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Background: Tumor recurrence and pseudoprogression (PsP) have similar imaging manifestations in 
conventional magnetic resonance imaging (MRI), although the subsequent treatments are completely 
different. This study aimed to evaluate the value of perfusion-weighted imaging (PWI) in differentiating PsP 
from glioma recurrence.
Methods: A comprehensive literature search was performed to evaluate clinical studies focused on 
differentiating recurrent glioma from PsP using PWI, including dynamic susceptibility contrast MRI 
(DSC-MRI), dynamic contrast enhanced MRI (DCE-MRI), and arterial spin labeling (ASL). Study 
selection and data extraction were independently completed by two reviewers. The Quality Assessment 
of Diagnostic Accuracy Studies 2 (QUADAS-2) tool was applied to evaluate the quality of the included 
studies. The software Stata 16.0 and Meta-Disc 1.4 were used for the meta-analysis. Meta-regression and 
subgroup analyses were applied to identify the sources of heterogeneity in the studies. This study was 
registered in the International Prospective Register of Systematic Reviews (PROSPERO) prior to initiation 
(CRD42022304404).
Results: A total of 40 studies were included, including 27 English studies and 13 Chinese studies. There 
were 1,341 patients with glioma recurrence and 876 patients with PsP. The pooled sensitivity and specificity 
of DSC-MRI for differentiating glioma recurrence from PsP were 0.82 [95% confidence interval (CI): 0.78 
to 0.86] and 0.87 (95% CI: 0.80 to 0.92), respectively. The pooled sensitivity and specificity of DCE-MRI 
were 0.83 (95% CI: 0.76 to 0.89) and 0.83 (95% CI: 0.78 to 0.87), respectively. The pooled sensitivity and 
specificity of ASL were 0.80 (95% CI: 0.73 to 0.86) and 0.86 (95% CI: 0.76 to 0.92), respectively.
Discussion: The DSC-MRI, DCE-MRI, and ASL perfusion techniques displayed high accuracy in 
distinguishing glioma recurrence from PsP, and DSC-MRI had a higher diagnostic performance than the 
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Introduction

Glioma is the most common primary intracerebral tumor 
of the central nervous system (1). According to the 2021 
World Health Organization (WHO) classification of 
tumors of the central nervous system, adult-type diffuse 
gliomas are divided into astrocytoma, oligodendroglioma 
and glioblastoma, accounting for approximately 22% 
of all central nervous system tumors (1,2). Currently, 
radiotherapy combined with adjuvant temozolomide 
chemotherapy has become the standard treatment for newly 
diagnosed glioma in adults (3,4). The higher the tumor 
grade, the higher the risk of recurrence and death (5). 
Regular follow-up and early detection of tumor recurrence 
have important clinical significance (6). According to the 
recommendations of the Response Assessment in Neuro-
Oncology (RANO) Working Group, magnetic resonance 
imaging (MRI) examination is the main method for follow-
up after treatment; however, in conventional MRI, tumor 
recurrence and pseudoprogression (PsP) have similar 
imaging manifestations, making them difficult to making 
them difficult to differentiate (7). Furthermore, the 
subsequent treatments for tumor recurrence and PsP are 
completely different (8).

At present, magnetic resonance (MR) perfusion-
weighted imaging (PWI) is a hot research topic for 
many researchers in China and internationally. The 
most commonly used PWI techniques include dynamic 
susceptibility contrast MRI (DSC-MRI), dynamic contrast 
enhanced MRI (DCE-MRI), and arterial spin labeling 
(ASL). Among these methods, DSC-MRI is usually used 
to evaluate the distribution of microcirculation, the degree 
of microvascular proliferation, and blood perfusion (9);  
DCE-MRI is mainly applied to calculate functional 
parameters related to tissue flow and leakage of contrast 
agent from the intravascular space (10); and ASL can 
noninvasively reflect tissue blood perfusion information 
without contrast agents (11). The PWI findings of gliomas 

are shown in Figure 1, and the MRI scan protocols and 
parameters are shown in Appendix 1 (Table S1). However, 
the previous meta-analysis (12-14) based on the above 
studies have involved small sample sizes, limited glioma 
grading and short time spans, which affected the stability 
and reliability of the results, and evaluation of the 
diagnostic value of MR perfusion imaging has remained 
incomplete. Therefore, this study attempted to perform a 
meta-analysis of published studies to evaluate the accuracy 
of MR perfusion studies in the differentiation of glioma 
recurrence from PsP, which may assist with future clinical 
treatment selection and improve the prognosis of patients. 
We present the following article in accordance with the 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses Diagnostic Test Accuracy (PRISMA-
DTA) reporting checklist (15) (available at https://qims.
amegroups.com/article/view/10.21037/qims-22-32/rc).

Methods

The meta-analysis was registered on the International 
Prospective Register of Systematic Reviews (PROSPERO) 
with the registration number of CRD42022304404.

Literature search strategy

A systematic search in 4 international databases (PubMed, 
Embase, Web of Science and Cochrane Library) and 
4 Chinese local academic databases [China National 
Knowledge Infrastructure (CNKI), Wanfang Med Online, 
Sinomed, and Chinese Medical Journal of Database 
(CMJD)] was performed up to 31 October 2021. The 
search terms were a combination of Medical Subject 
Headings (MeSH) terms and text words representing (I) 
glioma, (II) MR PWI, (III) tumor recurrence, and (IV) 
PsP. Details of the literature search strategy are provided in 
Appendix 2. Two reviewers independently screened paper 

other two techniques. However, due to the diversity of the parameters and threshold differences, further 
investigation and standardization are needed.
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Figure 1 MRI findings of glioma recurrence and PsP. (A-D) Recurrent IDH-wildtype glioblastoma in the right temporal lobe in a 54-year-
old man. (A) Axial T2-weighted imaging shows ill-defined lesion with heterogeneous hyperintensity. (B) Axial post-contrast T1-weighted 
imaging shows heterogeneous enhancement. (C) ASL image shows iso-perfusion mixed with spot-like hyper-perfusion. (D) The CBV 
map of DSC-MRI shows hyper-perfusion in most of the lesion. (E-H) PsP in IDH-mutant astrocytoma after surgery and radiotherapy in 
the right frontal lobe in a 53-year-old woman. (E) Axial T2-weighted imaging shows well-defined lesion with iso-intensity. (F) Axial post-
contrast T1-weighted imaging shows ring enhancement. (G) ASL image shows hypo-perfusion. (H) The CBV map of DSC also shows hypo-
perfusion. MRI, magnetic resonance imaging; PsP, pseudoprogression; ASL, arterial spin labeling; CBV, cerebral blood volume; DSC-MRI, 
dynamic susceptibility contrast magnetic resonance imaging.
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titles, abstracts, and full text. For any difference of opinion 
that emerged during data extraction, consensus was reached 
between the two reviewers by discussion or consultation 
with a third reviewer. Articles that cited the included articles 
were also checked to see if any studies were omitted after 
the initial search.

Selection criteria

The inclusion criteria were as follows: (I) clinical studies 
using MRI perfusion imaging to differentiate between 
glioma recurrence and PsP, in Chinese or English; 
(II)  studies in which local or whole brain radiotherapy 
was performed after surgery, and an abnormal enhanced 
lesion appeared in the operative area; (III) studies in which 
recurrence was defined as  the pathological results of a 
second operation or combined follow-up examination, and 
the standard for radiation brain injury was mainly evidence 

from MRI follow-up; (IV) studies in which diagnostic 2×2 
tables could be extracted directly or indirectly.

Studies were excluded if (I) the study type was a case 
report or review or they were published in the Chinese 
literature but not included in the Institute of Scientific and 
Technical Information of China (ISTIC); (II) they contained 
a sample size ≤30; (III) they included patients aged ≤18 years;  
(IV) they demonstrated incomplete reporting of essential 
data, such as a lack of sensitivity and specificity and 
incomplete and informally published studies.

Data extraction and quality assessment

Data extraction and quality evaluation included the 
following: (I) basic information: first author, publication 
year, country, study type, number of cases, age, WHO 
classification, treatment, and diagnostic criteria;  (II) MR 
information, including MR equipment, field intensity, and 
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Records identified from databases (n=1,342)
• English databases (n=1,040) 
• Chinese databases (n=302)

Records screened (n=874)

Reports sought for retrieval (n=550)

Reports assessed for eligibility (n=183)

Studies included in review (n=40)
• English studies (n=27)
• Chinese studies (n=13)

Records removed before screening:
Duplicate records removed (n=468)

Records excluded (n=324):
• Review, meta-analysis (n=179)
• Case report (n=18)
• Thesis (n=58)
• Meeting abstract (n=22)
• Animal experiment (n=47)

Reports not retrieved (n=367)

Records excluded (n=143):
• Cases ≤30 (n=60)
• Age <18 y (n=22)
• Unable to obtain 2×2 table (n=36)
• Other incomplete data (n=25)
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Figure 2 Flow chart of the study selection process.

perfusion imaging methods and parameters; (III) Data from 
2×2 tables of diagnostic tests requiring evaluation, including 
true positive (TP), true negative (TN), false positive 
(FP), and false negative (FN) test results. The Quality 
Assessment of diagnostic Accuracy Studies 2 (QUADAS-2) 
tool was used to evaluate the quality of the included studies, 
including the risk of bias and applicability concerns.

Statistical analysis

Statistical analysis was performed using Stata 16.0 (Stata 
Corp, College Station, TX, USA) and Meta-Disc 1.4 (http://
www.hrc.es/investigacion/metadisc_en.htm). The pooled 
sensitivity, specificity and diagnostic odds ratio (DOR) were 
calculated and the summary receiver operating characteristic 
(SROC) was plotted. The Spearman correlation coefficient 
was used to test the threshold effect. A Fagan plot 
was drawn to calculate prior probability and posterior 
probability. Cochran’s Q test was applied to determine 
whether there was heterogeneity, and I2 was adopted to 
measure the heterogeneity. If homogeneity among the 
results was good (Cochran’s Q test P>0.1; I2≤50%), a fixed-
effects model was adopted; otherwise, a random-effect 

model was used along with an attempt to identify the source 
of heterogeneity through meta-regression and subgroup 
analysis. A P value of <0.05 was considered to indicate a 
statistically significant difference. Funnel plots were drawn 
to determine whether publication bias existed.

Results

Literature search process and study selection

A total of 1,342 studies were preliminarily identified 
through electronic database searches. After removing 
duplicate studies, they were assessed for eligibility for 
inclusion. A total of 40 studies were finally selected, 
including 27 English studies and 13 Chinese studies. 
There were 2,217 patients, including 1,341 cases of tumor 
recurrence and 876 cases of PsP. Of the patients in all of 
the included studies, 39.5% [95% confidence interval (CI): 
0.37 to 0.42] displayed PsP due to treatment effects. A 
total of 60.5% (95% CI: 0.58 to 0.63) of the patients with 
progression were diagnosed with true progression. A flow 
chart of the study selection process is shown in Figure 2.

The characteristics of the included studies are shown in 

http://www.hrc.es/investigacion/metadisc_en.htm
http://www.hrc.es/investigacion/metadisc_en.htm
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Table 1. Of the 40 studies, 30 were retrospective studies, 5 
were prospective studies (24,28,35,41,42), and 5 were not 
described (43,46,47,52,53). Tumor types were classified into 
glioma (WHO grade II–IV) (31,35,37,40,44,46,52), high-
grade glioma (WHO grade III–IV) (27,33,34,36,42,43,45,47-
51,54,55) and glioblastoma (WHO grade IV) (16-26,28-
30,32,38,39,41,53). All glioma grades were based on the 
WHO classification prior to 2021. As the “gold standard” 
for diagnosis, 28 studies used pathological diagnosis 
combined with follow-up, 6 studies used pathological 
diagnosis (20,26,33,35,55), and 6 studies were confirmed by 
follow-up alone (23,24,36,39,41,44). Among the 40 studies, 
DSC-MRI was used in 28 studies to distinguish glioma 
recurrence from PsP, most of which used relative cerebral 
blood volume (rCBV) as the best parameter (approximately 
50%), and the other parameters included relative peak 
height (rPH), relative cerebral blood flow (rCBF), and 90% 
normalized cerebral blood volume (nCBV). The DCE-
MRI technique was performed in 14 studies (20-22,25,30, 
32,36,38,39,41,42,44,45,51), most of which used transfer 
constant (Ktrans) as the best parameter; ASL was applied in 
12 studies (19,24,29,31,35,36,40,43,48,49,53,55), and rCBF 
was the most commonly used parameter. For the quality 
assessment of the literature, the QUADAS-2 tool showed 
low-risk bias and good clinical applicability. The risk of bias 
and applicability concerns graph of the included studies is 
shown in Figure 3. The methodology for quality assessment 
in this study was consistent with that of the previous meta-
analysis (12), which included the risk of bias and applicability 
concerns. There was potential introduction of bias in patient 
selection, index test, reference standard, and flow and 
timing.

Results of the meta-analysis of the DSC-MRI studies

A total of 28 studies were included in the meta-analysis, 
including 21 English studies and 7 Chinese studies. The 
threshold effect test results showed that Spearman’s 
correlation coefficient was −0.3 (P=0.09). After drawing 
the SROC diagram, no obvious “shoulder-arm shape” 
emerged, indicating that there was no heterogeneity 
caused by the threshold effect in this study. The results 
of the forest plots showed that the Q test of sensitivity 
was P<0.01 with I2=68.33%, and the Q test of specificity 
was P<0.01 with I2=81.00%, indicating that there was 
significant heterogeneity among the included studies. 
Therefore, a random-effects model was used to analyze the 
pooled sensitivity and specificity in the DSC-MRI studies. 
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Figure 3 Risk of bias and applicability concerns graph for each included study. High risk (−), unclear risk (?) and low risk (+).
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Table 2 Diagnostic results of PWI for differentiating glioma recurrence from PsP

PWI Studies Cases Se (95% CI) Sp (95% CI) PLR (95% CI) NLR (95% CI) DOR [95% CI] AUC (95% CI)

DSC-MRI 28 1,645 0.82 (0.78–0.86) 0.87 (0.80–0.92) 6.5 (4.1–10.3) 0.20 (0.17–0.25) 32 [18–55] 0.89 (0.86–0.92)

DCE-MRI 14 873 0.83 (0.76–0.89) 0.83 (0.78–0.87) 4.9 (3.6–6.6) 0.20 (0.13–0.30) 24 [12–47] 0.88 (0.85–0.91)

ASL 12 492 0.80 (0.73–0.86) 0.86 (0.76–0.92) 5.7 (3.1–10.3) 0.23 (0.16–0.33) 24 [10–57] 0.88 (0.85–0.91)

PWI, perfusion-weighted imaging; PsP, pseudoprogression; DSC-MRI, dynamic susceptibility contrast magnetic resonance imaging; DCE-
MRI, dynamic contrast enhanced magnetic resonance imaging; ASL, arterial spin labeling; Se, sensitivity; CI, confidence interval; Sp, 
specificity; PLR, positive likelihood ratio; NLR, negative likelihood ratio; DOR, diagnostic odds ratio; AUC, area under the curve.

The results showed that the pooled sensitivity, specificity, 
positive likelihood ratio (PLR), negative likelihood ratio 
(NLR), and DOR were 0.82 (95% CI: 0.78 to 0.86), 0.87 
(95% CI: 0.80 to 0.92), 6.5 (95% CI: 4.1 to 10.3), 0.20 (95% 
CI: 0.17 to 0.25) and 32 (95% CI: 18 to 55), respectively. 
The area under the curve (AUC) was 0.89 (95% CI: 0.86 to 
0.92). Fagan plots displayed a prior probability of 0.5 and 
a posterior probability of 0.87 and 0.17 for the PLR and 
NLR, respectively. The above results for the DSC-MRI 
studies are shown in Table 2 and Figures 4-6.

Results of the meta-analysis of the DCE-MRI studies

A total of 14 studies were included, including 11 English 

studies and 3 Chinese studies. The threshold effect test 
results showed that Spearman’s correlation coefficient was 
1.0 (P=1.00). After drawing the SROC diagram, no obvious 
“shoulder-arm shape” emerged, indicating that there was 
no heterogeneity caused by the threshold effect in this 
study. The results of forest plots showed that the Q test of 
sensitivity was P<0.01 with I2=77.64%, and the Q test of 
specificity was P>0.1 with I2=0.00%, indicating that there 
was significant heterogeneity in the sensitivity among the 
included studies. Therefore, a random-effects model was 
used to analyze the pooled sensitivity and specificity in the 
DCE-MRI studies. The results showed that the pooled 
sensitivity, specificity, PLR, NLR, and DOR were 0.83 (95% 
CI: 0.76 to 0.89), 0.83 (95% CI: 0.78 to 0.87), 4.9 (95% CI: 
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Figure 5 SROC curves of three PWI techniques to distinguish glioma recurrence from PsP [(A) DSC-MRI, (B) DCE-MRI, (C) ASL]. 
DSC-MRI, dynamic susceptibility contrast magnetic resonance imaging; SENS, sensitivity; SPEC, specificity; SROC, the summary receiver 
operating characteristic; AUC, area under the curve; PWI, perfusion-weighted imaging; PsP, pseudoprogression; DCE-MRI, dynamic 
contrast enhanced magnetic resonance imaging; ASL, arterial spin labeling.
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Figure 4 Forest plots of sensitivity and specificity in the included studies [(A) DSC-MRI, (B) DCE-MRI, (C) ASL]. CI, confidence interval; 
DSC-MRI, dynamic susceptibility contrast magnetic resonance imaging; DCE-MRI, dynamic contrast enhanced magnetic resonance 
imaging; ASL, arterial spin labeling.
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Figure 6 Fagan plots of three PWI techniques to distinguish glioma recurrence from PsP [(A) DSC-MRI, (B) DCE-MRI, (C) ASL]. LR, 
likelihood ratio; PWI, perfusion-weighted imaging; PsP, pseudoprogression; DSC-MRI, dynamic susceptibility contrast magnetic resonance 
imaging; DCE-MRI, dynamic contrast enhanced magnetic resonance imaging; ASL, arterial spin labeling.
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3.6 to 6.6), 0.20 (95% CI: 0.13 to 0.30) and 24 (95% CI: 
12 to 47), respectively. The AUC was 0.88 (95% CI 0.85 
to 0.91). Fagan plots showed a prior probability of 0.5 and 
a posterior probability of 0.83 and 0.17 for PLR and NLR, 
respectively. The above results for the DCE studies are 
shown in Table 2 and Figures 4-6.

Results of the meta-analysis of the ASL studies

A total of 12 studies were included, including 7 English 
studies and 5 Chinese studies. The threshold effect test 
results showed that Spearman’s correlation coefficient was 
0.4 (P=0.16). After drawing the SROC diagram, no obvious 
“shoulder-arm shape” emerged, indicating that there was 
no heterogeneity caused by the threshold effect in this 
study. The results of forest plots showed that the Q test 
of sensitivity was P>0.1 with I2=44.70%, and the Q test of 
specificity was P<0.01 with I2=68.29%, indicating that there 
was significant heterogeneity in the sensitivity among the 
included studies. Therefore, a random-effects model was 
used to analyze the pooled sensitivity and specificity in the 
ASL studies. The results showed that the pooled sensitivity, 
specificity, PLR, NLR, and DOR were 0.80 (95% CI: 0.73 
to 0.86), 0.86 (95% CI: 0.76 to 0.92), 5.7 (95% CI: 3.1 

to 10.3), 0.23 (95% CI: 0.16 to 0.33) and 24 (95% CI: 10 
to 57), respectively. The AUC was 0.88 (95% CI: 0.85 to 
0.91). Fagan plots showed a prior probability of 0.5 and a 
posterior probability of 0.85 and 0.19 for PLR and NLR, 
respectively. The above results for the ASL studies are 
shown in Table 2 and Figures 4-6.

Meta regression analysis and subgroup analysis

Univariate regression analysis was applied to identify 
the sources of study heterogeneity, including study type, 
tumor type, diagnostic criteria, field strength, and MRI 
parameter. The results demonstrated that tumor type 
was the main factor leading to the heterogeneity of the 
sensitivity in the DSC-MRI studies and specificity in the 
DSC-MRI studies, and the difference was statistically 
significant. In the DCE-MRI studies, study type was the 
main reason leading to the heterogeneity of the sensitivity. 
The results of the meta-regression analysis are shown in 
Appendix 3 (Table S2).

Subgroup analysis further clarified the impact of the 
above factors on the heterogeneity of the results. In the 
DSC-MRI studies, in which 14 studies were conducted 
on WHO grade IV gliomas, the pooled sensitivity and 

https://cdn.amegroups.cn/static/public/QIMS-22-32-supplementary.pdf
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Figure 7 Funnel plots of the included studies [(A) DSC-MRI, (B) DCE-MRI, (C) ASL]. ESS, effective sample size; DSC-MRI, dynamic 
susceptibility contrast magnetic resonance imaging; DCE-MRI, dynamic contrast enhanced magnetic resonance imaging; ASL, arterial spin 
labeling.
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specificity were 0.85 and 0.88, respectively, and the AUC 
was 0.90. Nine studies were conducted on WHO grade 
III–IV gliomas, with pooled sensitivity and specificity 
of 0.79 and 0.87, respectively, and an AUC of 0.87. The 
remaining 5 studies involved WHO grade II–IV gliomas 
with pooled sensitivity and specificity of 0.82 and 0.87, 
respectively, and an AUC of 0.87. In the DCE-MRI 
studies, 12 studies were retrospective studies, with pooled 
sensitivity and specificity of 0.86 and 0.84, respectively, 
and an AUC of 0.89.  Two studies were prospective, 
with pooled sensitivity and specificity of 0.60 and 0.75, 
respectively. In the studies of ASL, 3 involved WHO grade 
II–IV gliomas, and their pooled sensitivity and specificity 
were 0.81 and 0.92, respectively, with an AUC of 0.98. 
Five studies involved WHO grade III–IV gliomas, with 
pooled sensitivity and specificity values of 0.72 and 0.88, 
respectively, and an AUC of 0.84. Four studies focused 
on WHO grade IV gliomas. The pooled sensitivity and 
specificity were 0.85 and 0.67, respectively, with an AUC 
of 0.95. See Appendix 4 (Table S3).

Publication bias

The Deeks’ funnel plot showed that the data were 
symmetrically distributed (DSC-MRI: P=0.216; DCE-
MRI: P=0.381; ASL: P=0.735), suggesting no significant 
publication bias, as shown in Figure 7. In view of the 
possibility of publication bias as expected in the studies from 
local China databases, we performed subgroup analyses and 
drew funnel plots to determine whether publication bias 

existed. The results showed that there was no publication 
bias in DSC-MRI, DCE-MRI, and ASL studies from 
Chinese and English databases (P>0.05) [Appendix 5  
(Table S4, Figures S1-S3)].

Discussion

In the process of postoperative radiation therapy for glioma, 
it is easy to cause brain damage (56). As it usually occurs 
weeks to months after radiotherapy (8,57), PsP is difficult to 
distinguish from tumor recurrence (58). Histopathological 
diagnosis is the gold standard for differentiating between 
the two; however, it is difficult for patients to undergo 
biopsy or a second operation before receiving the final 
diagnosis. At present, some MRI imaging methods are 
used to determine whether there is tumor progression, 
such as diffusion weighted imaging (DWI), PWI, and 
MR spectrum imaging and so on. Of these, PWI is one 
of the most reliable imaging techniques (24,29). In this 
study, three MRI perfusion imaging techniques (DSC-
MRI, DCE-MRI, and ASL) were included to systematically 
evaluate and statistically analyze studies focused on 
differentiating between tumor recurrence and PsP. The 
incidence of PsP found in our study was comparable with 
what is known from the literature, 39.5% in the included 
studies versus 37% in a previous meta-analysis by Abbasi  
et al. (59).

The results demonstrated that all three perfusion 
imaging methods displayed a high pooled diagnostic 
performance. Among the three, DSC-MRI performed 

http://Appendix 4
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the best, with a pooled sensitivity and specificity of 0.82 
and 0.87, respectively, a DOR of 24, and an area under 
the SROC curve of 0.89. However, heterogeneity analysis 
indicated obvious heterogeneity among the studies. The 
threshold effect test combined with the SROC curve 
results suggested that heterogeneity was not caused by 
the threshold effect; hence, meta regression analysis 
and subgroup analysis were applied to find the source 
of heterogeneity. After analysis, the sensitivity of the 
tumor type group was significantly higher than that of 
the other groups. Further subgroup analysis showed that 
the sensitivity of WHO grade IV glioma patients was 
significantly higher than that of WHO grades III–IV and 
WHO grades II–IV glioma patients, with sensitivities of 
0.85, 0.79, and 0.72, respectively.

The DSC-MRI is a functional MR imaging technique 
that reflects the distribution of tissue microvessels and 
blood perfusion. Due to the increased expression of vascular 
endothelial growth factor, high neovascular density, and 
immature vascular structure in the recurrence area of grade 
IV glioma, the recurrence area shows hyperperfusion, 
while the area of PsP displays hypoperfusion due to 
vascular endothelial cell apoptosis (60). For lower-grade 
gliomas (such as WHO grade II), there was no significant 
difference in changes after radiotherapy due to relatively 
little neovascularization. The results in our study were 
similar to those of the previous meta-analysis by Wang  
et al. (61), suggesting that DSC-MRI is the perfusion 
imaging technique with the highest  accuracy for 
differentiating glioma recurrence from PsP; however, the 
results of the subgroup analysis were different. In the study 
by Wang et al., field strength and tumor type specificity 
were the sources of heterogeneity among DSC-MRI 
studies. The reason for the difference may be related to the 
exclusion of small sample (≤30 participants) studies as well 
as the inclusion of only adult glioma patients in our study, 
and the addition of Chinese glioma-related studies.

Compared with traditional DSC-MRI, DCE-MRI 
has higher spatial resolution, which not only provides 
tumor perfusion information, but also reflects vascular 
permeability (62). However, DCE needs to select an 
appropriate pharmacokinetic model, and the parameters 
obtained are relatively complex and diverse, leading to 
relatively few studies having focused on this technique and 
less frequent clinical application compared with DSC-
MRI. Despite its limitations, our study shows that DCE 
also displays a high accuracy for differentiating recurrent 
glioma from PsP, with a sensitivity and specificity of 

0.83 and 0.83, respectively. As a complete noncontrast 
agent perfusion imaging technology, ASL applies water 
molecules in endogenous arterial blood as tracers, which 
are not affected by the integrity of the blood-brain barrier 
and are able to more truly reflect tissue perfusion (63). 
Our results are similar to the meta-analysis results of Du 
et al. (14), demonstrating that ASL has high sensitivity 
and specificity in distinguishing glioma recurrence and 
PsP, with a sensitivity and specificity of 0.80 and 0.86 
respectively.

The studies included in this meta-analysis were based on 
the 2016 or earlier WHO classification. In 2021, the WHO 
classification was updated, emphasizing the important role 
of genetics in the development and subsequent treatment 
of glioma (2). For adult gliomas, changes in glioblastoma 
have greater clinical significance. It has been verified that 
IDH-mutant and IDH-wildtype have distinct biological 
behaviors and prognosis (64-66). In the new classification, 
glioblastoma represents only IDH-wildtype glioma. 
Alternatively, tumors that contain one or more of three 
genes [TERT promoter mutation, EGFR gene amplification, 
or copy number changes on chromosome 7/10 (+7/−10)] 
into the classification of glioblastoma (2). These changes 
contribute to a more homogeneous study population 
in clinical trials. Other molecular alterations, such as 
CDKN2A/B homozygous deletion in IDH-mutant gliomas, 
tends to predict worse prognosis (67,68).

There were some limitations to this study. First, the 
inclusion criteria of this study did not entirely depend on 
histopathological diagnosis, and differences in follow-up 
time and diagnostic criteria may have caused bias in the 
study results. Second, this study included WHO grade II–
IV tumors according to the WHO Classification of central 
nervous system tumors prior to 2021. Although most of 
the tumors were WHO grade IV tumors, the results of 
the analysis may have been biased by treatment differences 
due to different tumor grades. In addition, most of 
the included studies were retrospective studies, MRI 
perfusion imaging parameters were more complicated, 
and the selection of parameters and threshold values 
lacked uniform standards, which may have aggravated 
the heterogeneity of the studies. Finally, in the quality 
assessment of the included studies, it was found that some 
of the studies did not report blinding in detail, and there 
may have been risk bias in measurements and subsequent 
results.

To sum up, our meta-analysis demonstrated that DSC-
MRI, DCE-MRI, and ASL, as advanced MR perfusion 
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imaging techniques, could accurately differentiate 
postoperative glioma recurrence from PsP. Among them, 
DSC-MRI had a higher diagnostic performance than the 
other two techniques. Therefore, MRI perfusion imaging 
could be used as a feasible and quantitative examination 
method for postoperative follow-up after radiotherapy and 
chemotherapy, providing strong evidence to support the 
subsequent clinical treatment.
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Appendix 1

Table S1 The MRI scan protocols and main parameters

Sequence FOV (mm) TR (msec) TE (msec) Bandwidth (kHz) Slice thickness (mm) Slice spacing (mm)

Axial T2 PROPELLER 240 5,642 93 83.3 5.5 1.5

Axial T1 FLAIR 240 1,750 24 41.67 5.5 1.5

Axial T2 FLAIR 240 8,506 162 41.67 5.5 1.5

Coronal T2 FLAIR 240 8,527 162 41.67 5.5 1.5

Axial DWI ASSET 240 3,000 67.6 250 6 1.5

3D pCASL 240 4,844 10.5 62.5 4 1.5

Axial CE-T1WI 240 1,750 24 41.67 5.5 1.5

Coronal CE-T1WI 240 1,750 24 62.5 5.5 1.5

Sagittal CE-T1WI 240 1,750 24 62.5 5.5 1.5

DSC-MRI 240 1,200 19 250 6 1.5

MRI data were performed on a 3.0-T MRI (GE Healthcare, Milwaukee, USA). All patients were approved by the Institutional Review Board 
of our hospital and agreed to waive informed consent. DWI was acquired with b values of 0 and b=1,000 s/mm2. Three-dimensional 
pseudocontinuous ASL was performed using a background-suppressed 3D spiral FSE technique, and post-labeling delay was 2,025 
msec. MRI, magnetic resonance imaging; PROPELLER, periodically rotated overlapping parallel lines with enhanced reconstruction; 
FLAIR, fluid-attenuated inversion recovery; DWI, diffusion-weighted imaging; ASSET, array spatial sensitivity encoding technique; pCASL, 
pseudocontinuous arterial spin labeling; CE, contrast-enhanced; WI, weighted imaging; DSC-MRI, dynamic susceptibility contrast-
enhanced magnetic resonance imaging; FOV, field-of-view; TE, echo time; TR, repetition time; FSE, fast spin echo.

Appendix 2

Search strategy in international databases and Chinese local academic databases

We searched international databases (PubMed, Embase, Web of Science and Cochrane Library) and Chinese local 
academic databases (CNKI, Wanfang Med Online, Sinomed and CMJD) using a search strategy consisting of MeSH 
terms and text words. Search terms include: (perfusion weighted imaging OR PWI OR perfusion MRI OR perfusion 
magnetic resonance imaging OR arterial spin labeling OR ASL OR dynamic susceptibility contrast enhanced OR DSC OR 
dynamic contrast enhanced OR DCE) AND (glioma OR glioblastoma OR GBM OR astrocytoma OR oligodendroglioma 
OR oligoastrocytoma) AND (tumour progression OR tumor progression OR true progression OR recurrence OR 
pseudoprogression OR radiation-induced injury OR post-radiotherapy OR radiation necrosis).

Supplementary
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Appendix 3

Table S2 Meta-regression analysis results of DSC-MRI, DCE-MRI and ASL studies

Type Cases Se (95% CI) P1 Sp (95% CI) P2

DSC-MRI

Study type 28 0.77 (0.69–0.84) 0.22 0.87 (0.73–0.95) 0.97

Tumor type 28 0.88 (0.84–0.92) 0.04 0.83 (0.67–0.92) 0.51

Diagnostic criteria 28 0.85 (0.78–0.90) 0.44 0.93 (0.83–0.98) 0.26

Field strength 28 0.84 (0.76–0.89) 0.68 0.81 (0.64–0.91) 0.34

MRI parameter 28 0.85 (0.75–0.91) 0.54 0.86 (0.65–0.96) 0.92

DCE-MRI

Study type 14 0.60 (0.32–0.82) 0.05 0.75 (0.55–0.88) 0.30

Tumor type 14 0.89 (0.78–0.95) 0.35 0.85 (0.76–0.91) 0.62

Diagnostic criteria 14 0.83 (0.69–0.91) 0.91 0.84 (0.74–0.90) 0.85

Field strength 14 0.87 (0.76–0.93) 0.52 0.84 (0.76–0.90) 0.78

MRI parameter 14 0.84 (0.63–0.94) 0.94 0.77 (0.72–0.93) 0.67

ASL

Study type 12 0.79 (0.66–0.88) 0.9 0.74 (0.54–0.88) 0.22

Tumor type 12 0.82 (0.69–0.90) 0.79 0.68 (0.51–0.82) 0.03

Diagnostic criteria 12 0.83 (0.72–0.90) 0.64 0.95 (0.84–0.99) 0.15

Field strength 12 0.83 (0.63–0.93) 0.77 0.91 (0.68–0.98) 0.57

MRI parameter 12 0.87 (0.57–0.97) 0.56 0.93 (0.43–1.00) 0.58

DSC-MRI, dynamic susceptibility contrast magnetic resonance imaging; DCE-MRI, dynamic contrast enhanced magnetic resonance 
imaging; ASL, arterial spin labeling; MRI, magnetic resonance imaging; Se, sensitivity; CI, confidence interval; Sp, specificity.
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Appendix 4

Table S3 Subgroup analysis results of DSC-MRI, DCE-MRI and ASL studies

Subgroup Cases Se (95% CI) Sp (95% CI) AUC

Tumor type in DSC-MRI studies

WHO IV 14 0.85 (0.80–0.88) 0.88 (0.79–0.94) 0.90

WHO III–IV 9 0.79 (0.72–0.84) 0.87 (0.74–0.94) 0.87

WHO II–IV 5 0.82 (0.78–0.86) 0.87 (0.80–0.92) 0.87

Study design in DCE-MRI studies

Retrospective 12 0.86 (0.79–0.90) 0.84 (0.79–0.88) 0.89

Perspective 2 0.60 (0.45–0.72) 0.75 (0.60–0.87) –

Tumor type in ASL studies

WHO IV 4 0.85 (0.76–0.92) 0.67 (0.54–0.78) 0.95

WHO III–IV 5 0.72 (0.61–0.80) 0.88 (0.76–0.94) 0.84

WHO II–IV 3 0.81 (0.71–0.89) 0.92 (0.83–0.97) 0.98

DSC-MRI, dynamic susceptibility contrast magnetic resonance imaging; DCE-MRI, dynamic contrast enhanced magnetic resonance 
imaging; ASL, arterial spin labeling; WHO, World Health Organization; Se, sensitivity; CI, confidence interval; Sp: specificity.

Appendix 5

Table S4 Publication bias of included studies from Chinese and English databases

Subgroups Coefficient Standard error t P 95% CI

DSC-MRI

Chinese databases −16.37 33.26 −0.49 0.64 −101.86 to 69.12

English databases −8.60 7.83 −1.10 0.29 −24.98 to 7.79

DCE-MRI

Chinese databases 12.93 20.08 0.64 0.64 −242.25 to 268.12

English databases −15.06 11.21 −1.34 0.21 −40.43 to 10.30

ASL

Chinese databases −44.41 14.87 −2.99 0.06 −91.74 to 2.91

English databases 14.42 17.69 0.82 0.45 −31.04 to 59.88

DSC-MRI, dynamic susceptibility contrast magnetic resonance imaging; DCE-MRI, dynamic contrast enhanced magnetic resonance 
imaging; ASL, arterial spin labeling; CI, confidence interval.
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Figure S1 Funnel plots of the DSC-MRI studies from Chinese and English databases. (A) Studies from Chinese databases. (B) Studies from 
English databases. ESS, effective sample size; DSC-MRI, dynamic susceptibility contrast magnetic resonance imaging.

Figure S2 Funnel plots of the DCE-MRI studies from Chinese and English databases. (A) Studies from Chinese databases. (B) Studies from 
English databases. ESS, effective sample size; DCE-MRI, dynamic contrast enhanced magnetic resonance imaging.
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Figure S3 Funnel plots of the ASL studies from Chinese and English databases. (A) Studies from Chinese databases. (B) Studies from 
English databases. ASL, arterial spin labeling. The results showed that there was no publication bias in DSC-MRI, DCE-MRI and 
ASL studies from Chinese and English databases (P>0.05). ESS, effective sample size; ASL, arterial spin labeling; DSC-MRI, dynamic 
susceptibility contrast magnetic resonance imaging; DCE-MRI, dynamic contrast enhanced magnetic resonance imaging.


