar nuclei [eCN]/UBC, GC precursors

[GCPs], and GC neurons subdivided into four clusters [GN])

(Figure 6A). We projected our four subgroup metagenes onto

these cerebellar cells, identifying those cells that showed the

highest expression of each metagene. As an alternative anal-

ysis, we also performed canonical correlation analysis (CCA)

and achieved comparable results (see description in STAR

Methods). These cells occupy distinct branches of our lineage.

High MBWNT metagene-expressing cells, as expected, occupy

a discrete subset of the RL precursors (Figure 6B). High

MBGrp3/MBGrp4 metagene-expressing cells occupy a distinct

eCN/UBC branch beginning with RL precursors (highly

expressing MBGrp3 metagenes) and transitioning midway to

eCN/UBC cells highly expressing the MBGrp4 metagene

(Figure 6B). This cell trajectory in effect mirrors the G3/G4 con-

tinuum. This can be demonstrated formally by calculating a

projected per-cell G3/G4 score, revealing a smooth transition

from a MBGrp3-like to a MBGrp4-like expression state (Figure 6C).

More straightforwardly, this is demonstrated by observing the

significant change in expression with respect to pseudotime

of those G3/G4 continuum-associated genes whose expres-

sion is sufficiently high to be consistently detectable within

the relatively low-depth scRNA-seq data (each p < 0.01;

Figure S7A).

Cells that express the MBSHH metagene most highly, as

expected, occupy a GC developmental branch beginning with

GCPs and extending partly into the earliest GN cell types

(Figure 6B). Two metagenes representing MBSHH-Infant (primarily

patients younger than 4 years) and MBSHH-Child (primarily pa-

tients older than 4 years), as described in previous studies

(Kool et al., 2014; Schwalbe et al., 2017), were also projected

onto the cells in this branch. This indicated a switch midway

through the GC pseudotemporal lineage from a predominantly

MBSHH-Infant metagene to a predominantly MBSHH-Child meta-

gene expression; this coincided approximately with the first tran-

sition from GCPs to GNs (Figure 6D). Again, where the expres-

sion of individual genes that distinguish infant MBSHH from

childhood MBSHH were sufficiently detectable within the

scRNA-seq profiles, they were significantly associated with

pseudotime (each p < 0.01; Figure S7B).
(C) Top 10 significantly differentially edited non-synonymous RNA editing positio

(D) Boxplot showing level of T > C RNA editing at a non-synonymous position S36

categories are arbitrary divisions of the continuum for the purposes of visualizati

significantly associated with G3/G4 score.
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Thus, by aligning the oncogenic G3/G4 scale with the pseudo-

temporal scale, we were able to order and align tumorigenic

events to specific points within fetal cerebellar developmental

lineages (Figure 7). MYC amplification, for instance, tends to

coincide with the earlier RL pseudotemporal space, as opposed

to KDM6A mutation, which occupies the later, more differenti-

ated eCN/UBC space. Likewise for aneuploidies, the gain of

chromosome 8 coincides with the earlier RL developmental

space and i17q (as the sole copy-number alteration) with the

later eCN/UBC cell types.

We note that as with the pseudotemporal transition from

MBGrp3 to MBGrp4 or MBSHH-Infant to MBSHH-Child, there is also a

literal temporal transition. The cerebellar cells most closely asso-

ciated with the archetypal MBGrp3 are predominant at 11 PCW

(and possibly before). By 18 PCW, thosemost closely associated

with the archetypal MBGrp4 predominate. This persists until at

least 20 PCW. On the RL to GN branch, the cells most closely

associated with MBSHH-Infant are predominant at PCW 11 and

reduced by PCW 20, at which point MBSHH-Child-associated cells

predominate (Figure 7B). We should temper this observation by

saying that the uniformity of sampling at each of these time

points is uncertain.

This temporal staging from early to late forms of MBGrp3/

MBGrp4 is also mirrored in the average age of onset of disease.

The distribution of age at diagnosis of each MBGrp3/MBGrp4

(I–VIII) subtype closely parallels the distribution across the G3/

G4 continuum (Figure S7C), and there is a significant correlation

between G3/G4 score and age at diagnosis (Figure S7D).

DISCUSSION

Here, we show that, in regard to their transcriptomes, the primary

intertumoral variation in MBGrp3/MBGrp4 patients is continuous,

in contrast to the discrete nature of the methylation

MBGrp3/MBGrp4 subtypes (I–VIII) (Cavalli et al., 2017; Northcott

et al., 2017; Schwalbe et al., 2013; Sharma et al., 2019). This is

not in itself contradictory, as we show that the MBGrp3/MBGrp4

methylation subtypes are ordered along the G3/G4 continuum

in discrete but partially overlapping domains (Figure 1D).

Furthermore, as has been demonstrated previously (Cavalli

et al., 2017; Sharma et al., 2019), the methylation subtypes are

reflected to some extent in their expression profiles (Figure 1C).

Nonetheless, these are shown here to be secondary expression

characteristics subordinate to the overarching primary expres-

sion characteristic that is the G3/G4 continuum.

The position of an individual MBGrp3/MBGrp4 tumor upon the

continuum is significantly different in individuals with and

without certain mutations, copy-number aberrations, clinico-

pathology, and histopathology. This is to be expected, as

many of these have been shown to be non-randomly associated

with MBGrp3/MBGrp4 subtypes (Sharma et al., 2019). That both

methylation subtype and the expression continuum are related

to key tumor characteristics and, indeed, to one another is
ns with respect to G3/G4 score.

7G within AZIN1 divided into highG4, lowG4, G3.5, lowG3, and highG3 (these

on and comparison and do not represent ‘‘real’’ subgroups); level of editing is



Figure 5. Distribution of single cells along the group 3/group 4 continuum is limited according to DNA methylation subtype

(A) Violin plot showing per-cell G3/G4 score (derived from projection onto scRNA-seq data) for 15 MBGrp3/MBGrp4 patients aggregated by subtype.

(B) Ridge plot showing distribution of per-cell G3/G4 score (derived from projection onto scRNA-seq data) for each of 15 MBGrp3/MBGrp4 patients shown along-

side the G3/G4 score distribution of equivalent subtype bulk tumors. n = x refers to number of individuals for bulk tumors and number of cells for the scRNA-seq

data. Vertical black lines indicate from left to right the fifth percentile, median, and 95th percentile. Dotted vertical lines denote the boundaries between highG4,

lowG4, G3.5, lowG3, and highG3 (these categories are arbitrary divisions of the continuum for the purposes of visualization and comparison and do not represent

‘‘real’’ subgroups).
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clear. The question remains as to what extent the intertumoral

variation in such characteristics may be better explained by po-

sition upon the continuum than by methylation subtype. For at

least some of these characteristics, those that are frequent

and not specific to single subtypes (e.g., MYC amplification,

LCA, i17q, gain of chromosome 5, loss of chromosome 8), it

seems that they are more relatable to position on the continuum

(Figures S4B and S4C).

The most striking association is between the G3/G4 contin-

uum and risk of death, at least during the first 5 years post-diag-

nosis. Risk increases continuously with the G3/G4 continuum

(Figure 2E), the documented phenomenon (Sharma et al.,

2019) of late (>5 years post-diagnosis) relapse in subtype VIII

notwithstanding. We regard this study as a description of an

extremely close and therefore important relationship between

biology and clinical course rather than as an advocation for its

use as a clinical biomarker. Those judgments should be made

using prospective clinical trials, and the cohort used here, while

sizable and carefully reviewed, is a retrospective cohort with all

of the limitations and caveats that implies. Nevertheless, we note

that when it comes to incorporating molecular data into risk

stratification schemes, the use of a single G3/G4 risk score for

all MBGrp3/MBGrp4 patients has a certain pragmatic logic over

atomizing a rare cancer into 8 separate subtypes.
Pathway analysis of the G3/G4 continuum shows a concomi-

tant activation of oncogenic processes (e.g., MYC,MTOR, TP53)

as tumors become more MBGrp3-like, which itself suggests a

more aggressive phenotype. The influence of the G3/G4 contin-

uum also extends to post-transcriptional regulation (i.e., isoform

usage and RNA editing). Here, we describe log-linear relation-

ships showing the primacy of the continuum in multiple aspects

of MBGrp3/Grp4 transcriptional biology. A close relationship with

cell differentiation (e.g., CRX/NRL, neuronal differentiation) is

also evident and consistent with previous descriptions of

MBGrp3/MBGrp4 biology cell identity and differentiation (Bando-

padhayay et al., 2019; Garancher et al., 2018). This is further

reflected in the progressive switches in methylation status that

we observe within MBGrp3/MBGrp4 specific enhancers (Lin

et al., 2016).

We show here that the MBGrp3/MBGrp4 continuum is produced

by individual cells that themselves exist in the same expression

continuum as the bulk tumors. In part, this was observed by

Hovestadt et al. (2019) in their original analysis of their pooled

MBGrp3/MBGrp4 scRNA-seq data. They described two meta-

genes diverging according to MYC expression and described

bulk tumors as composed of cells of either a predominately

differentiated, undifferentiated, or intermediate type, which

themselves represent a continuum of neuronal differentiation
Cell Reports 40, 111162, August 2, 2022 11



Figure 6. The group 3/group 4 continuum is mirrored in early human cerebellar development

(A) Uniform manifold approximation and projection (UMAP) plot of scRNA-seq profiles showing 12,243 cells of the RL lineage arranged according to develop-

mental trajectory, which is indicated by the black line. Color denotes cell type as determined by graph-based clustering; RL, rhombic lip precursors; GCP, granule

cell precursors; GN-I, GN-II, GN-III, GN-IV, 4 granule neuron cell types; eCN/UBC, excitatory cerebellar neurons/unipolar brush cells.

(B) UMAP plot of the RL lineage with those cells within the top decile of metagene expression marked with the following colors: MBGrp4, green; MBGrp3, yellow;

MBSHH, red; MBWNT, blue.

(C) Scatterplot showing per-cell scaled metagene expression along the RL to eCN/UBC branch. Fitted sigmoid curves are shown, with SD indicated as dashed

lines. The gray line represents a sigmoid curve fitted to per-cell G3/G4 score as a function of pseudotime.

(D) Scatterplot showing per-cell scaled metagene expression along the GCP to GN branch. Fitted curves are shown with SD shown as dashed lines. Curves are

scaled to be constrained to a range of 0 and 1, to be coherent with bulk analysis. For this reason, by definition, some individual cells lie outside the 0 and 1 range.
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(Hovestadt et al., 2019).We have expanded this by fitting individ-

ual cells onto the same metagene scale used to define the

bulk tumor transcriptome, thereby defining more precisely the

range of transcriptional intratumoral heterogeneity within

MBGrp3/MBGrp4 tumors and showing that it appears to be

confined to certain limits prescribed by the MBGrp3/MBGrp4 sub-

type. This in turn is consistent with the finding that MB sampled

from different areas of the tumor or at diagnosis and relapse
12 Cell Reports 40, 111162, August 2, 2022
rarely alter subgroup (Kumar et al., 2021; Morrissy et al., 2016;

Ramaswamy et al., 2013).

Unlike previous studies that attempted to define cells of origin,

we used a human rather than a mouse scRNA-seq reference set

for comparison. The use of a human atlas is significant because

human RL persists longer through cerebellar development than

the mouse and has unique cytoarchitectural features not shared

with any other vertebrates (Haldipur et al., 2019). Mouse RL is a



Figure 7. Key molecular characteristics of MB can be aligned to human fetal cerebellar developmental niches

(A) Schema showing the RL to eCN/UBC developmental branch, the relationship between pseudotime and G3/G4 score, and the staging of key tumor char-

acteristics. From top to bottom: a violin plot showing pseudotime distribution of cells by time of sampling; color transition red to purple marks the point along the

developmental trajectory at which cells are defined as eCN/UBC. A fitted sigmoid curve showing the relationship between pseudotime and G3/G4 score. Tumor

characteristics are transformed from the G3/G4 scale to the pseudotime scale and marked at the appropriate points. Color bars represent subgroups.

Methylation subtypes (I–VIII), mutations, and copy-number changes are marked by box and whisker. Dot represents median distribution; thick line represents the

interquartile range; and the thinner lines correspond to range. Dotted horizontal lines denote where the range extends up to a G3/G4 score of 0 and 1 (i.e.,

matching the ne plus ultra pseudotime after which G3/G4 score is unchanged and exact relationship must be extrapolated). Dotted vertical lines denote the

boundaries between highG4, lowG4, G3.5, lowG3, and highG3 (these categories are arbitrary divisions of the continuum for the purposes of visualization and

comparison and do not represent ‘‘real’’ subgroups).

(B) Schematic showing the GCP to GN developmental branch and the relationship between pseudotime and MBSHH-Infant or MBSHH-Child metagene. From top to

bottom: a violin plot showing pseudotime distribution of cells by time of sample; color transition green to blue marks the point along the developmental trajectory

where cells become defined as GN. A loess curve shows the relationship between pseudotime and MBSHH-Infant (red) or MBSHH-Child metagene (dark red). Color

bars show parts of trajectory paralleled by MBSHH-Infant or MBSHH-Child tumors.

(C) UMAP of developmental trajectory marked with colors to denote parts most associated with each MB subgroup and the relevant pseudotime (PsT) scale.
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transient, proliferative stem cell zone present between embry-

onic day (E) E12.5 and E17.5, whereas human RL begins as a

progenitor niche and is later compartmentalized into ventricular

and subventricular zones, forming a human-specific progenitor

pool within the posterior lobule, which persists until birth (Haldi-

pur et al., 2019). We show that the MBGrp3/MBGrp4 continuum is

paralleled by a fetal cerebellar lineage that begins with an RL

progenitor and ends with eCN/UBC. Aligning oncogenic features

to windows within developmental pseudotemporal space sug-

gests that cellular development/differentiation may be interrup-

ted by oncogenic features at (or at least before) a certain point

in the developmental trajectory. More speculatively, this may

suggest a certain developmental pseudotemporal window of op-

portunity for specific oncogenic events to provoke MB of a given

subtype. How or if this occurs would need to be modeled and

tested through further functional experimentation. Nevertheless,

we suggest that such future modeling efforts would be best

directed to the appropriate windowwithin the developmental tra-

jectory, and we provide here a map to do so. We also demon-

strate a putative relationship between earlier/later cell types

and the age of onset of the disease. Importantly, we were able

to identify a developmental niche for each of the four main MB

subgroups including a separate space for MBSHH-Child and

MBSHH-Infant. Each of these is contained within a branch of the

same early cerebellar lineage explicitly unifying each of the four

subgroups to a common developmental antecedent, something

not reported in previous studies. For instance, Hovestadt et al.

(2019) were unable to identify a significant matching reference

cell type for MBGrp3 and MBWNT, whereas Vladoiu et al. (2019)

did not analyze MBWNT and note a prosaic resemblance of

MBGrp3 to Nestin+ early neural stem-like cells.

In conclusion, our findings point to the following important in-

sights. First, that group 3/group 4 MB and their methylation sub-

types exist transcriptionally upon a continuum and that this is

mirrored entirely by an equivalent continuum of transcriptional

cell types in early human fetal cerebellar development. Second,

that by using a human scRNA-seq reference, all four MB sub-

types can be linked to a common developmental antecedent

within the RL lineage. Third, that transcriptional intratumoral het-

erogeneity is limited to certain domains within the continuum as

dictated by subtype. Finally, that the continuum is linked with

almost every aspect of group 3/group 4 molecular biology and

clinico-pathology. We anticipate this to have implications for

the future treatment and modeling of the disease—most press-

ingly, a need to match cell type with specific timing of mutations

to develop faithful models.

Limitations of the study
We wish to highlight the following, which we regard as some of

the constraints and limitations of our study. In basing our conclu-

sions upon a human developmental atlas, we note that we were

selective, albeit based on prior knowledge, in the subset of cell

types we considered to be potential candidate cells of origin—

figuratively, by assigning them to what we broadly described

as the RL lineage, and literally, by the physical process of cell

extraction and the points in early human development for which

sampling was possible (PCWs 9–21). MBWNT in particular is

thought to originate in the dorsal brainstem, and it may be that
14 Cell Reports 40, 111162, August 2, 2022
certain alternative cells of origin were excluded or curtailed on

that basis. Nevertheless, previous studies follow a similar logic

to our own and the coherent picture of the relationships between

the subgroups would seem to bear out our choices. In addition,

while we have aligned certain oncogenic features with specific

developmental windows by virtue of their transcriptional resem-

blance, further functional experimentation will be required to

determine if and how these oncogenic features provoke tumori-

genesis specifically in these cell types.

We demonstrated a strong association between position on

the G3/G4 continuum and risk of death. To what extent it may

be effective and desirable to incorporate this into future clinical

risk stratifications requires a more in-depth study, ideally as

part of a prospective clinical trial. We have also touched upon

the association between isoform expression or RNA editing

and position on the G3/G4 continuum. We did this to demon-

strate the primacy of the G3/G4 continuum in determining tran-

scriptional biology; however, our description is by no means

exhaustive and many important facets of MB RNA functional

biology remain to be explored by future functional studies

beyond the scope of the limited descriptions we have initiated

here.

Finally, while we have demonstrated that the G3/G4 scores for

individual cells appear to fall within a range on the continuum

defined by the bulk tumors of the equivalentMBGrp3/MBGrp4 sub-

types (I–VIII), we should note that this was done with a relatively

small number (n = 15) of individuals and that not all of the

subtypes are covered equally. Further scRNA-seq analysis of in-

dividual MBGrp3/MBGrp4 tumors should be undertaken to confirm

the generalizability of this observation.
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381–386 (2014). https://doi.org/10.1038/nbt.2859

N/A

survMisc https://cran.r-project.org/web/packages/survMisc/index.

html

N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and request for resources and reagents should be directed to and will be fulfilled by the lead contact, Daniel Wil-

liamson (daniel.williamson@ncl.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Data arising from this study has been deposited in Array Express: E-MTAB-10754 and E-MTAB-10767 and are publicly avail-

able as of the date of publication. Additionally, this study makes use of previously deposited datasets GEO: GSE130051,

GSE93646, and GSE119926. For scRNA-seq fetal cerebellar data, processed data are available through the Human Cell Atlas

(https://www.covid19cellatlas.org/aldinger20) and the UCSC Cell Browser (https://cbl-dev.cells.ucsc.edu). Sequence data is

available in the Database of Genotypes and Phenotypes, under accession number dbGAP: phs001908.v2.p1 (dbGAP/NCBI).

Details are listed in the key resources table and method details section.

d No custom codewas used in this study. Open-source algorithmswere used as detailed in themethod details section. Details on

how these algorithms were used are available from the corresponding authors upon request.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human tissue samples
Snap frozen tumor samples from individuals with a confirmedmedulloblastoma diagnosis were used for RNA-seq analysis. These were

provided as part of UK CCLG-approved biological study BS-2007–04 and/or with approval from Newcastle North Tyneside Research

Ethics Committee (study reference 07/Q0905/71); informed, written consent was obtained from parents of all patients younger than

16 years. 66% of patients in the study were male, 15% were aged less than 3 years, 3% > 16 years and 82% aged 3-16 years (details

given in Table S1).

METHOD DETAILS

Patient samples and study cohort
331 tumor samples from individuals with a confirmedmedulloblastoma diagnosis were used for the RNA-seq analysis. Histopatholog-

ical variants were defined according to theWHO2016 guidelines (Louis et al., 2016).Metastatic status (M+) was defined asM> 1 as per

Chang’s criteria (Chang et al., 1969).MYC and MYCN amplification status was assessed by fluorescence in situ hybridization and/or

copy-number estimates from methylation array and TP53, CTNNB1, and TERT mutation status by Sanger sequencing. DNA was
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extracted usingQiagenDNeasy blood and tissue kit. Othermutationswere assessed using next-generation sequencing.Whole-exome

and targeted gene panel sequencing was performed using the Agilent SureSelect target enrichment platform and Illumina paired-end

sequencing according to manufacturer’s instructions. NGS datasets were analyzed for coding/exonic region variants using Genome

Analysis Toolkit (GATK) version 3.7, according toBroad Institute’s best practices (Burrowswheeler alignment, HaplotypeCaller, Variant

Quality Score Recalibration for exomes and Hard-filtering for panel) (Van der Auwera et al., 2013) and annotated using Ensembl Variant

Effect Predictor (McLaren et al., 2016). Variants were predicted pathogenic if their consequence included coding or splice donor/

acceptormutations,max allele frequencywas<0.01 in each of the large sequencing studies (ExAC,GnomAD/exomes, 1000Genomes,

ALFA) and predicted to be deleterious by both CAROL and FATHHM prediction tools (Lopes et al., 2012; Shihab et al., 2013). Variants

called by targeted panel sequencing were called at a mean read depth of 278 (Standard Error of Mean = 11). Exome studies were per-

formed at mean depth of 40x. Pathogenic variants required a variant allele frequency R10%, a minimum read depthR10 and a min-

imum 2 variant forward reads and 2 variant reverse reads. Variants were further curated for obvious artifacts by visual inspection in

Integrative Genomics Viewer (IGV) (J. T. Robinson et al., 2011). Chromosome-arm level copy-number estimates were derived from

DNA methylation array data using conumee (R/Bioconductor). A larger previously published MBGrp3/MBGrp4 cohort (Sharma et al.,

2019) (Schwalbe et al., 2017) (GSE130051 &GSE93646) towhich 166 novel profileswere added (E-MTAB-10754) (n = 1670, exact sam-

ples used are detailed in Table S2) was used for methylation-only analysis.

RNA-seq analysis
Total RNA was extracted from snap frozen tissue samples using Trizol extraction followed by Qiagen RNeasy Cleanup Kit and then

subjected to transcriptome sequencing using Illumina TruSeq RNA Library Prep and HiSeq 2500 platform achieving a �90M paired

end reads per sample. Following QC checks (fastqc/bamqc) samples were aligned to genome hg19 using RNA-star (Dobin et al.,

2013) in two-pass alignment mode and per gene read counts generated using ht-seq count (Anders et al., 2015) and Gencode v25.

Where isoform abundance estimates were required these were generated using kallisto (Bray et al., 2016). For differential expression

analysis DESeq2 (Love et al., 2014) (R/Bioconductor) was used. R/Bioconductor was used for other analysis, clustering and visualiza-

tion. Read counts were first normalized and a variance stabilizing transform was first applied using the vst function within DESeq2

(R/Bioconductor). Additionally, a batch correction controlling for sequencing batch was applied using the implementation of

ComBat within the sva package (R/Bioconductor). Consensus NMF analysis was performed as per the method described in Schwalbe

et al. (Schwalbe et al., 2017) and Sharma et al. (Sharma et al., 2019). Briefly, multi-run NMF is performed with n = 250 iterations of 80%

bootstrapping. Metagenes calculated following each iteration are projected on to each removed sample and k-means clustering used

to predict the class of each removed sample based on the larger training set. A range of NMF metagene ranks (3-10) and k-means

clusters (3-10) are tested and cophenetic indices (a shorthand measure of the robustness of sample clustering) used to evaluate the

consistency of classification for each combination ofmetagenes (Table S3). A 4-metagene/4-cluster solutionwas considered optimally

stable based on the following rationale: i) for each level of NMF rank (k) average silhouette width dropped substantially after 4 clusters

(c) and generally peaked at c = 4, ii) considering only c = 4 solutions, sample reproducibility was maximized by k = 4 and k = 5 meta-

genes with larger reductions in sample reproducibility for additional metagenes, iii) when choosing between k = 4 and k = 5metagenes

differences in sample reproducibility were minimal but the additional k5 metagene was effectively redundant, only expressed in a tiny

minority of samples and did not track with any known biological characteristics or subgroups. Also 4-metagenes/4-clusters was

coherent with previous descriptions of the disease and our prior understanding of the main subgroups. Samples which were assigned

to the same class with <90%consistency upon resamplingwere designated asMB-NOS, except where theywere alternately assigned

as MBGrp3 or MBGrp4 with >90% consistency, in which case they were classified as MBGrp3/MBGrp4.

Averaged and standardized metagene h-values from across the bootstraps were used as measures of metagene expression. All

NMF projections were performed using column-rank and post-projection normalization as per the method described by Tamayo

et al. (Tamayo et al., 2007). t-SNE were used for visualization was performed using the Rtsne package (R/CRAN).

G3/G4 score was calculated by applying a logistic transformation 1/(1 + exp(-x)) to the MBGrp3 and MBGrp4 metagenes (excluding

two outliers). The G3/G4 score was calculated as the MBGrp3 proportion of the total metagene scaled to between 0 and 1. For con-

venience of visualization, or where categorical comparison was required, we referred to individuals >0 &%0.2 as ‘‘HighG4’’, >0.2 &%

0.4 as ‘‘LowG4’’, >0.4 & %0.6 as ‘‘G3.5’’, >0.6 & %0.8 as ‘‘LowG3’’ and >0.8 & %1 as ‘‘HighG3’’.

RNA editing was estimated using the QEdit/Reditools pipeline as previously described (https://github.com/BioinfoUNIBA/QEdit)

(Lo Giudice et al., 2020). Differential RNA-editing was calculated using a p-adjusted (Benjamini-Hochberg) Mann-Whitney U-test

for two group analysis and Anova with TukeyHSD (post-hoc) for multi-group analysis. Where unknown from DNA analysis GFI1/

GFI1B, PRDM6 rearrangements were each inferred from RNA-seq data as per the method used originally by Northcott et al. (North-

cott et al., 2014, 2017).

GSEA was performed using MsigDb library version 7.1 and the implementation of the original algorithm within the package

fgsea (R/Bioconductor) and ssGSEA using the implementation within GSVA (R/Bioconductor) (Hänzelmann et al., 2013).

The following gene sets were selected as reflective of the pathway categories given in Figure 4C. MYC =

"HALLMARK_MYC_TARGETS_V200, "MYC_UP.V1_UP", "DANG_MYC_TARGETS_UP". Cell Cycle = "FISCHER_G1_S_CELL_

CYCLE", "GO_POSITIVE_REGULATION_OF_CELL_CYCLE", "GO_SIG NAL_TRANSDUCTION_INVOLVED_IN_CELL_CYCLE_

CHECKPOINT", TP53 = "CEBALL OS_TARGETS_OF_TP53_AND_MYC_UP", "REACTOME_TRANSCRIPTIONAL_REGULATION _

BY_TP5300, ‘‘REACTOME_TP53_REGULATES", MTOR = "HALLMARK_MTORC1_SIGNALING", "MTOR_UP.V1_UP", "MTOR_UP.
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N4.V1_UP", PHOTORECEPTOR = "GO_EYE_PHOTOREC EPTOR_CELL_DIFFERENTIATION", "GO_CAMERA_TYPE_

EYE_PHOTORECEPTOR_CELL_ DIFFERENTIATION", "GO_EYE_PHOTORECEPTOR_CELL_DEVELOPMENT", TGFB1 = "KARL

SSON_TGFB1_TARGETS_UP", "JAZAG_TGFB1_SIGNALING_VIA_SMAD4_UP", "KARAKAS_ TGFB1_SIGNALING" NOTCH =

"GO_POSITIVE_REGULATION_OF_NOTCH_SIGNALING _PATHWAY", "REACTOME_ACTIVATED_NOTCH1_TRANSMITS_SIGNAL_

TO_THE_NUCLEUS", "NGUYEN_NOTCH1_TARGETS_UP", Neuronal Diff = "GO_CENTRAL_NERVOUS_SYSTEM _NEURON_

DIFFERENTIATION" "LE_NEURONAL_DIFFERENTIATION_UP".

In analyzing association with G3/G4 score, the loss or gain of each non-acrocentric chromosome arm was considered as were the

more frequent MBGrp3/MBGrp4 mutations in genes ATM, CTDNEP1, KDM6A, KIF26B, KMT2C, KMT2D, NBAS, NEB, RYR3,

SMARCA4, SPTB, TBR1, TSC2, and ZMYM3.

DNA METHYLATION ANALYSIS

Beta/M-values were derived from HumanMethylation450 BeadChip (450k) and Infinium HumanMethylationEPIC (850k) arrays using

the ssNOOB method within the package minfi (Aryee et al., 2014) excluding known SNPs and cross-hybridizing probes. In order to

construct a random forest classifier which predicted G3/G4 score from DNA methylation data, we performed feature selection of

CpGs using 192 MBGrp3/MBGrp4 samples with both RNA-seq (i.e. known G3/G4 score) and Methylation array. We constructed using

limma (R/Bioconductor) a number of bootstrapped (80% with 100 iterations) significance tests testing differential methylation be-

tween each of the categories HighG4, LowG4, G3.5, LowG3 and HighG3.Wemeasured average performance for a range of numbers

of features (10-100) on removed samples using a tuned support vector machine, however performance plateaued after a certain

number of features, so it was decided to select the top 80 most frequently selected CpGs for each comparison. Thus n = 400

CpG features were used to train a random forest classifier which was then subject to recursive feature elimination using 50x

cross-validation and implemented using the rfe/rfeControl function within the caret package (R/CRAN). An internal validation process

by which model performance was estimated by recreating the model multiple times without individuals whose predicted score was

then used to estimate performance. Where sigmoid curves are shown, these were fitted using the fitmod function within the Dose-

Finding package (R/Bioconductor). For visualization these were scaled to a minimum 0 and maximum 1.

Methylation subtype calling (Sharma et al., 2019) was obtained using an extension of the Heidelberg brain tumor classifier available

at [https://www.molecularneuropathology.org/mnp]. A methylation classifier prediction score of >0.8 was used to assign subtype.

Samples were excluded if not confirmed as MB by MNP.

Significantly differentially methylated regions (DMRs) distinguishing G4High, G4Low, G3.5, G3Low and G3High were calculated

using dmrcate (R/Bioconductor) using settings lambda = 1000, C = 2. Regions were considered when the total number of CpGs

R5, the minimum FDR <0.05 and the mean Beta fold change >0.25. These were further filtered to identify DMRs which overlapped

with the MBGrp3/MBGrp4 specific enhancer/superenhancer regions identified by Lin et al. (Lin et al., 2016).

scRNA-SEQ ANALYSIS

A previously published medulloblastoma scRNA-seq dataset (Hovestadt et al., 2019) GSE119926 was used. However, we used only

the MBGrp3/MBGrp4 primary patient samples (excluding the patient-derived xenografts) (n = 4256 cells, n = 15 samples) and excluded

patients SJ970 and SJ723 due to the relatively few available cells. The pre-publication Human fetal cerebellar single cell reference

dataset, consisting of 69,174 cells, classified into 21 cell types and derived from 15 donors between 9 and 21 PCW, details can be

found within https://www.biorxiv.org/content/10.1101/2020.06.30.174391v1 (Aldinger et al. in press Nature Neuroscience). For the

purposes of metagene projection, Seurat (R/Bioconductor) (Butler et al., 2018) was used to select the 5000 most variable features

using the ‘‘vst’’ method for both datasets and the resulting normalized matrices subject to NMF projection of the bulk metagenes

and calculation of the G3/G4 score as per the bulk analysis described above. In this way, a per-cell metagene score andG3/G4 score

was calculated.

An alternative method was used for validation purposes, namely Canonical Correlation Analysis (CCA). CCA has been previously

used to facilitate cross-species/cross-platform comparisons (Butler et al., 2018). The limitations of CCA are such that it cannot be

used to achieve quite the same cell by cell projection we can with NMF. Nevertheless, the basic results are comparable showing

similarity between MBWNT and RL, MBSHH and GCP, MBGrp3 and RL and MBGrp4 with eCN/UBC.

CCA is performed as a singular value decomposition of a distance matrix between bulk RNA-seq medulloblastoma and the fetal

cerebellar scRNA-seq dataset. Cosine distance is used to calculate a CCA score reflecting the correlation of differential expression

and thus the relative similarity between medulloblastoma subgroup and fetal cerebellar cell type; a similar technique was used by

Hovestadt et al. (Hovestadt et al., 2019). Whilst the top similarity for MBGrp3 and MBGrp4 is RL and eCN/UBC respectively treating

them as discrete subtypes - although necessary for the CCA analysis - goes somewhat against our purpose. We therefore created

a second analysis where we divided the MBGrp3/Grp4 patients in our bulk reference into five quantiles based on their G3/G4 score, i.e.

position on the continuum. This reflected the transition from a ‘‘straight-up’’ resemblance to eCN/UBC at the extremeGrp4 end of the

continuum and RL at the extreme Grp3 end.

Developmental trajectory analysis was performed usingmonocle v3 (Qiu et al., 2017) (R/Bioconductor) using 12,243 cells classified

as RL, GCP, GN or eCN/UBC which we defined broadly as the rhombic lip lineage as per Aldinger et al. Monocle v3 functions used
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were preprocess_cds, align_cds, reduce_dimension, cluster_cells, learn_graph, order_cells and plot_cells to visualize by UMAP. To

rule out the possibility that an association between MBGrp3 and RL was simply an artifact of higher cellular proliferation we estimated

the cell cycle phase using Seurat. Whilst there is a higher proportion of cycling cells in RL compared to eCN/UBC the same can also

be said of GCP. This speaks against a default matching of MBGrp3 metagenes to any actively cycling cells. We also tried regressing

out the effect of the cell cycle using the ‘‘CC.difference’’ (Seurat, R/Cran)method and reprojected ourmetagenes. This had little effect

on the projection, as did removing all genes with ‘‘cell cycle’’ ontology. Top genes driving association with projected MBGrp3 and

MBGrp4 metagenes in the developmental setting include ASIC2, GRIK1, KCNQ3, ANK3, ANKS1B, GRIA2; none of which are classic

oncogenes, The GO terms significantly enriched (DAVID/EASE) are ‘‘cell junction’’, ‘‘postsynaptic membrane’’, ‘‘integral component

of plasma membrane’’ and ‘‘cell division’’ (each Benjamini p < 0.01)

The relevant branches for MBGrp3/MBGrp4 and MBSHH were divided as indicated (Figure 7) and the relationship between pseudo-

time and G3/G4 score/metagene was defined using a loess curve function. This enabled developmental and oncogenic events to be

mapped onto a common scale (Figure 7). Geneswhose expression varied significantly according to pseudotime were detected using

Moran’s test statistic as implemented bymonocle v3. For analysis of the differences between MBSHH-Infant and MBSHH-Child, a further

metagene calculated using NMF rank = 2 only onMBSHH (67/331 samples) was additionally projected onto the single cells in the same

manner as the other metagenes. For calculating empirical density, the density function was used (R/Bioconductor) except where

weighted two-dimensional estimation was needed in which case the kde2d.weighted function from the package ggtern (R/Bio-

conductor) was used. Weights were calculated as the number of cells at a given sampling point (9-21PCW) as a proportion of the

total number of cells sampled.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis and visualization was carried out in R 3.5.3 except for the analysis of fetal cerebellar scRNA-seq which was performed

using R 4.0.2. CRAN and Bioconductor packages used are given in the key resources table. To test significant association with time

to death/progression, a log-rank test (test for trend as implemented by survMisc (R/Cran)) or Cox-regression was used. OSwas used

when assessing the basic relationship between G3/G4 score/subtype with risk of death. This was to maximise the number of data

points (more OS than PFS data was available). When assessing use as an independent biomarker PFS was preferred as standard for

the field as patients who relapse, almost without fail, go on to relapse.

A Kolmogorov-Smirnoff test was used to compare distributions across the G3/G4 continuum of patients with or without specific

clinico-pathological mutational and copy number features. Where significant this indicates that patients with or without a given

feature are significantly likely to be drawn from different G3/G4 score distributions. The implication being that with respect to a given

feature patients are non-randomly distributed across the G3/G4 continuum. Where gene expression/pathway associations with G3/

G4 score are assessed, these are assessed using Pearson’s correlation coefficient (Table S4). The test statistics and significant

p-values (p < 0.05) are stated in the text and figures and were adjusted for multiple hypothesis testing using Benjamini-Hochberg

for high-dimensional analyses. Where values of n are given, these generally pertain to number of samples/individual patients except

where otherwise indicated. Boxplots, where used, show dispersion as per standard i.e. (center line = median, box = interquartile

range, whisker = range minus outliers).

Data were excluded where samples were clearly indicated to be duplicated acrossmultiple related datasets. Additional exclusions

were carried out for samples where methylation array detection p value did not reach significance threshold in at least 90% of the

array. Methylation samples were excluded from the analysis if not confirmed as medulloblastoma by MNP2.0. In our analysis of

the scRNA-seq dataset GSE119926 we excluded patients SJ970 and SJ723 due to the relatively few available cells.
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Figure 1S: Copy number changes are non-randomly distributed with respect to position on the Group3/Group4 
continuum. A: Heatmap showing copy number changes by chromosome for n=331 MB and grouped by subgroup. 
MBGrp3/MBGrp4 individuals are ordered by G3/G4 score. Column annotation shows subgroup as determined by RNA-seq 
(Expression Subgroup) as determined by DNA methylation array (Methylation Subgroup), and DNA methylation MBGrp3/MBGrp4 
subtype (I-VIII) as per Sharma et al 2019 (Sharma et al., 2019) as defined using MNPv2 classifier (Capper et al., 2018) (Grp3/4 
Subtype). The line plot (bottom) shows G3/G4 score. B: Rug plot showing distribution of aneuploidy/copy number change with 
respect to G3/G4 score. Summary counts are given according to the convenient divisions of HighG4, LowG4, G3.5, LowG3, 



HighG3 (these categories are arbitrary divisions of the continuum for the purposes of visualization and comparison and do not 
represent “real” subgroups) and reflected by the red line plots. Presence of a given feature is indicated by a bold tick mark, the 
color of which indicates methylation MBGrp3/MBGrp4 subtype (I-VIII). Adjusted P-values for a Kolmogorov-Smirnoff statistic (D) 
are shown to denote non-random distribution of features with respect to G3/G4 score. Related to Figure 2. 
  



 
Figure 2S: Certain mutations are non-randomly distributed with respect to the Group3/Group4 continuum. A: Heatmap 
showing 4 consensus NMF metagenes calculated for n=331 MB and grouped by subgroup. MBGrp3/MBGrp4 individuals are ordered 
by G3/G4 score. Column annotation shows subgroup as determined by RNA-seq (Expression Subgroup) as determined by 
methylation (Methylation Subgroup), methylation MBGrp3/MBGrp4 subtype (I-VIII) as per Sharma et al 2019 as defined using 
MNPv2 classifier (Grp3/4 Subtype). Presence of mutations are indicated to be present or not by dark grey shading. White 
indicates missing data. B: Rug plot showing distribution of mutations with respect to G3/G4 score. Summary counts are given 
according to the convenient divisions of HighG4, LowG4, G3.5, LowG3, HighG3 (these categories are arbitrary divisions of the 
continuum for the purposes of visualization and comparison and do not represent “real” subgroups) and reflected by the red line 
plots. Presence of a given feature is indicated by a bold tick mark the color of which indicates methylation MBGrp3/MBGrp4 subtype 
(I-VIII). P-values for a Kolmogorov-Smirnoff statistic (D) are shown to denote non-random distribution of features with respect to 
G3/G4 score. Related to Figures 1 & 2. 
  



  

Figure 3S: The transcriptional G3/G4 score can be recapitulated using DNA methylation profiles. A: Heatmap showing top 
50 genes most significantly differentially expressed (top) and top 50 CpGs differentially methylated between MBGrp3 and MBGrp4. 
Samples are ordered according to G3/G4 score. Note the difference in gradation for the expression values as opposed to the more 
binary distribution of DNA methylation beta-values. B: Heatmap showing DNA methylation values of the top 40 most 
discriminatory CpGs distinguishing HighG4 (dark green), LowG4 (light green), Low G3 (yellow) and High G3 (orange). G4 
hypermethylated CpGs are shown on the left and hypomethylated CpGs on the right. Samples are ordered according to G3/G4 
score and G3/G4 categories (HighG4, LowG4, G3.5, LowG3, HighG3; these categories are arbitrary divisions of the continuum 
for the purposes of visualization and comparison and do not represent “real” subgroups) are annotated. C: Scatterplot showing 
beta-values for CpG “cg19784198” colored by G3/G4 categories (HighG4, LowG4, G3.5, LowG3, HighG3) an example of a CpG 



differentially expressed between MBGrp3 and MBGrp4 showing a bimodal methylation distribution. The relationship with G3/G4 
score can effectively be modelled by a sigmoid/logistic function. D: Fitted sigmoid curve representing the relationship between 
CpG beta-value and G3/G4 Score. Top 40 most discriminatory CpGs distinguishing HighG4 (dark green), LowG4 (light green), 
Low G3 (yellow) and High G3 (orange) are shown. E: The performance of the cross-validated random forest classifier showing 
predicted G3/G4 score (derived from DNA methylation values) against actual G3/G4 score (derived from RNA-seq) n = 192. 
Related to Figure 2. 
  



 
Figure 4S Clinico-pathological characteristics, mutations and copy number changes are all non-randomly distributed with 
respect to the Group3/Group4 continuum (as determined by DNA-methylation profile). A: Rug plot showing distribution of 
clinicopath features (top) mutations (middle) and copy number (bottom) with respect to G3/G4 score derived from DNA 
methylation data. Summary counts are given according to the convenient divisions of HighG4, LowG4, G3.5, LowG3, HighG3 
(these categories are arbitrary divisions of the continuum for the purposes of visualization and comparison and do not represent 
“real” subgroups) and reflected by the red line plots. Presence of a given feature is indicated by a bold tick mark the color of 
which indicates methylation MBGrp3/MBGrp4 subtype (I-VIII). P-values for a Kolmogorov-Smirnoff statistic (D) are shown to 
denote non-random distribution of features with respect to G3/G4 score. Infant=age at diagnosis < 3 years, Metastases = M+, 
DOD=Dead of Disease, LCA = Large Cell Anaplasia, PRDM6 = PRDM6 rearrangement. B: Empirical density and rug plots 



showing the distribution of M+ in MBGrp3/MBGrp4 subtype III, LCA in MBGrp3/MBGrp4 subtype II and MYC amplification in 
MBGrp3/MBGrp4 subtype III with respect to G3/G4 score. The given clinico-pathological features are significantly non randomly 
distributed with respect to G3/G4 score even within specific MBGrp3/MBGrp4 subtypes as shown by Kolmogorov-Smirnoff test (D). 
C: Empirical density and rug plots showing the distribution of copy number changes i17q in MBGrp3/MBGrp4 subtype VIII, Gain of 
chromosome 5 in MBGrp3/MBGrp4 subtype II and loss of chromosome 8 in MBGrp3/MBGrp4 subtype VI with respect to G3/G4 score. 
The given copy number features are significantly non randomly distributed with respect to G3/G4 score even within specific 
MBGrp3/MBGrp4 subtypes as shown by Kolmogorov-Smirnoff test (D). Related to Figure 2. 
  



 
Figure 5S Survival outcomes of Group3/Group4 medulloblastoma patients is significantly related to position on the 
Group3/Group4 continuum (as determined by DNA-methylation profile). A: Kaplan-Meier plot showing significant 
differences in MBGrp3/MBGrp4

 overall survival (patients of all ages) by G3/G4 continuum position divided for convenience as 
HighG4, LowG4, G3.5, LowG3, HighG3 (these categories are arbitrary divisions of the continuum for the purposes of 
visualization and comparison and do not represent “real” subgroups). B: Forest plot showing univariate Cox models (patients > 3 
years) of overall survival containing the variables G3/G4 score (as predicted by DNA methylation) treated as a categorical 
variable and C: MBGrp3/MBGrp4 methylation subtype. Related to Figure 2. 
  



 
Figure 6S Isoform diversity and level of RNA-editing is related to medulloblastoma subgroup. A: Boxplot showing (left) the 
distribution by MB subgroup of moderately expressed genes, isoforms, CDS or TSS as defined by a TPM>10 and (right) the same 
given as a ratio of expressed isoforms, CDS or TSS per expressed genes. B: Boxplot showing significant differences in OEI 
(Overall Editing Index), i.e. level of RNA-editing by MB subgroup. Related to Figure 4. 
  



 
Figure 7S: Expression of Group3/Group4 genes is significantly related to (earlier/later) pseudotime position along the 
Rhombic Lip – Unipolar Brush cell trajectory and position on the continuum is related to age of onset. Plots showing the 
per-cell expression of genes whose expression varies according to pseudotime on the A: RL to eCN/UBC branch (MBGrp3 specific 
genes are shown on the left and MBGrp4 specific genes shown on the right) and the B: GCP to GN branch (MBSHH-Infant specific 
genes are show on the left and MBSHH-Child specific genes are shown on the right). Cell type is denoted by color. Black line 
represents a loess curve. Expression is represented as normalized count data. C: Ridgeplots showing distribution of G3/G4 score 
MBGrp3/MBGrp4 patients by methylation subtype (I-VIII) and D: distribution of age at diagnosis by DNA methylation subtype (I-



VIII). E: Scatterplot showing age at diagnosis by G3/G4 score (as determined by DNA methylation), 2d empirical density is 
shown as red shading and a loess curve with 95% CI is shown as blue line with grey shading. Related to Figure 6 & Figure 7. 
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