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ABSTRACT: Extracellular vesicles (EVs) have promising
potential as biomarkers for early cancer diagnosis. The EVs
have been widely studied as biological cargo containing
essential biological information not only from inside vesicles
such as nucleic acids and proteins but also from outside vesicles
such as membrane proteins and glycolipids. Although various
methods have been developed to isolate EVs with high yields
such as captures based on density, size, and immunoaffinity,
different measurement systems are needed to analyze EVs after
isolation, and a platform that enables all-in-one analysis of EVs
from capture to detection in multiple samples is desired. Since a
nanowire-based approach has shown an effective capability for capturing EVs via surface charge interaction compared to other
conventional methods, here, we upgraded the conventional well plate assay to an all-in-one nanowire-integrated well plate
assay system (i.e., a nanowire assay system) that enables charge-based EV capture and EV analysis of membrane proteins. We
applied the nanowire assay system to analyze EVs from brain tumor organoids in which tumor environments, including
vascular formations, were reconstructed, and we found that the membrane protein expression ratio of CD31/CD63 was 1.42-
fold higher in the tumor organoid-derived EVs with a p-value less than 0.05. Furthermore, this ratio for urine samples from
glioblastoma patients was 2.25-fold higher than that from noncancer subjects with a p-value less than 0.05 as well. Our results
demonstrated that the conventional well plate method integrated with the nanowire-based EV capture approach allows users
not only to capture EVs effectively but also to analyze them in one assay system. We anticipate that the all-in-one nanowire
assay system will be a powerful tool for elucidating EV-mediated tumor−microenvironment crosstalk.
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Extracellular vesicles (EVs; diameters of 30−2000 nm)
are membrane vesicles containing nucleic acids,
proteins, and bioactive lipids and provide intercellular

communication and cellular function regulation.1,2 Malignant
cells, such as tumors, are known to have a higher amount of EV
secretion with disease-related genetic and proteomic informa-
tion than normal cells;3−7 thus, EVs have been considered as a
source of biomarkers for chronic diseases including some
cancer types.8−10 Some brain tumors are asymptomatic and are
often already growing at the time of diagnosis; therefore, an
ordinary diagnosis may delay detection and reduce survival
rates.11 Tumor cell-derived EVs have been reported to be a
potential source of cancer biomarkers.12−14 Thus, tumor
organoid-derived EVs are expected to retain the biological
information on the tumor as cultured in a three-dimensional

(3D) cell culture, that is, an environment close to that of the
tumor in vivo.15 Hence, analysis of tumor organoid-derived
EVs could lead to the discovery of brain tumor biomarkers. In
this study, we conceived an idea to demonstrate the analysis of
EVs derived from brain tumor organoids in the search for EV
markers for brain tumors.
The first step in EV analysis is to capture EVs from

biological samples.16−18 Due to the biological, chemical, and
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physical properties of EVs, e.g., their existence in a wide range
of nanosize particles, at low concentrations and at high
heterogeneities,19−22 various capture methods for EVs from
biological samples have been proposed. The conventional
methodologies for EV capture are density-based capture using
ultracentrifugation or differential centrifugation, immunoaffin-
ity-based capture using specific membrane proteins, for
example, CD9, CD63, and CD31, and size-based capture
using size exclusion chromatography.23,24 Additionally, alter-
native methodologies for EV capture are introduced, e.g.,
microfluidic-based approaches by viscoelastic flow, filtration,
aptamer-mediated sorting, and acoustic isolation and polymer
precipitation.25−28 Previously, we proposed a nanowire-based
capture approach that could capture EVs in a charge-based
manner from urine and the cell supernatant.29−32

The second step in EV analysis is to analyze specific EVs
among the captured EVs.33−35 Conventional EV capture
platforms require measurement systems to obtain biological
compositions that reflect body, cellular, and organ information.
To obtain the specific biological EV information, membrane
proteins on EVs are normally analyzed by immunoassay after
solidification of the EVs,36 by Western blotting after lysis
treatment,37 by a nanoplasmon-enhanced scattering assay,38

and by mass spectrometry for peptide information.39 The
nanowire-based capture approach has the advantages of rapid
and simple operation with high EV yield, the ability to discover
massive numbers of microRNAs (miRNAs), and the ability to
obtain the correlation between surface charge and membrane
proteins.29,30,32

Here, we developed an all-in-one nanowire assay system
suitable for both EV capture and analysis, instead of multiple
conventional methods, to search for EV markers from a small
amount of the cell supernatant of brain tumor organoids and
urine samples. Previously, we demonstrated that the ZnO
(bare) nanowire has an ability to capture EVs based on the
surface charge, and we obtained a correlation between the
surface charge and the expressed proteins on the EVs.29 The

results showed that a correlation existed between EV capture
efficiency and charge surface of three types of nanowires (ZnO
(bare), ZnO/TiO2 (core/shell), and ZnO/SiO2 (core/shell)),
and the correlation illustrated that a stronger positively charged
surface could provide higher EV capture efficiency than a
weakly positively charged surface could. Thus, the ZnO (bare)
nanowires, which are the strongest positively charged surface
among the three types, showed the highest EV capture
efficiency.29 In this work, we used ZnO/Al2O3 (core/shell)
nanowires, which provide a stronger positively charged surface
than ZnO (bare) nanowires to capture EVs, and subsequently
we detected EV membrane proteins. To efficiently implement
EV capture and EV analysis of membrane proteins, we
upgraded the conventional well plate assay to an all-in-one
nanowire-integrated well plate assay system (i.e., a nanowire
assay system) suitable for both EV capture and membrane
protein measurement (Figure 1). Finally, we applied the
nanowire assay system to brain tumors to search for cancer-
related biomarkers of EV membrane proteins from a small
sample volume.

RESULTS AND DISCUSSION
The Nanowire Assay System for Capturing EVs Based

on Surface Charge. To integrate both capturing and
analyzing of EVs in one assay system for an easy-to-use and
powerful EV analysis methodology, we combined a conven-
tional well plate assay and nanowire-based EV capture as the
all-in-one nanowire assay system. Figure 1 shows schematic
images of the EV capture and the EV membrane protein
measurement system. We fabricated nanowire substrates by
synthesizing ZnO nanowires on fused silica substrates utilizing
the hydrothermal method. Furthermore, different metal oxides,
Al2O3, SiO2, and TiO2, were deposited on the ZnO nanowires
by atomic layer deposition (ALD) to obtain the core−shell
structure, and then, the nanowire substrates were placed onto a
24-well plate. The EVs in phosphate-buffered saline (PBS)
(Figures 2 and 3), cell- and organoid-derived EVs in culture

Figure 1. Schematic images of EV capture and membrane protein measurement system. The ZnO nanowires were fabricated on a quartz
substrate utilizing a sputtering method; then surface modification was carried out by coating them with a metal oxide by ALD. The substrate
with growth nanowires was placed into each well of a well plate. Subsequently the EVs were captured based on surface charge. The EV
membrane proteins were fluorescently detected, and biomarkers of brain tumors were searched for.
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media (Figure 4), and EVs in urine (Figure 4) were incubated
to capture EVs on the nanowires via charge-based capture.
Finally, EV membrane protein profiling was carried out by
utilizing antibody fluorescence detection, which is an easy to
implement and rapid method.
For EV membrane protein profiling, here, core−shell

structure nanowires were used to capture EVs based on
surface charge. Scanning transmission electron microscopy
(STEM) images and energy dispersive X-ray spectroscopy
(EDS) elemental mappings (Figures S1 and S2) confirmed
that the core−shell structure was obtained for the ZnO/Al2O3
nanowires. The capture concentration was calculated by using
C0 − C where C0 is the initial concentration of EVs, i.e., the EV
concentration before dropping EVs in PBS onto the nanowire
well plate, and C is the uncaptured concentration of EVs, i.e.,
the EV concentration after collecting EVs in PBS from the
nanowire well plate. These ZnO/Al2O3 (core/shell) nanowires
showed the highest capture concentration of EVs, 7.77 × 109
particles/mL (Figure 2a), whereas ZnO/SiO2 (core/shell)
nanowires and ZnO/TiO2 (core/shell) nanowires captured
EVs at concentrations of 5.13 × 109 and 3.50 × 109 particles/
mL, respectively, which were 66% and 45% of the EVs
captured by the ZnO/Al2O3 (core/shell) nanowires. Pre-
viously we demonstrated that the ZnO (bare) nanowires could
capture EVs with the highest capture efficiency via charge-
based interaction compared to ZnO/SiO2 and Zn/TiO2 (core/
shell) nanowires, which had a negatively charged surface, and
that the charge surface potential of the nanowire also affected
the EV capture efficiency.29 In this work, the ZnO/Al2O3
(core/shell) nanowires had the strongest positively charged
surface, and this charged surface affected the charge-based

capture (Figure 2b), which led to the higher EV capture
concentration of ZnO/Al2O3 (core/shell) nanowires among
core−shell structure nanowires (Figure 2a). Although the EV
capture concentration was decreased with a decrease of sample
volume, the EV capture concentration was as high as 6.40 ×
109 particles/mL at 300 μL (Figure 2c), which is enough for
further EV membrane protein analysis.
To evaluate the EV capture concentration in the nanowire

assay system, the nanowire surface area and number of
nanowires were calculated. ZnO/Al2O3 (core/shell) nanowires
were fabricated on a quartz substrate and placed into a 24-well
plate (Figure 2d; surface area of 1.86 cm2). Analysis of field
emission scanning electron microscopy (FESEM) images
showed that the nanowires had an average diameter of 111
nm (N = 100), average height of 1.81 μm (N = 100), and
average density of 25 nanowires/μm2 (N = 20 images) (Figure
2e). The number of nanowires could be estimated as 4.66 ×
109 nanowires in the fabricated area, and it resulted in around a
16-fold larger surface area compared to the bare substrate. The
large number of nanowires in the present nanowire assay
system was enough to capture and immobilize EVs on
nanowires by charge-based interaction in biological samples,
as generally, EV concentrations are 109−1010 particles/
mL.20,40,41 Thus, due to the 300 μL required volume for our
nanowire assay system, the number of EVs in the well plate
assay were approximately 3.0 × 108 to 3.0 × 109, and we
concluded that the number and surface area of the nanowires
in the well plate assay system were enough to capture EVs
from biological samples. Furthermore, we demonstrated that
the EVs were captured on ZnO/Al2O3 (core/shell) nanowires
on the basis of the FESEM image results (Figure 2f).

Figure 2. Nanowire assay system capture of EVs. (a) EV capture concentration on different oxide nanowires with an initial concentration of
2.29 × 1010 particles/mL, calculated by using C0 − C, where C0 is the initial concentration of EVs and C is the uncaptured concentration of
EVs. Error bars show the SD for an individual experiment (N = 3). (b) Zeta potential of bare substrates, ZnO (bare) nanowires, and ZnO/
Al2O3 (core/shell) nanowires. Error bars show the SD for an individual experiment (N = 3). (c) EV capture concentration with different
incubation volumes. Error bars show the SD for an individual experiment (N = 3). (d) Photo showing the ZnO/Al2O3 (core/shell)
nanowires on a quartz substrate in the 24-well plate; scale bar, 10 mm. (e) FESEM image of ZnO/Al2O3 (core/shell) nanowires; scale bar,
400 nm. (f) FESEM image of captured EVs (colored in pink) on ZnO/Al2O3 (core/shell) nanowires (colored in blue); scale bar, 200 nm. A
zoom-in image is also shown for the red square area; scale bar, 200 nm.
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Captured EV Membrane Protein Profiling in Nano-
wire-Based Assay System for Cells, Organoids, and
Urine Samples. For EV analysis with the nanowire assay
system, the cell- and organoid-derived EVs were captured, and
membrane protein profiling was performed with CD63
fluorescent-labeled antibody. To obtain higher sensitivity of
the membrane protein fluorescence detection,42 both primary
antibodies and secondary fluorescent-labeled antibodies were
used (Figure S3) rather than just primary fluorescent-labeled
antibodies, and the results indicated there was a significant
increase of fluorescence intensity (Figure S4). We targeted the
CD63 membrane protein as the marker for EVs for the
following reasons: high enrichment of CD63 has been
observed in small extracellular vesicles and was shown to be
instrumental in formation of small intraluminal vesicles,43,44

and a correlation has been reported between CD63
fluorescence intensity and EV concentration in the case of
EV capture by nanowires.29 When the fluorescence intensity of
the CD63 membrane protein was compared between the bare
substrate and ZnO/Al2O3 (core/shell) nanowires, ZnO/Al2O3
(core/shell) nanowires provided higher fluorescence intensity,
and 1.7-fold higher fluorescence intensity was obtained
compared to the EV-free PBS due to the high EV capture
concentration with the charge-based interaction (Figures 3a
and 3b).29−31 Moreover, our nanowire assay system was

verified with various combinations of presence and absence of
ZnO/Al2O3 (core/shell) nanowires, EVs, and antibodies
(Figure S5), and the results showed that the nanowire assay
system could capture EVs via measurement of CD63 with high
fluorescence intensity.
Furthermore, a relationship between the EV concentration

ranging from 3.06 × 107 to 5.69 × 108 particles/mL and
fluorescence intensities was considered, and a marked
correlation was observed between the concentration of
captured EVs and their fluorescence intensity (Figure 3c). In
addition, the calibration curve of the captured EV concen-
tration versus fluorescence intensity with our nanowire assay
system was plotted, and the linear regression with R2 = 0.9996
was obtained (Figure 3d). Next, the limit of detection (LOD)
of 1.25 × 107 particles/mL was achieved based on the 3σ
method. Considering the reported EV capture and analysis
methods, we concluded that the nanowire assay system in this
study has the advantages of simultaneous EV capture and
detection in the same plate, no need for an antibody as the
capture probe, and a sufficient LOD for further tumor
diagnosis and prognosis (Table 1). Although some of the
reported EV capture methods have lower LODs, the nanowire
assay system is advantageous with respect to being a simple
method and a no immunoaffinity-capture required method.
Previous research studies reported the capture of the EVs via

Figure 3. CD63 profiling from captured cell-derived EVs in PBS prepared by ultracentrifugation in the nanowire assay system. (a) Size
distribution of EVs in PBS before and after incubation in the nanowire assay system. Error bars show the SD for an individual experiment (N
= 3). (b) Fluorescence intensity of CD63 profiling of EV-free PBS and U87Δ EVs in PBS using a bare quartz substrate and ZnO/Al2O3
(core/shell) nanowires. Error bars show the SD for an individual experiment (N = 3), and the p-value was calculated by an unpaired Mann−
Whitney test (*, p < 0.05; ns, not significant). (c) EV concentration versus CD63 fluorescence intensity using a bare quartz substrate and
ZnO/Al2O3 (core/shell) nanowires. The dashed lines show the linear regression (orange, ZnO/Al2O3 (core/shell) nanowires; blue, bare
quartz substrate). (d) The calibration curve of EV concentration versus CD63 fluorescence intensity using ZnO/Al2O3 (core/shell)
nanowires with R2 = 0.9996. In (c) and (d), error bars show the SD for an individual experiment (N = 3).
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surface biomarkers such as CD9, CD63, CD81, etc.;45−49

however, nonspecific capture could provide an opportunity to
capture more information about EVs compared to partial
capture by immunoaffinity.50 Furthermore, since generally the
EV concentrations are 109 to 1010 particles/mL,20,40,41 the
nanowire assay system is expected to be able to detect EVs in
biological fluids. And, the nanowire assay system uses the
advantage of charge-based interaction for EV capture
accompanied by the conventional well plate method, which
leads to simple EV capture and detection in only one assay
system. Therefore, the nanowire assay system is feasible for
further practical applications in tumor diagnosis and prognosis.
We captured and analyzed not only cell-derived EVs but also

brain tumor organoid-derived EVs and urine samples from
glioblastoma patients and noncancer subjects. Before perform-
ing EV membrane protein analysis, we compared particle
capture concentrations from 300 μL of medium between the
ultracentrifugation method and our nanowire assay. The
captured particle concentration of our nanowire assay (2.68
× 109 particles/mL) was 17.8-fold higher than that of the
ultracentrifugation method (1.5 × 108 particles/mL) under the
same conditions (Figure 4a). A similar reduction in size
distribution was observed when EVs were captured from 300
μL of medium without ultracentrifugation, and this reduced
distribution was comparable to the size distribution of EVs
collected by ultracentrifugation (Figure S6). Furthermore, the
fluorescence intensity of CD63 on our nanowire assay was
significantly higher than that of CD63 fluorescence intensity
when ultracentrifugally collected EVs were incubated in 24-
well plates for 20 h (Figure 4b). These results clearly showed
that our nanowire assay system can capture a large number of
EVs from biological samples, and the captured EV sizes are
comparable to the collected EV sizes by ultracentrifugation.
EGFRvIII has been widely used as a glioblastoma biomarker

that is frequently observed in tumor progression; however,
EGFRvIII is unstable and leads to varying expressions.51,52 In a
2D cell culture, U87Δ, engineered glioblastoma cells, showed
stable and high expression of EGFRvIII, whereas U87WT,
wild-type glioblastoma cells, showed low expression of
EGFRvIII comparable to an EV-free medium (Figure 4c).53

Moreover, we analyzed the expression ratio of EGFRvIII/
CD63, and the ratio showed a statistically significant difference
of expression between U87WT and U87Δ; this demonstrated
the unstable expression of EGFRvIII (Figure 4d). Considering
the correlation of CD63 fluorescence intensity to EV
concentration of EVs obtained from different cell lines29 and
the correlation of CD63 fluorescence intensity to EV
concentration of EVs obtained from a single cell line (Figure
3d), it would be possible to express the EV concentration in
terms of CD63 fluorescence intensity. Using the expression
ratio in each sample, we could observe a change of membrane
protein expression level.
To further understand brain tumor organoid-derived EVs,

the brain tumor organoid formation was cultured by the 3D
cell culture technique, which provided a pure tumor

Figure 4. Membrane protein profiling of EVs for cell, organoid,
and urine samples. (a) Particle concentration captured from 300
μL of medium: comparison between the ultracentrifugation (UC)
method and ZnO/Al2O3 (core/shell) nanowires. Error bars show
the SD for an individual experiment (N ≥ 5). (b) CD63
fluorescence measurement for PBS on a 24-well plate (no EVs),
EVs in PBS prepared by ultracentrifugation on a 24-well plate
without nanowires (EVs without nanowires), and EVs in cell
culture medium on a 24-well plate with nanowires (EVs with
nanowires). Error bars show the SD for an individual experiment
(N = 3). (c) Fluorescence intensity obtained using the nanowire
assay system for CD63 and EGFRvIII membrane protein profiling
of EV-free medium and U87WT EVs and U87Δ EVs in medium.
(d) Fluorescence intensity ratio of EGFRvIII/CD63 of U87WT
EVs and U87Δ EVs in medium. (e) Fluorescence intensity
obtained using the nanowire assay system for CD63 and CD31
membrane protein profiling of EV-free medium and EVs in
medium without and with organoid formation. (f) Fluorescence
intensity ratio of CD31/CD63 of EVs in medium without and with
organoid formation. (g) Fluorescence intensity obtained using the
nanowire assay system for CD63 and CD31 membrane protein
profiling of EVs in urine samples from glioblastoma (GBM)

Figure 4. continued

patients and noncancer subjects. (h) Fluorescence intensity ratio
of CD31/CD63 of EVs in urine samples from glioblastoma (GBM)
patients and noncancer subjects. (c−h) Error bars show SD for an
individual experiment (N ≥ 5); the p-value was calculated by an
unpaired Mann−Whitney test (*, p < 0.05; ns, not significant).
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composition for analysis (Figure S7). A 3D cell culture, less
artificial than a 2D cell culture, has been demonstrated as able
to mimic the cell microenvironment and obtain practical
information about cell-to-cell interactions and metabolic
profiling in research studies of stem cells and various types
of diseases.54−56 Several research studies have reported that the
CD31 expression in vasculogenesis has a correlation with brain
tumor grade and prognosis through epithelial to mesenchymal
transitions (EMTs).57−59 Although the fluorescence intensity
of CD31 had high expression in the medium both with and
without organoid formation (Figure 4e), the expression ratio of
CD31/CD63 showed a significant p-value, and we could
propose CD31 as a brain tumor biomarker (Figure 4f).
Furthermore, urine samples from glioblastoma patients and
noncancer subjects were analyzed by our nanowire assay
system. The expression ratio of CD31/CD63 of EVs in urine
samples showed a statistically significant difference between
glioblastoma patients and noncancer subjects, which was the
same trend as seen for brain tumor organoids (Figures 4g and
4h). Our results demonstrated that our nanowire assay system
is a good candidate for effective capture and analysis of EV
membrane proteins in future cancer diagnosis applications, and
additionally, the results confirmed that CD31 has a good
potential for use as a brain tumor biomarker.

CONCLUSION
In summary, we demonstrated a nanowire EV capture
integrated measurement system that has the ability to capture
EVs via charge-based interaction and to achieve membrane
protein profiling of EVs from biological samples. The positive
charge of ZnO/Al2O3 (core/shell) nanowires plays an
important role in EV capture and membrane protein profiling
(CD63, EGFRvIII, and CD31). Our methodology provided an
effective assay system for EV capture and membrane protein
profiling with linear regression and had the LOD of 1.25 × 107
particles/mL. To improve the LOD, we hypothesized that
longer nanowires and/or coating with a stronger positively
charged surface could capture a greater number of EVs and
provide lower LOD. Moreover, our nanowire assay system
showed its potential to provide a feasible indicator of the EV
membrane proteins for brain tumor organoids, although
further experimental analysis is needed to confirm the
biomarker. Since the present methodology allows users to
capture EVs and profile EV membrane proteins in one assay
system, our nanowire assay system offers an opportunity to
develop a powerful tool for cancer diagnosis with high
precision and accuracy.

EXPERIMENTAL SECTION
Ethics Approval and Consent to Participate. The present

study was approved by the institutional review board at Nagoya
University Hospital (approval number: 2012-0067) and complied
with all provisions of the World Medical Association Declaration of
Helsinki. Tumor samples were collected intraoperatively upon
receiving informed consent from the patients.
Cell Culture and EV Purification. U87 cell lines were cultured in

Dulbecco’s modified Eagle’s medium (DMEM, Thermo Fisher
Scientific Inc.) with 10% exosome-depleted fetal bovine serum
(FBS, System Biosciences, LLC) containing 1% penicillin−strepto-
mycin (PS, Thermo Fisher Scientific Inc.). Before collecting EVs from
cells, the medium was changed to advanced DMEM (Thermo Fisher
Scientific Inc.). In each passage, 3 × 106 cells were seeded into 15 mL
of cell medium in a culturing flask and cultured in an incubator
(Panasonic Corp.) at 37 °C and in a 5% CO2 atmosphere. The cellT
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culture medium was collected and centrifuged (10 min, 4 °C, 300g),
and the medium was collected again and further centrifuged (10 min,
4 °C, 2000g). Then, the medium was filtered through a 0.22 μm filter
(Merck Millipore Ltd.). Next, the filtered medium was ultra-
centrifuged (80 min, 4 °C, 110000g). After discarding the
supernatant, 6 mL of 0.22 μm filtered PBS (Thermo Fisher Scientific
Inc.) was added to wash the collected EVs, followed by ultra-
centrifuging again (80 min, 4 °C, 110000g). After discarding the
supernatant, 1 mL of 0.22 μm filtered PBS was added to collect the
EVs, which were then stored at 4 °C. The EVs in PBS collected by
ultracentrifugation were used to calculate EV capture concentration
on different oxide nanowires, detect CD63 membrane protein, and
obtain the calibration curve as a proof-of-concept (Figures 2 and 3),
whereas EVs in medium were used for the comparison analysis
between ultracentrifugation and nanowires and EV membrane protein
profiling of brain tumor cells and brain tumor organoids (Figure 4).
EVs in urine were also used for EV membrane protein profiling
(Figure 4).
Generation of Tumor Organoids. Fresh surgically resected

tissues were immediately minced into 1 mm3 pieces and put into
DMEM culture medium (Thermo Fisher Scientific Inc.) supple-
mented with 10% FBS (System Biosciences, LLC) and 1% PS
(Thermo Fisher Scientific Inc.) or serum-free culture medium
(neurobasal medium, N-2, B-27, PS (Thermo Fisher Scientific),
recombinant human FGF protein (50 ng/mL), and recombinant
human EGF protein (50 ng/mL; R&D Systems). To remove red
blood cells and debris, the pieces were incubated in 5 mL of organoid
culture medium, containing 15 μL of ACK lysing buffer (Thermo
Fisher Scientific Inc.) and 5 μL of type IV collagenase (Thermo
Fisher Scientific Inc.) at room temperature, and then mechanically
dissociated by pipetting. Dissociated cells were resuspended in
Matrigel basement membrane matrix (Corning Inc.), which was
diluted with the same amount of culture medium. Then, 350 μL of
the suspended Matrigel mixture was seeded in each well of a six-well
plate, incubated for 30 min at 37 °C and 5% CO2 atmosphere, and
then overlaid with 2 mL of the organoid culture medium. The culture
medium was refreshed every few days. The collected organoid
medium was briefly centrifuged (10 min, 4 °C, 300g, and then 10 min,
4 °C, 3000g) to remove apoptotic bodies60 and filtered using a 0.22
μm filter (Merck Millipore Ltd.) before incubating in the nanowire
assay.
EV Preparation for Urine Samples. After urine samples were

collected from glioblastoma patients and noncancer subjects, the urine
samples were centrifuged (10 min, 4 °C, 300g, and then 10 min, 4 °C,
3000g) to remove apoptotic bodies,60 and then they were filtered
through a 0.22 μm filter (Merck Millipore Ltd.). Next, the filtered
urine samples were incubated in the nanowire assay system according
to the procedure (Figure S3).
Nanowire Fabrication and Characterization. We used a radio

frequencey sputterer (Sanyu Electron Co., Ltd.) to deposit a ZnO
layer on quartz substrates (Crystal Base, Japan; 15.4 mm diameter,
0.13 mm thickness) before growing the ZnO nanowires. The ZnO
nanowires were grown by the hydrothermal method at 95 °C for 3 h
using 70 mL of growth solution containing 30 mM of both
hexamethylenetetramine (HMTA) (Wako Pure Chemical Industries,
Ltd.) and zinc nitrate hexahydrate (Zn(NO3)2·6H2O) (Thermo
Fisher Scientific Inc.). Then, a layer of Al2O3, TiO2, or SiO2 was
deposited on the as-grown ZnO nanowires by an ALD apparatus
(Ultratech Inc.). This modified the ZnO nanowire surface to ZnO/
Al2O3, ZnO/TiO2, or ZnO/SiO2 nanowires as the core−shell
structure (Figure 1). The morphology and composition of ZnO
(bare) and ZnO/Al2O3 (core/shell) nanowires were characterized by
FESEM, STEM, and EDS (JEOL Ltd., Figures S1 and S2). For the
cross-sectional SEM-EDS analysis, we utilized an accelerating voltage
of 15 kV. For the single-nanowire STEM-EDS analysis, we used an
accelerating voltage of 30 kV. The EDS mapping images were 512 ×
384 pixels, and the delay time for each pixel was 0.1 ms. The images
were integrated over 100 cycles. The peaks of Zn Kα (8.630 keV), O
Kα (0.525 keV), and Al Kα (1.487 keV) were chosen to construct the
elemental mapping images. The zeta potential of the nanowires was

measured by using a commercial apparatus (Otsuka Electronics Co.,
Ltd.).
EV Capture and Membrane Protein Measurement on

Nanowires. We utilized the conventional well plate with nanowire
substrates placed in the wells (Figure 1). EV concentrations were
analyzed using a nanoparticle tracking analysis (NTA) instrument
(Malvern Panalytical, Ltd.). Video data were collected five times for a
60 s time period each time. Camera level and detection threshold
were set to 13 and 5, respectively. NanoSight NTA 3.2 software was
used for data analysis. The capture concentration was calculated by
using C0 − C, where C0 is the initial concentration of EVs, i.e., the EV
concentration before dropping EVs in PBS onto the nanowire well
plate, and C is the uncaptured concentration of EVs, i.e., the EV
concentration after collecting EVs in PBS from the nanowire well
plate. The EVs captured on nanowires were coated with platinum film
by using a plasma exposure system (Vacuum Device Inc.) to a
thickness around 10 nm for imaging with an FESEM apparatus (Carl
Zeiss AG). To profile the EV membrane proteins, 300 μL of medium
containing EVs was added onto the nanowire substrate placed in each
well, where incubation was carried out for 20 h at 37 °C, after which
the solution was discarded (Figure S3). The same incubation time
was used for the well plate experiment without nanowires. Next, 300
μL of blocking solution (KPL 10% BSA blocking solution, SeraCare)
was added to a well followed by incubation for 1 h at 37 °C. After
that, a washing step was performed three times with 150 μL of PBS.
We used anti-human CD63 antibody (Cosmo Bio Co., Ltd.), anti-
human EGFRvIII antibody (Biorbyt), or anti-human CD31 antibody
(Abcam plc.) as the primary fluorescence antibody. Then, the
secondary fluorescence antibody was used for anti-CD63, anti-
EGFRvIII, and anti-CD31, respectively, as fluorescein isothiocyanate
(FITC)-conjugated Affinipure goat anti-mouse antibody (Proteintech
Group Inc.), FITC-conjugated goat anti-mouse IgG2a antibody, and
Alexa Fluor 467-conjugated goat anti-rabbit IgG H&L (Abcam plc.).
The fluorescence measurements were made using a commercial well
plate reader (Tecan Trading AG). Then, for all fluorescence intensity
measurements, the fluorescence measurement region of the well was
divided into 12 sections, from which the same one region was used to
detect the fluorescence intensity of all membrane proteins.
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