
Vol.:(0123456789)1 3

Neurosci. Bull. 
https://doi.org/10.1007/s12264-022-00953-3

REVIEW

The Oncogenesis of Glial Cells in Diffuse Gliomas and Clinical 
Opportunities

Qiyuan Zhuang1 · Hui Yang1,2,3,4,5 · Ying Mao1,2,3,5,6   

Received: 16 March 2022 / Accepted: 6 June 2022 
© The Author(s) 2022

sensitivity to therapy. Here, we discuss the heterogeneity and 
relevant functions of tumor cell state, microglia, monocyte-
derived macrophages, and neurons in glioma, highlight-
ing their bilateral effects on tumors. Finally, we describe 
potential therapeutic approaches and targets beyond standard 
treatments.
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Introduction

Gliomas, traditionally named due to their close resemblance 
to glial cells, are the most frequent intrinsic primary tumors 
of the brain [1–3]. Different from other oncological diseases 
that benefit from multimodal therapy, limited progress has 
been made in the management of gliomas [4, 5]. Therefore, 
ongoing efforts to understand their highly heterogeneous 
nature and complicated reciprocal microenvironmental com-
munication have been undertaken [6, 7]. Among their forms, 
diffuse gliomas, which have an unfavorable prognosis and 
high morbidity in adult patients, have been historically diag-
nosed as one of three categories outlined in the 2016 WHO 
central nervous system (CNS) classification [8, 9]: oligoden-
droglioma, astrocytoma, or glioblastoma (GBM). These sub-
types share several molecular features and functional char-
acteristics with their normal counterparts. Recent profiling 
efforts have identified subclassifications of diffuse gliomas 
by integrating histopathological analysis and genetic events 
[10]. Importantly, isocitrate dehydrogenase (IDH) status and 
chromosome 1p/19q co-deletion [11], have been identified as 
predictive genetic landmarks of favorable outcomes and have 
had a profound impact on treatment strategies and the design 
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of clinical trials [12]. In particular, robust biomarkers have 
also been described by Eckel-Passow et al., who classify 
gliomas into five principal groups with prognostic signifi-
cance. Of these, the triple-negative gliomas (no mutations in 
IDH and TERT plus a 1p/19q non-codeletion) were the most 
prevalent in a Chinese cohort [13, 14]. Mutations of TP53 
and H3.3-K27M in triple-negative gliomas implicated an 
unfavorable prognosis [14]. Notably, the fifth edition of the 
WHO CNS (2021 WHO CNS5) grouped gliomas according 
to these genetic changes to enable a complete diagnosis [15]. 
Other molecular signatures, such as cell-cycle regulatory 
elements (CDKN2A/B) and epidermal growth factor recep-
tor (EGFR), have also contributed to the illustration of onco-
genic pathways. Progress in genomics has validated diverse 
genetic alterations harbored in diffuse gliomas, rendering 
glioma cells distinct from one another. The expression pat-
terns of genetic mutations suggest that astrocytomas and oli-
godendrogliomas originate from abnormal glial progenitors 
or stem cells. These findings have led to the hypothesis that 
the cellular heterogeneity of gliomas is affected by the glial 
developmental process, intercellular signaling, and micro-
environment stress. This review discusses new advances in 
oncogenic glial lineage, and reciprocal interactions in glio-
mas (i.e. with neurons and microglia), offering new insights 
into the potential development of effective treatments.

Glioma Origin: From Neurogenesis to Oncogenesis

Glioma Stem Cells

Among the components constituting tumors, glioma stem 
cells (GSCs) are highly plastic subpopulations bearing 
stemness properties and are thought of as the site of tumor 
initiation. Similar to neural stem cells (NSCs), GSCs have 
the ability to self-renew, differentiate and resist DNA dam-
age [16–18]. A series of biomarkers have been identified 
in GSC populations: CD133 (PROM1), SOX2 (a transcrip-
tion factor widely expressed in potent stem cells), OCT-4 
(a transcription factor that plays an essential role in stem 
cell pluripotency), and Nestin (an intermediate filament pro-
tein). Several studies have shown that the expression of these 
molecular markers is closely associated with pluripotency 
and stemness in gliomas. By intracranial grafting as few as 
100 CD133+ cells, tumors have been effectively produced 
and resembled the phenotype of the original tumor type, 
whereas no transplanted tumor was observed after injec-
tion of 105 CD133– cells [19]. Ablation of Nestin+ stem-
like cells was not able to halt tumor progression, indicating 
the involvement of other factors [20]. CD133+ Notch1+ 
GSCs have also been reported to be located at the frontier 
of invasive tissues, exhibiting white-matter-tract tropism. 
The positive-feedback loop involving Notch-SOX2 controls 

the invasive phenotype of GSCs along white matter tracts 
[21]. The stem-cell activity of CD133+ cells has also been 
found in medulloblastomas, pilocytic astrocytomas, and 
gangliogliomas. Higher tumor grade is correlated with an 
increased fraction of CD133+ cells in tumor cultures [20]. In 
addition, the non-GSC population is induced to a newly con-
verted GSC-like state after treatment with chemotherapeutic 
agents (e.g., temozolomide), and has a more invasive pheno-
type with higher implantation efficacy [22]. These findings 
focus attention on the cellular state of GSCs in gliomas. Lin 
et al. described a single axis of gene signatures in prolifer-
ating GBM cells, ranging from proneural GSCs to mesen-
chymal GSCs. Lineage tracing in silico supports the idea 
that mGSCs, which correlate with poor predicted survival, 
are the progenitors of pGSCs in IDH wild-type GBM [23]. 
Via enriching GSCs from primary GBM specimens, Rich-
ards et al. found that GSCs exist in two cellular states from 
the perspective of transcriptional programs: developmental 
and injury-response programs [24]. The astrocyte matura-
tion gradient in tumor cells has also been implicated in the 
transformation of GSCs, which comprise the bulk of the 
tumor. Thus, understanding the evolution and differentiation 
of GSCs is essential for developing effective targeting thera-
pies and identifying the source of heterogeneity in gliomas.

Neural Stem/Progenitor Cells

Different from abnormal glioma stem cells that populate 
GBM, neural stem cells/progenitor cells (NSCs/NPCs) are 
the natural starting point for neuron/glial lineage develop-
ment, and are highly regulated in the brain. It is essential 
to understand the tumorigenesis process and decipher the 
mechanisms through which glial developmental programs 
are used by tumor cells to populate the tumor. The larg-
est NSC niches are located along the remote region of the 
lateral ventricles, named the subventricular zone (SVZ). 
These NSCs are relatively quiescent, maintain their stemness 
properties, and generate NPCs independent of the specific 
microenvironment around the perivascular niches. This com-
plex microenvironment is composed of NPCs, oligodendro-
cyte progenitor cells (OPCs), astrocytes, microglia, mac-
rophages, neurons, associated vasculature, and extracellular 
matrix. Interestingly, some typical markers of NSCs have 
been identified in GSCs such as Nestin, Sox2, CD44, and 
CD133 (Fig. 1) [25–27]. The striking similarities between 
NSCs and GSCs support the hypothesis that SVZ NPSCs 
play the role of apex cells in the hierarchy of gliomas. Chen 
et al. used a fluorescent reporter to label quiescent NSCs in 
the adult SVZ, and revealed the presence of neural stem-
like cells in glioma tissue [28]. Deep genomic sequencing 
of a GBM patient cohort provided direct evidence for the 
hypothesis that astrocyte-like NSCs in the SVZ are the ori-
gin of GBM. More than 80% of patients diagnosed with 
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GBM have tumor-free SVZ tissue that shares low-level 
driver mutations or cancer-driving genes with tumor sam-
ples [29]. Migration of astrocyte-like NSCs contributes to 
the generation of malignant gliomas in distinct regions of 
the brain [29]. Accordingly, genetically-engineered mouse 
models (GEMMs) are powerful tools for use in deciphering 
the lineage complexity of glial cells, and may reveal asso-
ciations between progenitor cells and the broad spectrum of 
neoplasms throughout the brain. Parada et al. induced result-
ant malignant astrocytoma via early inactivation of Tp53 
and Nf1 in mice [30], and demonstrated that manipulation 
of tumor suppressors (Nf1, Tp53, and Pten) in NSCs and 
NPCs in vivo is both necessary and sufficient for the forma-
tion of astrocytomas (Fig. 1). A recent study also showed 
that the histological and transcriptional heterogeneity of 
GBM is similar to genome-edited NSC-like cells such as 
sgTP53/NF1/PTEN or sgTP53/NF1 in human pluripotent 
stem cells [31]. High-grade gliomas exhibit inactivation of 
p16INK4a/p19ARF and activation of epidermal growth factor 
receptor (EGFR). Previous findings reported that co-dele-
tion of p16INK4a/p19ARF in NSCs with constitutive EGFR 

activation induce the phenotype of high-grade glioma [32]. 
However, no evidence of tumor formation was reported after 
targeting these GBM-relevant tumor suppressors in neuro-
blasts, late-stage neuronal progenitors, and differentiated 
neurons [33]. Jacques et al. reported that deletion of tumor 
suppressors genes (TP53 and PTEN) in adult SVZ stem 
cells, but not astrocytes, gives rise to tumors. These studies 
imply that an increase in lineage restriction decreases the 
tumorigenic capacity of neuronal lineage cells [34]. Driving 
neuronal lineage differentiation is a potent antitumorigenic 
treatment strategy for GBM.

Other Glial Lineage States

Combining single-cell sequencing (scRNA-seq) with 
advanced computational algorithms allows researchers 
to comprehensively analyze cellular states across tumors 
[35, 36]. Four cellular states, three of which are anchored 
in neurodevelopment, are found in diverse malignant cells 
of glioblastoma: OPC-like, NPC-like, astrocyte (AC)-like, 
and mesenchymal (MES)-like. These cellular states have the 

Fig. 1   Glioma origin hypothesis. Left, schematic of the normal neu-
rogenesis process in the brain. Neural stem cells differentiate into 
several types of progenitor cell, which can transform into neurons, 
astrocytes, and oligodendrocytes. Right, schematic of the potential 
oncogenesis process in the brain. Glioma-stem cells, which popu-
late adult-type diffuse gliomas, are labeled with several reported 
biomarkers. Gliomas produce oncometabolites in the tumor micro-

environment, which correspondingly stimulate their progression. 
The dashed line between neurogenesis and oncogenesis represents 
the reprogrammed molecular mechanisms that have been previously 
reported. NSCs, Neural stem cells; GSCs, Glioma stem cells, NBs, 
Neuroblasts; APCs, Astrocyte progenitor cells; OPCs, Oligodendro-
cyte progenitor cells.
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potential for tumor plasticity and are influenced by genetic 
drivers, providing an understanding of the heterogeneity and 
therapeutic resistance of GBM. It is well-known that tumor 
phenotype transitions are derived from stage-specific fate-
switches and transcriptional alterations in progenitor cells. 
Newly-generated cells including ACs and oligodendro-
cytes, which are considered to be the two broad categories 
of CNS glia, are continuously produced in the subgranular 
zone and ventricular SVZ [37]. Both oligodendrocytes and 
ACs perform a variety of functions for maintaining CNS 
homeostasis.

Although the precursors of ACs have not been clearly 
defined, some ACs can reenter the cell-cycle following 
traumatic brain injury [38]. A recent study reported that 
ASCL1+EGFR+ apical multipotent intermediate progeni-
tor cells generated by cortical radial glial cells in the SVZ 
and VZ can differentiate into glial cells and olfactory bulb 
(OB) interneurons. Those progenitor cells transform into 
AC-lineage restricted progenitor cells in late embryogen-
esis in mice [39]. Injection of ACs carrying oncogenes 
leads to the genesis of malignant gliomas. Furthermore, all 
tumors expressed markers expected in astrocytomas, such 
as Gfap [32, 40–42]. Combinations of deletions of Pten, 
Tp53, and Rb1 in ACs in mature mice result in the progress 
of astrocytomas from grade III to grade IV [43]. Apply-
ing fluorescence-activated cell sorting–based strategy, a 
recent study reported five distinct AC subtypes across the 
adult brain and identified the specific subpopulations cor-
related with tumor invasion in gliomas [44]. OPCs, the 
most abundant cycling population in the adult CNS, is the 
last potential progenitor source of glioma origin. The OPC 
markers OLIG2 and NG2 are concurrently expressed in the 
major cycle-related cell population of the hippocampus 
[45]. Their correlates in mitotic characteristics give rise 
to the possibility that OPCs play a key role in tumorigen-
esis. Moreover, there is a large population of OLIG2+ 
cells (high Ki76 and CD133) in human gliomas, suggest-
ing that proliferative OPCs may act as tumor-propagating 
cells [46, 47]. Several studies have found that oncogene 
mutations in OPCs are involved in the development of 
high-grade gliomas [48–50]. Overexpression of PDGF in 
OPCs, along with evidence of specific inactivation of Nf1 
and tp53 in OPCs, are involved in the formation of malig-
nant gliomas [51, 52]. Intriguingly, lineage tracing based 
on mosaic analysis with double markers (MADMs) has 
revealed that introducing p53/Nf1 mutations only in OPCs, 
but not NSCs, consistently leads to oncogenesis (Fig. 1). 
Phenotypic and transcriptomic analyses have identified the 
salient OPC features of these tumors [53]. By applying lin-
eage-targeted scRNA-seq, Weng et al. elegantly identified 
a primitive OPC intermediate population in the neonatal 

cortex. Reprogrammed OPCs transformed into a stem-like 
state, resulting in the development of malignant tumors 
[54]. These studies revealed that OPCs can directly gener-
ate GBM via stepwise genetic and epigenetic reprogram-
ming. We summarize reported gene-edited mouse models 
that mimic different types of gliomas in Table 1.

Oncometabolites

Mutation at Arg132 of IDH1 was thought to be an early 
initiating event driving the evolution of gliomas [55, 
56]. Mutation of IDH enzymes results in the elevation 
of (R)-2-HG levels from 1 mmol/L to 3 mmol/L at the 
center of IDH mutant gliomas [57]. 2-HG, known to be 
an important oncometabolite, is a competitive substrate of 
α-ketoglutarate-dependent epigenetic enzymes [58–60]. 
A high concentration of 2-HG in vivo inhibits histone 
lysine demethylases and TET hydroxylases, leading to 
impairment of DNA demethylation and eventual hyper-
methylation in gliomas [61]. Intriguingly, accumulation 
of (R)-2-HG also causes impairment of collagen pro-
tein maturation, which is associated with the endoplas-
mic reticulum stress response and basement membrane 
aberrations, leading to a microenvironment favorable to 
gliomas [62]. Notably, expression of IDH1R132H coop-
erates with platelet-derived growth factor A expression 
and loss of Cdkn2a, Atrx, and Pten in glioma to mimic 
the proneural subtype of human GBM, which exhibits a 
stronger GBM formation ability in vivo [63]. By enhanc-
ing D-2-hydroxyglutarate-mediated DNA methylation, 
conditionally expressing IDH1R132H in the NPCs of the 
murine SVZ increases the number of NSCs and their 
progeny. Regulated stem cells exhibit invasive character-
istics and uncontrolled expansion, which may explain the 
process of oncogenesis in the early phase [64]. Platten’s 
research group conducted a phase I clinical trial in which 
33 patients received treatment with an IDH1-specific pep-
tide vaccine. The convincing clinical data showed that 
the vaccine is safe, and in terms of therapeutic effect, 
the IDH1-vaccine significantly prolongs the survival time 
of patients [65, 66]. These findings support the hypoth-
esis that mutations in oncogenic metabolic enzymes 
dramatically affect the cellular status of gliomas, lead-
ing to mutations in other genes that collectively affect 
tumor transformation and promote tumorigenesis [67, 
68]. Moreover, other groups have reported that tumor-
derived kynurenine, IDO1, tryptophan 2,3-dioxygenase, 
and IL-4I1 mediate immunosuppressive activities in GBM 
[69–71]. Therefore, inhibitor therapy against these targets 
might be an alternative approach.
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Interactions Between Glioma and Microglia/
Macrophages

Heterogeneity Between Resident Microglia 
and Monocyte‑Derived Macrophages (MDMs)

The microenvironment of gliomas consists of multiple 
interacting networks among cells, in which brain-resident 
microglia and infiltrating monocytes/MDMs contribute 
to a large fraction of the glioma immune landscape [72]. 
Microglia, derived from hematopoietic precursor cells of 
the yolk sac in the early developmental period, are crucial 
residential innate immune cells of the brain [73, 74]. They 
have an important influence in supporting neurogenesis, 

scavenging apoptotic cells, and refining synapses [73, 
74]. Notably, different stages of glioma lead to differen-
tial compositions of the myeloid cell landscape. GBM can 
lead to partial disruption of the blood-brain barrier, ena-
bling monocytes/MDMS to infiltrate the tumor. These dis-
tinct populations, termed tumor-associated macrophages 
(TAMs), have been widely reported as an important fac-
tor impinging on the intrinsic characteristics of tumor 
progression [75]. Using the head-protected irradiation 
and fluorescently tagged cell lineage tracing technique, 
microglia expressing high CD45 represent an inherent 
part of a glioma, while infiltrated tagged TAMs constitute 
up to 25% of the myeloid cell fraction after 21 days of 
tumor implantation [76]. The heterogeneity of time-lapse 

Table 1   Gene-edited mouse models of gliomas.

Driver genes Methods Original cells Reference

Oligodendroglioma models v-erbB/Ink4a/Arf+/− Transgenic S100Aβ+ Weiss et al. [153]
v-erbB/p53−/− Transgenic S100Aβ+ Persson et al. [154]
H-Ras/EGFRvIII (embry-

onic)
Transgenic GFAP+ Ding et al. [155]

PDGFB/Ink4a-Arf−/− RCAS/tv-a Nestin+ Dai et al. [156]; E 
Tchougounova et 
al. [157]

PDGFB/Akt RCAS/tv-a Nestin+ Dai et al. [158]
PDGFB In utero intraventricular 

injections
Embronic neural precursors Calzolari et al. [159]

PDGFB RCAS/tv-a OPCs Lindberg et al. [50]
PDGFB-HA RCAS/tv-a Nestin+ Shih et al. [173]
PDGF-AL Transgenic GFAP-Cre+ Nazarenko et al. [160]

Astrocytoma models c-Myc Transgenic GFAP+ Jensen et al. [161]
K-RasG12D Transgenic GFAP+ Abel et al. [162]
H-Ras Transgenic GFAP+ Shannon et al. [163]
H-Ras/Ptenfl/fl Transgenic GFAP-Cre+ Wei et al. [164]
Ptenfl/fl/Rb1fl/fl/Tp53fl/fl Transgenic GFAP-Cre+ Chow et al. [43]
EGFR/ Ink4a-Arf−/− RCAS/tv-a Nestin+/GFAP+ Holland et al. [165]
cisNf1fl/+/Trp53+/− Transgenic GFAP-Cre+ Zhu et al. [30]

Glioblastoma models PDGFB/Trp53−/− Transgenic GFAP+ Hede et al. [166]
K-Ras/Akt RCAS/tv-a Nestin+ Holland et al. [167]
K-Ras/ Ink4a-Arf−/− RCAS/tv-a Nestin+/ GFAP+ Uhrbom et al. [168]
K-Ras/Akt/Ptenfl/fl RCAS/Cre Nestin-Cre+ Hu et al. [169]
Cdkn2afl/fl/Atrxfl/fl/Ptenfl/fl RCAS/Cre PDGFRA/IDHR132H-Cre+ Philip et al. [63]
Ptenfl/+/cisNf1fl/+/Trp53+/− Transgenic GFAP-Cre+ Kwon et al. [170]
P53fl/fl/Ptenfl/+ Transgenic GFAP-Cre+ Zheng et al. [171]
sgTP53/NF1/PTEN or 

sgTP53/NF1
CRISPER/Cas9 system hNSCs Wang et al. [31]

sgPTEN/NF1, sgTP53/ 
PDGFRAΔ8–9

CRISPER/Cas9 system iPSCs Koga et al. [172]

Rbfl/fl/p53fl/fl, 
Rbfl/fl/p53fl/fl/Ptenfl/fl

Transgenic Adeno-Cre+/Adeno GFAP-
Cre+

Jacques et al. [34]

Concurrent p53/Nf1 muta-
tions

Mosaic analysis with double 
markers

OPCs Liu et al. [53]

p53−/fl/NF1fl/fl Transgenic NG2-Cre+ Galvao et al. [52]
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and spatial distribution in gliomas have been described 
through multiple timepoints and regional microdissection 
by scRNA-seq [77, 78]. Antunes et al. established the 
microglial fate-mapping system and revealed the similari-
ties and differences in TAM distribution in newly-diag-
nosed GBM, recurrent GBM, and mouse GL261 mod-
els [79]. Moreover, microglia-derived TAMs or MDMs 
extracted from tumors are self-renewing populations that 
are unable to induce CD4+ T-cells or CD8+ T-cells, and 
compete for space in the tumor environment. Accordingly, 
the dominant myeloid population in glioma can progress 
from microglia-derived in the early phases to a mixture 
of microglia-derived TAMs and outnumbered MDMs in 
the later phase [89]. In addition, the aryl hydrocarbon 
receptor in monocytes boosts monocyte recruitment, and 
blocks antigen presentation expression in MDMs via the 
transcription factor KLF4 [69].

Considering the distinct biology of the two cell pop-
ulations, it is essential to identify stable biomarkers to 
distinguish these two groups. In humans, microglia and 
macrophages can be classified via fluorescence-activated 
cell sorting using CD45 and CD49D (known as α4 integ-
rin and ITGA4) [75]. Accurate separation in mice can be 
obtained by Ly6C, CD11b, F4/80, CD45, and Cx3cr1 [79]. 
As previously reported, the classical signature markers for 
microglia (P2ry12 and Sall1) and MDMs (Ly6c and Ccr2) 
are reduced during glioma-induced activation or differen-
tiation and are insufficient for use in classifying the two 
populations [6]. After infiltration into the CNS, MDMs 
has a higher microglia signature gene pattern (Cx3cr1 
and Tmem119) and lower CD45 (Fig. 2). Nevertheless, 
Qian et al. found that Crybb1 and Ldhb are specific and 
stable markers across different tumor stages in mice, and 
the cluster of MDMs consistently featured with Iqgap1 
corresponded to other clinical datasets [80]. A variety of 
cytokines (IL-6 and IL-10) and several genes encoding 
chemokines associated with wound healing (Ccl22, Ccl17, 
Cxcl2, and Cxcl3) are upregulated in TAMs [81]. Of inter-
est, a pro-inflammatory subset of microglia-derived TAMs 
was found to exhibit increased expression of Il1b (encod-
ing IL-1β), Ifnb1 (encoding IFNβ1), Ccl4 (encoding C-C 
Motif Chemokine Ligand 4), Il12 (encoding IL-12), and 
Tnf (encoding TNF) [82, 83]. In addition, time-of-flight 
mass cytometry was also combined to reveal the hetero-
geneity of TAMs in gliomas [79]. Multiple subsets were 
identified exhibiting downregulation of classical micro-
glial signature genes and, to the contrary, with upregu-
lation of pro-inflammatory cytokines, responses to type 
I interferons, and hypoxia-associated molecules [79]. 
Collectively, these results describe novel glioma-associ-
ated microglia phenotypes and their diverging functions, 
which may provide new potential avenues for therapeutic 
interventions.

Functional Characteristics of Microglia/Macrophages 
in Glioma

The role of microglia in glioma is controversial. In a model 
of organotypic slice cultures and in vivo implantation, the 
ablation of microglia impairs tumor growth and prolongs 
the survival of tumor-bearing mice. Further studies have 
revealed that glioma cells activate microglia but impair 
phagocytic activity [84–86]. Moreover, endogenous micro-
glia derived from non-glioma subjects have a strong inhibi-
tory effect on the expression of genes relevant to the cell 
cycle in tumor-initiating cells [87]. Microglia-activating 
substances such as GM-CSF and LPS can stimulate glioma 
cell migration cooperatively with endothelial cells, revealing 
that microglia do not merely react to tumor invasion but play 
a more complicated role in gliomas [88].

Compelling evidence underpins the perspective that 
genetic and molecular subtypes of GBM reflect distinct 
tumor microenvironment (TME), while secreted molecules 
or subsequently activated signaling from TAMs reciprocally 
remodels the cellular state of tumors. The functional inter-
actions between GBM cells and components in the micro-
environment play an important role in the modulation and 
infiltration of the brain. Liu et al. used scRNA-seq to charac-
terize cell populations from IDH-WT and IDH-mutant sam-
ples and showed that the percentage of microglia and mac-
rophages was higher in IDH-WT GBM [89]. Further, ~500 
genes were found to be differently expressed in microglia 
isolated from IDH-WT and IDH-mutant samples [90]; but 
this cannot be exclusively considered as microglial heteroge-
neity. Using longitudinal scRNA-seq, Friedrich et al. exam-
ined myeloid cellular states in gliomas and demonstrated 
that differentiation of myeloid cells in IDH-mutant tumors is 
blocked by re-orchestration of tryptophan metabolism, lead-
ing to an immature phenotype [91]. Alteration of tryptophan 
metabolism in IDH-mutant gliomas reverses immunosup-
pression. It has also been reported that the mesenchymal 
subtype of GBM reported in The Cancer Genome Atlas is 
associated with an inferior prognosis and contains a higher 
proportion of TAMs compared to proneural or classical sub-
types [36]. In addition, copy number amplifications such as 
CDK4, EGFR, and PDGFRA loci or mutation of the NF1 
locus are correlated with different cellular states in GBM 
[36]. Mutations of NF1 result in a reduction of NF1 expres-
sion, which is predominantly found in the mesenchymal state 
of GBM, and are possibly responsible for the increase of 
TAM infiltration by NF1-regulated microglial chemotaxis 
[36]. Nevertheless, Hara et al. leveraged single-cell RNA 
sequencing and a mouse model to recapitulate mesenchymal 
GBM cellular states in vivo, exploring the crosstalk between 
macrophages and GBM subtype states. Analysis of ligand-
receptor pairs suggests that oncostatin M in macrophages 
activates STAT3 signaling to induce a mesenchymal GBM 
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cellular state via interaction with its receptors (or leuke-
mia inhibitory factor receptor, in complex with GP130) in 
glioblastoma cells [92]. Moreover, in mouse GBM mod-
els, TAMs increase the levels of antigens presented, such 
as major histocompatibility complex type II expression, 
suggesting that TAMs in GBM can process antigens to T 
cells but are unable to activate the subsequent reaction [79]. 
Matrix metalloproteinases (MMPs) have been reported to 
be another group of proteins that are crucial to cells infiltra-
tion. MMP2 has been reported to be a marker of poor prog-
nosis, facilitating the invasive and angiogenic properties of 
gliomas [93]. MMP2 is released in the form of pro-MMP2 
and subsequently cleaved by MMP14 and converted into an 

active state which regulates the degradation of the extracel-
lular matrix. In TME, the cleaved substrate pro-MMP2 is 
secreted by GBM cells, while microglia are the major source 
of MMP14 in TME. This reciprocal cooperation has been 
found to be regulated by its downstream signaling receptor 
TLR2 [94] and extracellular vesicles derived from GBM.

Furthermore, abundant and aberrant neovascularization 
is one of the defining characteristics of GBM. The process 
of angiogenesis and angiogenic factors have been exten-
sively described. Resident microglia and peripheral mac-
rophages collectively constitute perivascular niches, while 
a variety of pro-angiogenic molecules have been found to 
be upregulated. The CXCL2-CXCR2 signaling pathway is 

Fig. 2   Reported communications in the glioma microenvironment. 
The tumor microenvironment of gliomas is complicated. Left, the 
relationship between brain resting microglia and microglia-derived 
TAMs. Wedges indicate differential biomarker expression between 
the two groups. The classical biomarkers of microglia (CX3CR1 
and TMEM119) are reduced in microglia-derived TAMs, rather than 

other activated markers (IL-1β, CXCL10). Right, the relationship 
between circulating monocytes and monocyte-derived TAMs. Upper, 
schematic of neuron-to-brain tumor synapses. Lower, signaling path-
ways between TAMs and tumor cells. VEGF, vascular endothelial 
growth factor; EGF, epidermal growth factor; TAM, tumor-associated 
macrophage; ECM, extracellular matrix.
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significantly upregulated during angiogenesis and has been 
shown to have a stronger angiogenic effect than VEGF in 
vitro [95]. Inhibiting the CXCL2-CXCR2 signaling path-
way or selectively reducing resident microglia after tumor 
implantation decreases the tumoral vasculature count and 
tumor volume. Nevertheless, insulin-like growth factor-bind-
ing protein 1 (IGFBP1), released by microglia, is a novel fac-
tor mediating macrophage colony-stimulating factor-induced 
angiogenesis in GBM via an SYK-PI3K-NFκB-dependent 
mechanism [96]. Of interest, STAT3 expression (known as 
IL6/JAK/STAT3 signaling) in the glioma cell affects a vari-
ety of targeting genes and can propagate tumorigenesis by 
facilitating proliferation and angiogenesis. STAT3 upreg-
ulation, closely associated with abundant microglia and 
macrophages, is preferentially enriched in MES-like GBM. 
Further, ablation of receptors for advanced glycation end 
products (RAGE) prolongs the overall survival in a GL261 
mouse model, and reduces the angiogenic factors secreted 
by TAMs. It has also been recently reported that microglial 
neuropilin-1 regulates vascular morphogenesis and affects 
its receptor VEGFR2 [97]. Administration of the inhibitor 
EG00229, which impairs the binding of tuftsin (Thr-Lys-
Pro-Arg) with Nrp1, reverses the anti-inflammatory state of 
microglia through transforming growth factor beta signaling 
[97, 98]. Thus, the interactions between TAMs and GBM 
are complicated and multifactorial, and understanding the 
subtypes of TAMs presented in different primary gliomas 
is important for screening and developing subtype-specific 
targets.

Neurobiology of Gliomas

Epileptic seizures, memory disorders, and cognitive impair-
ment are common manifestations of patients with gliomas. 
These clinical characteristics have long been thought of as 
the result of mechanical pressure caused by the occupying 
lesion, while little is known about the interactions between 
tumor cells and surrounding neurons. However, a close rela-
tionship between tumors and the CNS has been validated 
in that gliomas exhibit electrical activity and are integrated 
into neural networks [99], which is thought to be a milestone 
event in the rapidly emerging field termed cancer neurosci-
ence [100]. Compared to other pro-tumor factors derived 
from adjacent normal cells, the supportive influence of neu-
rons includes direct (electrical, synapses, or synapse-like 
structures) and indirect (chemical) effects. Using electron 
microscopy, Venkataramani et al. described subtypes of 
distinct synapses formed by gliomas [101]. There are three 
morphological categories of neuron-glioma synapses that 
are consistently formed in incurable human gliomas but 
hardly exist in oligodendrogliomas. A parallel study found 
broad expression of glutamate receptor genes in high-grade 

gliomas, including IDH-mutant glioma, IDH-wild-type gli-
oma, and diffuse intrinsic pontine glioma. Targeted patch-
clamp recordings showed the existence of spontaneous 
excitatory postsynaptic currents that are mediated by glu-
tamate receptors of the AMPA subtype. Synchronized Ca2+ 
transients are generated by neuronal firing, while genetic 
perturbations of AMPA receptors or the AMPA receptor 
antagonist perampanel reduce the invasiveness of gliomas 
[101]. These studies suggest direct, biologically relevant 
glutamatergic communication between neurons and glioma 
cells (Fig. 2). Excessive glutamate released by glioma cells 
may explain the recurrent seizures in patients. Intriguingly, 
it has been reported that the expression of glutamate trans-
porters is increased in para-tumor cells, and performs a neu-
roprotective function in animal models [102]. In addition, 
excessive glutamate release may also lead to opening of the 
blood-brain barrier via the activation of N-methyl-D-aspar-
tate receptors [103], and this is beneficial to the efficacy 
of drug delivery. In a recent impressive study, Chen et al. 
used an autochthonous mouse model to recapitulate adult 
OPC-originated gliomagenesis and found that olfaction can 
directly regulate gliomagenesis via insulin-like growth factor 
1 (IGF1) signaling [104]. The activity of olfactory receptor 
neurons (ORNs) has significant effects on the progress of 
gliomas, while specific knockout IGF1 receptors in mutant 
OPCs abolishes the influence derived from ORNs. Accord-
ing to these groundbreaking studies, gliomas have the ability 
to form electrical and functional synapses with surround-
ing neurons, which drive tumor growth and resistance [105, 
106].

Notably, tumor cells from incurable gliomas share sev-
eral features with developing neurons (in the process of 
axonal and dendritic outgrowth) and extend long and thin 
microtubes [105]. Several reports have found that neuro-
transmitters in TME drive tumor growth and invasion. Nev-
ertheless, Venkatesh and colleagues [107, 108] revealed a 
novel mechanism behind this reciprocal influence, showing 
that neuron paracrine secretion of neuroligin-3 (NLGN3) 
facilitates tumor progression and in turn induces a synaptic 
gene signature in the tumor cell. Researchers applied the 
optogenetic approach in vivo and in vitro, demonstrating that 
the firing activity of neurons promotes the proliferation and 
growth of glioma cells. Moreover, NLGN3, secreted by cor-
tical projection neurons and oligodendrocyte precursor cells, 
is the leading candidate mitogen regulating this process. 
NLGN3 is broadly expressed in excitatory synapses and 
affects glioma proliferation through the phosphoinositide 
3-kinase–mammalian target of rapamycin pathway [107]. 
Remarkably, the growth of GBM xenografts is significantly 
impaired in Nlgn3-knockout mice. In addition, brain-derived 
neurotrophic factor (BDNF) has also been validated to play 
a central role in classical synaptic functions and has a stimu-
lating effect in TME [109].
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Of interest, the interactions between glioma and neurons 
might involve the intimate interplay of neurons with precur-
sor cells (NPCs and OPCs). Neuron-to-non-neuron synapses 
were first described by Bergles et al. in 2000. They reported 
that neurons form bona fide synapses with OPCs and regu-
late their proliferation [110]. Electrophysiological analyses 
revealed that these neuron-glial synapses are similar to nor-
mal neuron-neuron synapses, sharing features such as rapid 
activation, quantal responses, facilitation, depression, and 
presynaptic inhibition. Previous evidence showed that glio-
mas mainly originate from NPCs and/or OPCs, which may 
explain these structural similarities. Moreover, Elizabeth et 
al. reported that NPCs in the SVZ stimulate invasion of gli-
oma cells through the secretion of chemoattractant signals. 
Inhibition of Rho/ROCK signaling reduces invasion of gli-
oma cells induced by factors secreted by SVZ NPCs [111]. 
This novel framework provides new insights into under-
standing the progression of cancer and sheds light on thera-
peutic opportunities that can disrupt these communications.

New Insights for Therapeutic Opportunities 
in High‑Grade Glioma

Immune Checkpoint Therapy

The treatment of high-grade glioma is still mainly based 
on surgery with postoperative radiotherapy and chemo-
therapy [112]. It is promising that some novel treatment 
strategies have shown high promise. Tumor immunother-
apy has attracted much attention, but owing to the lack 
of specificity of brain immunity, current immunotherapy 
strategies require further improvement before application 
in high-grade gliomas [113, 114]. A series of clinical tri-
als that tested the safety and efficacy of targeting immune 
checkpoints showed no improved survival benefit in GBM 
patients [115–117]. In 2017, a phase III clinical trial com-
paring nivolumab (PD1 monoclonal antibody) with beva-
cizumab (VEGFA monoclonal antibody) showed that 
patients with recurrent glioblastoma did not benefit from 
nivolumab treatment (CheckMate-143) [117]. A phase III 
clinical trial comparing nivolumab plus radiotherapy with 
standard chemoradiotherapy further confirmed that patients 
with de novo O-6-methylguanine-DNA methyltransferase 
(MGMT) unmethylated glioblastoma did not benefit from 
nivolumab therapy (CheckMate-498) [118]. In addition, 
CheckMate-548 yielded similar negative results in a phase 
III trial which compared nivolumab plus standard chemo-
radiation versus standard chemoradiation in patients with 
MGMT-methylated glioblastoma [119]. Alternatively, a 
recent study demonstrated that changing the dosing strategy 
and administering PD1 antibodies using neoadjuvant therapy 
can prolong the median survival of patients with relapsed 

glioblastoma [120]. However, immune checkpoint inhibitors 
are unable to reverse immune exhaustion in GBM [121]. 
Mass cytometry time-of-flight analysis revealed that mac-
rophages contributed to 72.6% of the leukocytes in the TME 
[122], most of which expressed multiple immunosuppres-
sive markers. These data indicate that immune suppressive 
macrophages are an important confounder for attenuation of 
the T-cell response. Further understanding of the immune 
microenvironment within brain tumors is needed to improve 
the clinical efficacy of immune checkpoint therapy.

Cell‑Based and Oncolytic Virus Therapy

Cell therapy based on chimeric antigen receptors (CARs), 
which involves grafting a specific designed receptor onto 
an effector cell, is also a research frontier in the treatment 
of high-grade gliomas [123]. Clinical trials targeting three 
antigens, EGFRvIII, HER2, and IL-13R alpha2, have con-
firmed that the application of CAR-T is safe, feasible, and 
potentially effective [124–127]. However, the application of 
CARs to brain tumors still faces challenges due to tumor 
heterogeneity and antigen loss. Antigen loss in recurrent 
tumors has been reported in both CAR-T therapy targeting 
EGFRvIII and IL-13R alpha2 [125, 127]. Interestingly, the 
major toxicity of CAR-T cells is cytokine release syndrome 
(CRS). Myeloid-derived macrophages have been found to 
contribute to the pathogenesis of CRS, mainly mediating 
the production of core cytokines including IL-6, IL-1, and 
interferon-γ [128]. In addition, Rodriguez-Garcia et al. dem-
onstrated that CAR-T cell-mediated selective elimination of 
folate receptor β TAMs resulted in an increase in endog-
enous activated CD8+ T cells, decreased tumor burden, and 
prolonged survival [129]. Several reports have highlighted 
that engineering CAR macrophages is a valuable strategy in 
GBM. CAR-macrophages have been adapted and designed 
to produce pro-inflammatory cytokines, which convert sub-
types of macrophages from M2 to M1. The polarization of 
macrophages increases T cell anti-tumor activity and fur-
ther modulates the pro-inflammatory characteristics of TME 
[130, 131]. Thus, it is essential to develop new techniques to 
screen out suitable antigen sites of tumors or immunosup-
pressive cells, reduce antigen loss, and retard immune cell 
exhaustion.

Notably, therapeutic vaccination for brain tumors may 
be a promising treatment strategy. The EGFRvIII-based 
vaccine was successful in phase II clinical trials for glio-
blastoma, but failed to achieve positive results in phase III 
clinical trials. Tumor samples from relapsed patients showed 
immune escape, which is also a pressing problem during the 
vaccination treatment period and similar to the challenges 
of cell therapy [132–135]. Developing individualized vac-
cines based on specialized patient gene mutation patterns 
and expression profiles that collectively target the multiple 
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glioma antigens is a potential future direction. Moreover, 
oncolytic virus therapy can activate antitumor immune 
responses, which are an important active immune therapy. 
A clinical trial using recombinant poliovirus in the treatment 
of recurrent glioblastoma suggested that this technique is 
effective and safe [136]. Therefore, improving the target-
ing of oncolytic viruses, slowing the clearance of oncolytic 
viruses by the immune system, and reducing the side-effects 
of oncolytic viruses are important methods for improving the 
clinical application value of oncolytic viruses.

Transdifferentiation Induction and Glioma 
Reprogramming

Owing to the similarity between GSCs and NSCs research-
ers have proposed that inducing GSCs to differentiate into 
terminally-differentiated cells, especially neurons, might 
be a supportive strategy to inhibit the progression of brain 
tumors. It has been reported that inhibition of the Notch 
pathway can significantly induce a subset of patient-derived 
GSCs with high ASCL1 expression to differentiate into neu-
ron-like cells [137]. In addition, previous studies have shown 
that the pression of glioma cells can be retarded by induc-
ing glial differentiation via activation of microRNA or BMP 
signaling [138, 139]. Overexpression of three neurogenic 
transcription factors (ASCL1, BRN2, and NGN2) repro-
grammed 20%–40% of human glioma cells into TUBB3-
positive neurons in vitro [140]. Cooperating with NGN2 
and SOX11, intravenous injection of overexpressing viruses 
has been shown to improve the reprogramming efficiency of 
human glioma cells into terminally-differentiated neuron-
like cells, thus delaying tumor progression and significantly 
prolonging the survival of tumor-bearing mice [141]. A sim-
ilar result was found via overexpression of NGN2, ASCL1, 
and NeuroD1 in glioma cells. Unfortunately, gene regulation 
as a treatment for GBM are bound to face great challenges, 
and certain risks exist in the clinical application of trans-
genic technology and virus transfection such as off-target 
effects and neurotoxicity. However, these results suggest 
the potential for reprogramming of GBM cells into neurons 
[142–144].

Disruption of Neuron‑Glioma Communication

Glutamatergic synaptic structures and gap junctions have 
been identified in diffuse gliomas and can evoke long-lasting 
depolarizing currents, Ca2+ flux, and subsequent electrical 
network reactions. This cascade of electrical responses in 
glioma subpopulations ultimately promotes cell invasion and 
mitosis [99, 101]. Noninvasive brain stimulation (NiBS) is 
a group of techniques applied to the scalp that are broadly 
used in clinical practice to modulate neural activity via tran-
scranial electrical or magnetic fields (transcranial magnetic 

stimulation, TMS; tumor-treating fields, TTFields). Inter-
estingly, NiBS can increase or decrease neural activity 
depending on different stimulation patterns, of which the 
mechanisms are considered to involve the regulation of syn-
aptic plasticity [145]. Long-lasting effects across multiple 
regions of the brain have been reported after stimulation 
with magnetic or electrical fields [145, 146]. NiBS has also 
been reported to induce effects such as the modulation of 
glutamatergic transmission, BDNF-dependent plasticity, and 
the regulation of pathway activity [147, 148]. Thus, disrup-
tion of communication between glioma and neurons is a 
promising area of study. Considering the efficacy and safety 
of NiBS, both TMS and TTFields have been approved for 
the treatment of several psychiatric diseases [145]. As for 
neoplasms, the landmark EF-14 trial, showed that TTFields 
plus maintenance Temozolomide (TMZ) resulted in an 
increase in overall survival in patients with newly diag-
nosed GBM compared to TMZ alone (20.9 vs 16.0 months 
with TMZ alone). Furthermore, no systemic adverse events 
are associated with the addition of TTFields (48% vs 44% 
with TMZ alone) [149, 150]. Indeed, TTFields deliver a low 
intensity (1–3 V/cm) at medium frequency (100–300 kHz) 
to the tumor region, alternating extra physiological currents 
which do not affect neural activity but rather impede can-
cer cell mitosis. The formation of microtubules, which are 
essential structures for neuron-glioma communications [101, 
151], is disrupted by TTFields. Recent reports also revealed 
that TTFields induce an increased release of micronuclei 
from tumor cells, leading to activation of cGAS/STING 
and AIM2/Caspase-1 [152]. After treatment with TTFields, 
T-cell activation and clonal expansion have been reported 
in samples and derived from the upregulation of adaptive 
immunity. Taylor et al. genetically or pharmacologically 
blocked BDNF-TrkB signaling in a xenograft model of pedi-
atric glioblastoma, abrogating the tumor-promoting effects 
of BDNF on synapses and prolonging survival [109]. Thus, 
growing evidence suggests that the application of NiBS may 
be used to suppress glioma progression and tumor-promot-
ing neuronal communication.

Discussion

Understanding of biology and immunology in gliomas has 
advanced at an impressive pace in recent years. The brain 
TME comprises heterogeneous populations of cells exhib-
iting differences in genetic characteristics and performing 
various modes of reciprocal interaction to mediate tumor 
initiation, progression, and therapeutic response. Com-
bining advancing technologies in genetic engineering and 
sequencing enables promising capabilities in diagnosis 
and personalized treatment, and deciphering the origins 
of tumor-supporting cells at the single cell level as well. 
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Studying developmental programs is a promising strategy 
for understanding the process of oncogenesis, and essential 
targets for disrupting disease progression or remission may 
be found. We here reviewed advances in gene-edited mouse 
models that mirror human disease and discussed potential 
glioma-initiated progenitor cells that may be used for fur-
ther investigations. In addition, interactions between tumor 
subtypes, microglia, MDMs, and neurons in the brain TME 
play an important role in tumor progression. In light of many 
mechanisms of tumor/non-tumor cell crosstalk and their 
accompanying outgrowths, these implications in complex 
TME caused by these interactions are important components 
of the major driver in glioma biology. We here highlight a 
nascent but fast-growing field termed cancer neuroscience, 
which mainly focuses on the tumor-neuron network and its 
role in the progress of cancer growth. Interesting questions 
that remain to be answered include: (1) how to specifically 
target tumor cells in the tumor-neuron axis and integrate 
neural regulation methods into existing clinical strategy, 
(2) why and how tumors communicate with neurons in the 
brain, and (3) whether histopathological subtypes of glioma 
have a neuron communication preference. Lessons learned 
from TME suggest that disruption of the tumor/non-tumor 
cell dialogue could be helpful in inventing potential novel 
therapeutic approaches beyond standard treatment such as 
immune checkpoint inhibitors, cell-based biotechniques, and 
noninvasive brain stimulation. These therapies could poten-
tially become the keystones of clinical practice in the future.
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