
Cancer Medicine. 2023;00:1–20.	﻿	     |  1wileyonlinelibrary.com/journal/cam4

Received: 7 October 2022  |  Revised: 17 January 2023  |  Accepted: 31 January 2023

DOI: 10.1002/cam4.5681  

R E V I E W

Cellular and molecular features related to exceptional 
therapy response and extreme long-term survival in 
glioblastoma

B. Decraene1,2,3   |   M. Vanmechelen1,4  |   P. Clement4  |   J. F. Daisne5  |   
I. Vanden Bempt6  |   R. Sciot7  |   A. D. Garg8  |   P. Agostinis9  |   F. De Smet1  |   
S. De Vleeschouwer2,3,10

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided 
the original work is properly cited.
© 2023 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

1KU Leuven, Laboratory for Precision 
Cancer Medicine, Translational Cell 
and Tissue Research Unit, Leuven, 
Belgium
2KU Leuven Department of 
Neurosciences, Experimental 
Neurosurgery and Neuroanatomy 
Research Group, Leuven, Belgium
3Department of Neurosurgery, 
University Hospitals Leuven, Leuven, 
Belgium
4Department of General Medical 
Oncology, University Hospitals Leuven, 
Leuven, Belgium
5Radiation Oncology Department, 
University Hospitals Leuven, Leuven, 
Belgium
6Department of Human Genetics, 
University Hospitals Leuven, Leuven, 
Belgium
7Department of Pathology, University 
Hospitals Leuven, Leuven, Belgium
8KU Leuven, VIB Center for Cancer 
Biology Research, Leuven, Belgium
9KU Leuven, Laboratory of Cell Stress 
& Immunity (CSI), Department of 
Cellular & Molecular Medicine, 
Leuven, Belgium
10KU Leuven, Leuven Brain Institute 
(LBI), Leuven, Belgium

Correspondence
Brecht Decraene, Herestraat 49, 3000 
Leuven, Belgium.
Email: brecht.decraene@uzleuven.be

Abstract
Glioblastoma Multiforme (GBM) remains the most common malignant 
primary brain tumor with a dismal prognosis that rarely exceeds beyond 2 years 
despite extensive therapy, which consists of maximal safe surgical resection, 
radiotherapy, and/or chemotherapy. Recently, it has become clear that GBM is 
not one homogeneous entity and that both intra-and intertumoral heterogeneity 
contributes significantly to differences in tumoral behavior which may 
consequently be responsible for differences in survival. Strikingly and in spite of its 
dismal prognosis, small fractions of GBM patients seem to display extremely long 
survival, defined as surviving over 10 years after diagnosis, compared to the large 
majority of patients. Although the underlying mechanisms for this peculiarity 
remain largely unknown, emerging data suggest that still poorly characterized 
both cellular and molecular factors of the tumor microenvironment and their 
interplay probably play an important role. We hereby give an extensive overview 
of what is yet known about these cellular and molecular features shaping extreme 
long survival in GBM.
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1   |   INTRODUCTION

Glioblastoma Multiforme (GBM) remains the most 
common malignant primary brain tumor with a dismal 
prognosis that rarely exceeds beyond 2 years of survival 
post-diagnosis, despite extensive therapy, which consists 
of maximal safe surgical resection, radiotherapy, and/or 
chemotherapy.1 Recently, it has become clear that GBM 
is not one homogeneous entity and that both intra- and 
intertumoral heterogeneity contribute significantly to dif-
ferences in tumoral behavior, which may consequently be 
responsible for differences in survival.2–4 Moreover, tumor 
heterogeneity is one of the barriers to long-term therapeu-
tic efficacy and as such represents an area of intense inves-
tigation. Strikingly and despite its dismal prognosis, small 
fractions of GBM patients seem to display extended sur-
vival compared to most patients. However, the underlying 
mechanisms for this peculiarity remain largely unknown, 
even though emerging data suggests that both cancer cell-
autonomous and microenvironmental factors and their 
interplay likely play an important role. As stated further, 
the aim of this work is to present a concise summary of 
the current state-of-the-art on this striking topic.

Long-term survival is often defined as a survival time 
of more than 2 or 3 years from diagnosis.5,6 However, from 
a patient's perspective, we would rather define long-term 
survivorship (LTS) in GBM as patients who survive at least 
5 years (60 months) after diagnosis, as opposed to short-
term survivors (STS). The latter can be described in many 
ways. We define STS as patients who survive <36 months 
unless mentioned otherwise. Anecdotical cases have 
been published of patients surviving longer than 10 years, 
which may ultimately turn out to be a different sub-
type of GBM or another CNS malignancy that behaves 
uniquely.7,8 To make the distinction with 5-year survi-
vors, we will further address these cases as extreme long-
term survivors (eLTS), estimated to be <1% of all GBM 
patients.9 Finally, we would also like to define a separate 
subgroup of patients, namely exceptional responders. In 
literature, exceptional responders are often defined as pa-
tients achieving a unique, partial, or complete, response 
after non-surgical therapies (mostly in the context of ex-
perimental treatment modalities) that are barely effective 
for most other patients, which is only seen in about 10% 
of GBM patients when it is sustained for a longer period 
of time.10 This definition of exceptional response implies 
the use of highly specific and targeted drugs and would 
thus require an extensive description of all possible (ex-
perimental) treatment methods used in these patients, 
their working mechanisms, and interactions, which is 
beyond the scope of this review. Nevertheless, we con-
ducted a literature search to discover cellular and molecu-
lar factors that could independently predispose a GBM to 

exceptional therapy response, in addition to and beyond 
the exact therapy given.

Some authors suggest that such exceptional observa-
tions (exceptional therapy response and survival) may 
also be related to misclassifications of low-grade glioma or 
may be attributed to statistical errors.5,11,12

Several clinical variables have been associated with pa-
tient survival in GBM, with age, Karnofsky performance 
score (KPS), and extent of resection being the most con-
sistent.6,13 With advances in multi-omics technologies and 
disease diagnostics (such as genomics, bulk, and single-
cell transcriptomics, DNA methylation profiling, and next-
generation sequencing), and their integration with disease 
diagnostics, numerous prognostic molecular markers 
have been proposed. So far, only O6-methylguanine-DNA-
methyltransferase (MGMT) gene promotor hypermethyla-
tion and isocitrate dehydrogenase (IDH) gene mutations, 
could be identified as robust, well-established biomarkers 
that are linked to outcome and therapy response. However, 
integrated multi-level analysis aimed at identifying novel 
biomarkers or combinations of biomarkers associated 
with exceptional therapy response and/or (extreme) long-
term survival is still largely missing.

To this end, the main goal of this biomedical literature 
review is to shed a broader light on the still unknown cel-
lular and molecular features, as well as clinicopathological 
correlates and possible mechanisms behind (extreme) long-
term survival of GBM patients. This is in order to pave the 
way for a consolidated conclusion on this important topic.

2   |   METHODS

2.1  |  Study design

A literature search was conducted, focusing on research 
articles and review papers containing cellular and molecular 
information from (extreme) long-term surviving patients 
or exceptional responders (implying long progression-
free survival), as defined in the introduction. Since both 
groups are not perfectly interchangeable, we make a 
clear distinction between the two, focusing primarily on 
exceptional survival, as explained earlier. Studies focusing 
exclusively on case reports of the exceptional response 
of experimental therapies or non-human studies were 
excluded, as well as pediatric cases since these tumors 
should be considered a separate pathology.

2.2  |  Literature search

An online literature search in Medline was performed 
for relevant articles from inception to November 2021, 
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      |  3DECRAENE et al.

using a combination of the following search strategies: 
(1) ‘exceptional responders’ AND ‘glioblastoma’ (2) 
‘long-term response’ AND ‘glioblastoma’ (3) ‘molecular’ 
AND ‘long-term’ AND ‘glioblastoma’ (4) ‘macrophage’ 
AND ‘long-term’ AND ‘glioblastoma’ (5) ‘t-cell’ AND 
‘long-term’ AND ‘glioblastoma’ (6) ‘exceptional’ AND 
‘therapy’ AND ‘response’ AND ‘glioblastoma’ (Figure 1). 
For each individual search, both MeSH terms and free-
words searches were used. We further expanded our 
search by using the ‘related article’ function and by 
including references from the initial selection. We re-
moved duplicates and screened both title and abstract. 
Potentially relevant articles were included for full-text 

reading. Studies in English, French, German, and Dutch 
were screened for inclusion. When data from the same 
study population were published several times, the most 
recent version was withheld. In studies in which only a 
subpopulation of their patient population was an (e)LTS, 
we looked specifically at the outcomes for those patients. 
If it was not possible to look at them separately, and thus 
the results were not specific for (e)LTS, the study was 
excluded. Studies for which only an abstract, and thus 
insufficient data, were available were also excluded. 
Finally, since we focused on cellular and molecular data 
related to these (e)LTS, a lack of this information natu-
rally also led to exclusion.

F I G U R E  1   Search strategy.

 20457634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cam

4.5681 by C
ochraneItalia, W

iley O
nline L

ibrary on [16/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4  |      DECRAENE et al.

2.3  |  Outcome

We investigated the potentially distinct cellular and 
molecular profiles of eLTS and exceptional responders 
compared to STS. We will further divide the molecular 
changes into the different steps of protein formation: 
genetics, transcriptomics, and epigenetics. The protein 
changes themselves are discussed throughout the sections 
as well as in the cellular section. Figure 2 shows the con-
cept we want to elucidate in this article; how intra- and 
interpatient heterogeneity at both cellular and molecular 
levels could contribute to differences in survival in GBM 
patients. Therefore, data at the cellular level and from dif-
ferent genomic layers were collected: mutation analysis, 
structural and copy number variations (CNV) analysis, as 
well as epigenetic information. A descriptive overview of 
the results is given in the following paragraphs.

We focused on IDH wild type (IDHwt) GBM, as IDH 
mutant (IDHmt) tumors are known to have a better prog-
nosis and should no longer be considered GBM according 
to the latest WHO 2021 CNS tumor classification.14 We will 
therefore report when features were only significant or 

investigated in IDHmt GBM. Although several clinical and 
radiological parameters such as the extent of resection, age, 
and gender may influence survival and therapy response, 
we will not focus on these characteristics because our focus 
is on investigating cellular and/or molecular components. 
We assume that studies that focus on nonclinical parame-
ters are standardized as much as possible for these param-
eters among their included cases. If not, or if there is any 
doubt, we will mention this in our review. Secondly, we 
only looked for patients who survived for at least 5 years. By 
limiting our results to this population, it is more likely that 
we are dealing with causally distinct underlying cellular or 
molecular mechanisms rather than purely clinical parame-
ters as an explanation for exceptional response or survival.

3   |   RESULTS

3.1  |  Search results

Eighteen articles were identified describing the cellu-
lar or molecular features of (e)LTS (Table 1); 14 articles 

F I G U R E  2   Next to interpatient heterogeneity, intrapatient heterogeneity is observed on multiple levels in GBM. Variations in cellular 
features (tumor microenvironment composition and interactions) and molecular features (single nucleotide polymorphisms, copy number 
variation and alterations, somatic mutations, and epigenetic changes) contribute to this intrapatient heterogeneity and subsequently to 
differences in tumor behavior leading to distinct survival curves in GBM patients.
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described newly diagnosed, primary GBM. Of the remain-
ing 4 articles, two described a mixture of both primary 
and secondary GBM (but clearly distinguished between 
the two groups in their description),15,16 and two did not 
mention whether the GBM included were primary or sec-
ondary, nor whether the analysis was performed on newly 
diagnosed or recurrent samples.17,18

It has been hypothesized that the survival of therapy-
resistant cellular subpopulations within a newly diagnosed 
GBM could be responsible for recurrence.19 Subsequently, 
these subpopulations tend to dominate the composition of 
the recurrent tumor over time.20 It is reasonable to assume 
that cellular or molecular features important for survival, 
therefore, tend to become more pronounced upon re-
currence. However, these compositional changes in the 
tumor micro-environment are also highly dependent on 
the therapy given.21 In our opinion, the distinction be-
tween primary and secondary GBM is more important for 
prognosis. Since secondary GBM, arising from a low-grade 
glioma, is more often associated with IDH mutations, they 
are generally associated with better survival.22,23 This ar-
ticle will describe prognostic markers for primary GBM 
unless otherwise noted.

Since articles describing cellular and molecular factors 
in (e)LTS patients are scarce and mostly limited to case 
reports, we will further complement the findings of the 18 
(e)LTS -containing articles with additional prognostic fac-
tors for longer survival documented in the literature. We 
will clearly describe whether a feature applies specifically 
to (e)LTS or is linked to prolonged survival.

Furthermore, only one article described cellular or mo-
lecular features of exceptional responders with individ-
ual patient data. This subgroup is described in a separate 
subsection.18

3.2  |  Cellular features of the tumor 
microenvironment associated with  
long-term survival

3.2.1  |  The main cellular  
players—introduction

GBM is a low-antigenic and non-immunogenic tumor 
with severe depletion of lymphocytes.24 Tumor-associated 
macrophages (TAM) constitute the largest non-neoplastic 
cell population in the tumor microenvironment (TME) 
of GBM. In GBM, they consist mainly of bone-marrow-
derived myeloid cells (monocytes), in addition to the 
brain-resident microglia. Although TAM are consid-
ered molecularly heterogeneous, they generally promote 
tumor progression; apart from the ability to suppress T-
cell function, they also interact with the innate immune A
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system. Here, they sense hypoxic conditions and secrete 
pro-angiogenic and pro-mitogenic factors in response.25–27 
Two different phenotypes, with a whole continuum in be-
tween, were identified: the M1 (pro-inflammatory) and 
M2 (anti-inflammatory) subtypes. The latter is said to be 
more prominent in GBM.28 It was also reported that mac-
rophages induce transition toward a Mesenchymal-like 
cancer state.29 Moreover, TAM (mainly M2) contributes to 
chemo-and radiotherapy resistance by induction of regen-
erative programs, of which the exact underlying mecha-
nisms are not yet known.30

The second largest non-cancerous cells in the GBM 
TME are T-cells, accounting for <10% of all cells. Tumor 
cells tend to induce quantitative and qualitative T-cell 
dysfunction leading to T-cell aging, tolerance, and exhaus-
tion.31,32 Other factors also play a role; e.g., the inability of 
antigen-presenting cells (APC) to present tumor antigen 
and subsequentially activate T-cells; or the infiltration of 
immunosuppressive regulatory T-cells (Treg) and Myeloid-
derived suppressor cells (MDSC).33 Treg were found to ex-
pand in response to GBM-related factors.34 Furthermore, 
hypoxia-inducible factor 1 alfa (HIF1α) which is expressed 
by glioma cells in response to oxygen-depleted conditions, 
induces Treg migration into the TME of GBMs. Therefore, 
this phenomenon is best observed at a distance from blood 
vessels, as blood vessels are responsible for maintaining 
adequate tissue oxygenation.35

MDSC represent around 5% of all cells in human 
GBM.36 Their main function is to suppress immune cells, 
mainly T-cells and to a lesser extent B-cells, dendritic cells 
(DC) cells, macrophages (skewing these cells toward a M2 
subtype) and Natural killer (NK) cells.37–40 This occurs, 
for example, through the upregulation of indoleamine 
2,3-dioxygenase (IDO) in MDSC and tumor cells, leading 
to tryptophan depletion and impairing cytotoxic T-cell 
function and survival.41,42 Stimulation of Treg and regula-
tory B-cells by MDSC has also been described in GBM.43,44 
Lastly, they promote tumor growth by influencing angio-
genesis, invasion, and cancer cell stemness.45 In glioma, 
MDSC density increases during tumor progression and is 
thus correlated with survival.46 The mononuclear MDSC 
(M-MDSC), the subpopulation predominantly present 
in GBM, directly suppresses T-cell function or induces 
Treg formation via various factors such as IL-10 and TGF-
beta.47 MDSC infiltration into the TME is therefore associ-
ated with worse outcomes in GBM patients.48

The exact function of DC, another minor immune cell 
population, in GBM is still under investigation.49 They can 
be divided into three groups: Langerhans cells, intersti-
tial DCs, and plasmacytoid DCs (the latter one expressing 
CD123 and CD303).50 The first two are grouped because 
they have myeloid precursors. Therefore, they are called 
myeloid DCs, expressing CD141 and CD1c.51 A complex 

interplay between DC, other immune cells, and tumor cells 
has been suggested, with a prominent role in the presenta-
tion of tumor antigens leading to the recruitment and stimu-
lation of T-cells (and NK cells).52–55 Several factors can make 
DCs a regulatory subtype, which in its turn downregulates 
CD8+ T-cell influx and upregulates Treg activation.56–58

3.2.2  |  The main cellular players—  
myeloid-derived cells

Tumor-associated macrophages and their resident CNS 
counterparts, microglia, are the two most prominent 
types of myeloid cells in the brain. Together, they often 
account for more than 40% of the total tumor mass.30 
As mentioned, they have traditionally been classified 
as either M1 or M2 types of macrophages, being respec-
tively pro- and anti-inflammatory and characterized by 
distinct immune markers (such as CD80 and CD86 for 
M1 or CD163 and CD206 for an M2 subtype). However, 
the latest evidence suggests that this dichotomy is over-
simplified, and we should rather consider these mac-
rophages as a continuum.59 The M2-type microglia were 
found more frequently in STS,60 as one would assume 
given the immunosuppressive and thus pro-tumoral 
function. Since M2-like microglia/macrophages are 
more resistant to therapy in GBM, it is speculated 
that adjuvant therapy even selects for M2 macrophage 
populations.61 Interestingly, it was found that bone-
marrow-derived macrophages exhibit a strong immuno-
suppressive function in the tumor center, as opposed to 
resident microglia.34

One study, based on 10 patients from the Chinese 
Glioma Genome Atlas (CGGA) database, found that re-
duced accumulation of microglia in the tumor microenvi-
ronment was associated with exceptional survival as these 
tumors were more susceptible to temozolomide (TMZ)-
induced damage. As an underlying mechanism, it was 
found that in high-grade astrocytoma, mainly GBM, inter-
leukin 11 (IL-11) secreted by microglia activates STAT3-
MYC signaling. This leads to the induction of a stem cell 
state and thereby enhances intra-tumor heterogeneity and 
thus resistance to TMZ.18,62 Pharmacological inhibition or 
genetic inactivation (via CRISPR-Cas9) of this pathway in 
mice resulted in exceptional survival.26,63 However, these 
findings were not described specifically for LTS, but for 
above-median survival in general.

3.2.3  |  The main cellular players—T-cells

In GBM T-cells are much less prevalent than macrophages. 
GBM is considered a ‘cold’ tumor with low numbers of 
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natural killer cells (NK) and infiltrating T lymphocytes 
(TILs). These T-cells, when able to infiltrate the tumor, 
usually adopt a severely dysfunctional phenotype. Under 
normal circumstances, our body prevents autoimmun-
ity through tolerance mechanisms. In addition to central 
tolerance (during the development phase in the thymus), 
there is a mechanism of peripheral tolerance consisting of 
peripheral suppression and deletion of cytotoxic immune 
cells by Treg. GBM hijacks this mechanism preventing an 
adequate antitumor immune response.64 Interestingly, 
however, there is no correlation between the level of Treg 
infiltration and survival of GBM patients, suggesting sev-
eral alternative mechanisms (e.g., MDSCs).65

Apart from Tregs, additional evidence points to a piv-
otal role for T-cells in LTS, as several genes responsible for 
specific T-cell functions were found to be upregulated in 
LTS compared to STS,18 even though this resulted from 
bulk transcriptomic analyses warranting some caution. 
Classically, helper T-cells (Th cells), bearing the poten-
tial to further ignite an immune response by interacting 
with MHCII-presented peptides on professional antigen-
presenting cells (APCs), are dysfunctional in GBM. This 
is caused primarily by immunosuppressive cytokines (e.g. 
Interleukin 10, IL10) and inhibitory co-receptor interac-
tions (Lymphocyte-activation gene 3, LAG3; Programmed 
death-ligand 1, PDL1).31 Th cells differentiate into various 
subtypes, with Th1 and Th2 best described. A shift to ei-
ther a Th1 or Th2 type can be influenced by several fac-
tors, with the amount of IL-12 production by the myeloid 
DC (mDC) being of great importance.66,67 In GBM, the 
balance between Th1 and Th2 has been found to be prog-
nostic, with a Th2-low balance, associated with the down-
regulation of the PD-L1/PD-1 axis, being correlated with 
better prognosis.32,68 This is similar to what is found in 
other tumors where a shift toward a Th1 subpopulation fa-
vored prognosis.69,70 Th2 cells release Il-4 and IL-10. These 
have immunosuppressive functions and thus contribute to 
tumor progression.69 Moreover, differentiation of T-cells 
to Th2 cells is seen in GBM, but is hardly been detected 
in longer surviving GBM patients.71 We would also expect 
Th1 responses to be more in longer living GBM patients, as 
implied by the presence of several markers like STAT4.72,73 
As is the case in other malignancies, the activity of cyto-
toxic T-cells (CTLs) was found to be an important contrib-
utor to long-term survival.18 Despite the high number of 
exhausted CTLs in the GBM TME, CTLs can be activated 
by resident microglial cells via the TLR2-MHC-I axis.74 In 
a study looking at CD8+ T-cell infiltration at first presen-
tation, a more pronounced T-cell infiltration was observed 
in longer survivors of GBM compared with STS; although 
results in different studies and approaches used to mea-
sure this feature vary.75,76 However, T-cells were quanti-
fied histologically in resection specimens from the first 

surgical intervention, and the T-cell function (exhausted 
or activated) was not taken into account. Long-term sur-
vival in the latter study was defined as a survival of more 
than 403 days, making it hard to estimate the impact of (e)
LTS because of our more stringent cut-off value for LTS. 
It is also worth mentioning that the mean age in the LTS 
group (54.3 years) was younger than that in the STS group 
(65.2 years). Another interesting finding in GBM patients 
surviving more than 3 years is the fact that the expression 
of T-cell and myeloid-lineage-associated genes were both 
elevated.18 This was, however, not investigated in true (e)
LTS. Multivariate analysis in this study showed that in-
creased immune cell infiltration was correlated with bet-
ter survival. The authors, however, generalized immune 
infiltration as one homogeneous entity, referred to only 
one other study with similar findings (but used a two-year 
cut-off to define long-term survival), and did not provide 
the link between the genes discovered and an exact (im-
munological) function.77 With the complexity of the TME 
in mind, one could argue that this explanation appears an 
oversimplification.

We would like to highlight a particular case report of 
an adult female GBM patient, diagnosed with Lynch syn-
drome, who achieved an overall survival over 81 months.78 
Lynch syndrome, also known as hereditary nonpolyposis 
colorectal cancer, is a multi-tumor syndrome caused by au-
tosomal dominant germline mutations in DNA mismatch 
repair (MMR) genes. Brain tumors occur in 14% of all pa-
tients with Lynch syndrome.79 She was treated with anti-
PD-1 therapy after relapse. Both samples from the primary 
tumor and recurrence contained high numbers of CD163+ 
cells, especially in the tumor margins compared to the cen-
ter of the tumor.78 This is in addition to large numbers of 
CD8+ memory T cells and sustained activation of CD4+ 
T-cells. No other markers for macrophages were included 
in this study (neither a pan-macrophage marker such as 
CD68 nor an M1 type marker). Unfortunately, this makes 
it impossible to distinguish between M1 and M2 macro-
phages. In the primary sample, CD3+ and CD8+ T-cells 
were homogeneously distributed. in the recurrent sam-
ple, however, a higher density of CD8+ T-cells was seen, 
next to infiltration of persistently activated CD4+ T-cells. 
CD8+ T-cell generation was thus mainly found in the re-
current sample. A similar case report describes a survival 
of more than 5 years in a patient with a GBM IDHwt who 
was treated with anti-PD1 immunotherapy (nivolumab) 
in combination with radiotherapy.80 However, as with all 
case reports, one should keep in mind that negative results 
are far less likely to be published. Also, large negative tri-
als with nivolumab have been published in both primary 
and recurrent settings.81,82 In our experience, in some pa-
tients with Lynch syndrome, the associated malignant gli-
oma does not respond at all to anti-PD1 treatment. More 
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research is needed, especially since the initial case series 
of immunotherapy in (recurrent) MMR-deficient gliomas 
suggested no significant effect.83,84

Sun et al. investigated the relationship between neo-
antigens and LTS.85 Neoantigens are mutated antigens 
specifically expressed by tumor tissue while not present 
in normal cells. They are generated by mutated proteins 
that form new epitopes. These neoantigens are presented 
to CD8+ T-cells, eliciting specific T-cell responses and 
a stronger anti-tumor response. A deep learning model 
developed by this research group used specific neo-
antigen compositions to separate LTS from STS using 
data from The Cancer Genome Atlas (TCGA) database. 
Importantly, only the combination of increased levels of 
high-quality neoantigens combined with increased in-
filtration of CD8+ T-cells was associated with long-term 
survival in GBM.76 Immunotherapies against these neo-
antigens showed promising preclinical results in lung 
cancer, colorectal cancer, and melanoma86–88 Also GBM 
neoantigen vaccination showed an increased intratumor 
T-cell response.89 It is important to note that radiother-
apy induces immunomodulatory effects through, for 
example, upregulation and modulation of neoantigen 
expression.90 In general for all tumors, tumor neoan-
tigen load is known to predict clinical response to im-
mune checkpoint inhibitors.91–93 This could also be a 
(partial) explanation for the aforementioned case report 
in which beneficial results were seen for immunother-
apy (directed against PD-1) in combination with radio-
therapy, as well as the negative effects seen in larger 
trials with nivolumab.80–82

So far, we could state that broadly speaking an increase 
in CD8+ T-cells seems to be a returning feature of LTS. 
However, it also seems clear that further characterization 
of T-cells and their state (activated, exhausted) is needed 
to unravel this complex story.18,76

OX40, a T-cell activation marker, and its ligand OX40L 
are part of the TNFR/TNF superfamily and are mainly ex-
pressed on activated CD4+ and CD8+ T-cells and antigen-
presenting cells respectively; and the latter also on GBM 
cells.94,95 Costimulatory signaling of OX40 to a T-cell 
evokes several key functions for long-lasting antitumor 
immunity, mainly promoting Th-cell generation and acti-
vation, cytotoxic T-cell expansion and survival, and block-
ing Treg activity.

In both human and mouse GBM samples, OX40 and 
OX40L were associated with longer survival through CD4 
T-cell activation and thus with antitumor immunity.95 
Under hypoxic conditions, however, OX40 led to activa-
tion of Treg. Another study indirectly confirmed these 
findings, as IDO deficiency in glioma reduces Treg re-
cruitment and increases survival. This is consistent with 
the study we discussed earlier.42 An increase in IDO is, 

therefore, associated with Treg recruitment.96 This leads 
to tumor growth and disease progression.

Both Sonoda et al. and Jiang et al. found no differences 
in Ki-67 between LTS and STS.16,17

To summarize, LTS is associated with an abundance of 
CD8+ T-cells that could contribute to a stronger antitumor 
response. Although T-cell activation status to our knowl-
edge has not been investigated in true LTS, an increase in 
activated T-cells (OX40+) was associated with increased 
survival in patients. Furthermore, a predominance of 
M2-type macrophages was linked to STS, whereas to our 
knowledge no studies have been published on the M1-M2 
relationship in LTS. More studies are needed to unravel 
the cell–cell interactions, as all these reports suggest a 
complex and tumor subtype-specific cellular correlation 
between the presence of immune cells in the TME and pa-
tient survival.

3.3  |  Molecular features of the tumor 
microenvironment associated with  
long-term survival

3.3.1  |  The main molecular players—
introduction

Several characteristic molecular aberrations have been 
described in GBM, including chromosome 7 amplification 
and 10 deletions, mutations of IDH1&2, tumor protein 
p53 (TP53), platelet-derived growth factor receptor alpha 
(PDGFRA), epidermal growth factor receptor (EGFR), 
neurofibromatosis type 1 gene (NF1), telomerase reverse 
transcriptase gene promotor (TERTp) and PTEN.97 As of 
2021, WHO CNS tumor classification the term ‘GBM’ is 
reserved exclusively for grade 4 IDHwt glioma. Moreover, 
despite the absence of histological features of high-grade 
malignancy (necrosis, angiogenesis), an IDHwt glioma 
can still be classified as GBM when EGFR amplifica-
tion, the combination of gain of chromosome 7 and loss 
of chromosome 10 (7+/10-), and TERT promoter muta-
tion are present. This highlights the growing importance 
of molecular features of brain tumors, particularly GBM.

In GBM, TP53, PDGFRA, PTEN, TERTp gene, and 
EGFR are the major driver genes.98–100 NF1, a tumor sup-
pressor gene, and RAS-GTPase are causally linked to the 
acquisition of the mesenchymal subtype in GBM, promot-
ing cell invasion, proliferation, and tumorigenesis.101,102 
Mutations in TERTp lead to increased TERT expression 
and de novo telomerase activity in a cancer cell.103,104 The 
MGMT gene is a DNA repair enzyme. It rescues tumor 
cells from alkylating agent-induced damage, leading to 
resistance to chemotherapy with alkylating agents.105 
Epigenetic silencing of the promotor region of this gene 
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results in reduced DNA repair and increased therapy 
sensitivity.

Overall, it is important to keep in mind that with the 
current increase in omics data, and thus the discovery of 
especially passenger mutations, the concern rises that cor-
relation will be mistaken for causality.106

3.3.2  |  Genetics—somatic mutations

A study by Lu et al. tried to identify unique mutations in 
LTS patients, and thus not present in STS. They analyzed 
the TCGA database and discovered a set of 10 somatic mu-
tations associated with this subset of LTS.107 IDH1 (and 
IDH2) were the most predictive for long-term survival, 
once again supporting the idea of considering IDHmt 
grade IV glioma as a distinct category in the 2021 WHO 
classification of central nervous system (CNS) tumors.14

Cantero et al. showed that alterations in the PI3K pathway, 
which is commonly altered in IDHwt GBM, can be found in 
all LTS patients. However, no uniform abnormalities in this 
pathway were observed, and PI3K pathway alterations were 
also seen in STS and are, therefore, rather aspecific.15,108

In a small group of seven IDHwt and IDHmt GBM 
(3 and 4 patients respectively), no prognostic mutations 
were found within GBM in ATRX, a chromatin remod-
eling protein whose main function is the deposition of 
histone variant H3.3, and TERT. This is in contrast to the 
significant prognostic effect of MGMTp methylation seen 
in this group.109,110 MGMTp methylation will be further 
discussed in the next section on epigenetic alterations.

TP53 is a gene that plays a key role in the cellular re-
sponse to DNA-damaging agents. Mutations lead to the 
accumulation of p53 protein. Older studies linked TP53 
mutations to improved survival in GBM patients which 
they attributed to an increased sensitivity to adjuvant 
chemo-and radiotherapy,111,112 although more recent 
studies contradict this.113

Three distinct cases reported the presence of TP53 and 
PTEN mutations in LTS, including a case of a woman 
surviving for 6.5 years with metachronous GBM with a 
TP53 and PTEN mutation in both tumors.114–116 In a case 
report on an eLTS with a giant cell GBM, TP53 was also 
mutated.117 This latter case dates back to 2001 and the 
presence of an IDH mutation was not analyzed at this 
time. The presence of PTEN alterations contrasts with 
previously cited evidence in larger studies, where it was 
described as an unfavorable prognostic factor.118 This lat-
ter finding is also confirmed by a study by Sonoda et al.17 
They found that their STS patients more frequently har-
bor a phosphatase and tensin homolog (PTEN) mutation 
compared to LTS patients.17 This was linked to a distinct 
TME with less T-cell infiltration.119,120 Although due to a 

small cohort size, this difference in PTEN mutation was 
not significant. Sonoda et al. also found higher p53 pro-
tein expression in LTS, despite no significant differences 
in p53 gene mutation rate between LTS and STS were 
noted.17 Hartmann et al. found fewer TP53 mutations in 
LTS (10.5%) compared to three-year survivors (17.5%), but 
compared to STS (14.5%) the results were not significantly 
different. In an older study by Deb et al. 4 out of 5 LTS 
cases tested for p53 expression were positive.121

Another commonly mutated gene region in glioma is 
the promotor of the TERT gene. Although TERT promotor 
mutations are associated with worse survival in the gen-
eral GBM population, no statistically significant differ-
ences were seen in LTS GBM.122 Of note, it was also found 
that the TERT promotor mutation lost its prognostic value 
in GBM that were macroscopically completely resected 
and treated with TMZ.123

In one study, three younger adult patients harbored 
a H3F3A gene mutation (encoding the histone variant 
H3.3). This was either a K27M mutation (in two patients), 
which was linked to shorter overall survival (OS), or in 
one patient a G34R mutation (with an OS of 56 months).15 
However, since the 2021 WHO CNS tumor classification 
these tumors categorize as diffuse midline/hemispheric 
glioma instead of GBM.14

3.3.3  |  Genetics—single nucleotide 
polymorphism (SNP) and copy number 
variation (CNV)

The total number of CNVs would be a prognostic factor in 
high-grade glioma (but more in IDHmt glioma), suggest-
ing mutations in genes for genomic instability as a possi-
ble mechanism behind it.124

Several CNV probes predicted LTS, with the deletion 
of oncogene dual specificity phosphatase 28 (DUSP28) 
having the highest correlation with LTS.107 DUSP28 is 
part of a family of 25 DUSP genes, responsible for the 
dephosphorylation of proteins with serine/threonine res-
idues and tyrosine residues, important in cell signaling 
networks.125 A positive correlation between haptoglobin-
related protein (HPR) CNVs and LTS was also found. This 
gene encodes for haptoglobin, a blood plasma glycopro-
tein, and acute-phase protein.126 Expression of HPR epi-
topes was previously reported as a predictor of recurrence 
in breast cancer.116 Another interesting discovery in this 
later study of Lu et al. was that higher expression and 
amplification of the signal transducing adaptor molecule 
(STAM) gene, encoding for a protein that sorts ubiquiti-
nated membrane proteins for lysosomal degradation, was 
also associated with LTS. Both in terms of gene expression 
and CNV analysis.
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Another study comparing LTS to STS found no signifi-
cant differences in CNV burden in either group, except for 
chromosome 11 (less CNV burden in LTS).127 However, 
CNVs varied in size and location, indicating that there are 
no universal changes in LTS.

Lu et al. discovered eight predictive single nucleotide 
polymorphism (SNP) genotypes in their LTS cohort.107 
Beta-1,3-Galactosyltransferase 5 (B3GALT5) gene (a beta-
galactosyltransferase gene that is shown to be negatively 
correlated with survival in breast cancer and hepatocellu-
lar cancer) and the Trimethylguanosine Synthase 1(TGS1) 
gene were the strongest predictors of extended survival, 
yet the absolute prognostic value remained weak. This 
suggests that wild-type genotypes at these loci are weakly 
predictive of LTS.107,128,129

3.3.4  |  Epigenetics—methylation profiling

DNA methylation is thought to be one of the strongest pre-
dictors of long-term survival, even stronger than age.107 
MGMTp methylation is a well-known, favorable prognos-
tic parameter in the general GBM population, as it is a 
predictive marker of sensitivity to alkylating chemothera-
peutic agents like TMZ.130 Although it is linked to superior 
survival in treated GBM patients, one study constituted 
that after 5 years of survival, no significant difference in 
predictive value was seen between MGMTp methylated 
and unmethylated GBM patients.131 On the other hand, 
two distinct cases of GBM, one that survived for 7 years 
and one surviving for more than 20 years, showed MGMTp 
methylation.115,116 Another study showed that MGMTp 
methylation was more common in LTS, but no universal 
patterns were seen associated with survival.127 This was 
also found in eLTS with both IDHmt and IDHwt patients 
after conducting a multiple logistic regression analysis.109 
The same was true in a group of 44 LTS (both IDHwt and 
IDHmt) patients (70.6% vs. 34.9% in STS, p < 0.001).16

Depending on the statistical model used, between 38 
and 43 methylation probes were discovered.107 We would 
like to highlight LETM1 Domain Containing 1 (LETMD1), 
an oncogene, as well as cyclin-dependent kinase inhibitor 
1B (CDKN1B), a known tumor suppressor gene. For both 
genes, hypermethylation was positively correlated to long-
term survival. This is opposed to TNS4, where hypermeth-
ylation was strongly negatively correlated with LTS. No 
overlap was seen between the methylation of these prog-
nostic areas seen between LTS and STS. A recent study 
confirmed that a difference in methylation was linked 
to survival in GBM.132 Although not specifically studied 
in LTS, hypermethylation of a subset of foci (known as 
cytosine-phosphate-guanine island methylator pheno-
type (G-CIMP)) in glioma is in general strongly associated 

with IDH mutation states, younger patient age, and better 
survival.133,134

3.3.5  |  Transcriptomics

Over the past decade, several classification systems have 
been proposed in an attempt to define different molecular 
GBM subgroups. The Verhaak classification, based on tran-
scriptomic data, had an enormous impact on the molecular 
classification of GBM and is still widely used in the research 
community today.135 Other more recent (RNA-based) clas-
sifications are those of Neftel et al. and Wang et al.136,137 No 
clear one-on-one relationship has been found between long-
term survival and any of the four gene expression-based 
molecular subtypes of GBM (proneural, neural, mesenchy-
mal and classical).135 The heterogeneity of GBM is again 
evident in a comparative study in which it was seen that 
peritumoral and deep tumoral regions could be differently 
classified.138 The LTS patient in this study had a proneural 
composition in the deep tumor area and was classified as 
neural in the peritumoral area. This composition was more 
common in, but not unique to, an LTS GBM.

Another study identified four genes associated with 
exceptional responders. In particular, SH3 domain-
containing GRB2 like 2, endophilin A1 (SH3GL2), and 
ethanolamine-phosphate phospho-lyase (ETNPPL) were 
more often expressed in the LTS group. These genes were 
associated with an increase in ‘synaptic vesicle uncoating’ 
and ‘intracellular transport’, respectively. Another study 
on SH3GL2 in glioblastoma confirmed its role in suppress-
ing glioma cell migration and invasion.139 Loss of SH3GL2 
may therefore contribute to migration and invasion of 
glioma cells. ETNPPL protein overexpression reduces gli-
oma stem cell growth. Mutations in the encoding ETNPLL 
gene, resulting in reduced ETNPPL protein expression, 
promote gliomagenesis.140

As mentioned previously, genes associated with in-
creased effector immune functions are associated with 
long-term survival, underscoring the important role of the 
host immune system in antitumor response and survival.18 
This applies to several T-cell functions such as T-cell im-
munological synapse (CD2, CD3D, CD3E, CD3G, CD8B, 
TCRGC2, TRBC1, TARP, and TRAT1), cytotoxic mediators 
(Granzyme B, H, K, and M) and markers restricted to acti-
vated T-cells (CD69, ZAP70, CARD11, and VAV1).

EGFR, a transmembrane receptor tyrosine kinase en-
riched in the classical subtype, and p27, a kinase inhibi-
tory protein linked to inhibition of GBM growth, invasion, 
and neoangiogenesis, were found to play no role in the im-
mune response in all five LTS in a 2005 study that looked 
for clinicopathological and expression data linked with 
more than five-year survival.121,141–143
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MiR-222 is the only miRNA found to be predictive for 
LTS.107 The upregulation of this miRNA is associated with 
a decrease in the p53-upregulated modulator of apopto-
sis (PUMA) protein, an inducer of massive apoptosis, and 
thus regulates mitochondrial pathway and reduces tumor 
size.144 Furthermore, PUMA has been reported to be a 
proangiogenic factor required for microglial cell survival 
and proliferation and promotes angiogenesis.145 To our 
knowledge, no association between PUMA and survival 
in human GBM has yet been reported.

Although several characteristic fusions in GBM, such 
as FGFR-TACC, NTRK, FIG-ROS1, EGFR-SEPT14, and 
PTPRZ1-MET fusions are linked to oncogenesis regulation 
and an associated decrease in natural survival, we found 
no articles reporting a correlation with true (e)LTS.146–149 
However, variants of tropomyosin receptor kinase A/B/C 
(TrkA/B/C), encoded by NTRK fusion mutations seem a 
promising target in GBM.150 Although reported to be ex-
tremely rare (<1% of GBM) preclinical studies and clinical 
trials in this GBM subgroup are promising.151 Future trials 
are needed.

Of note, a study by Lu et al. found a rather weak agree-
ment between methylation and expression profiles in LTS 
GBM. Furthermore, in Principal Component Analysis 
(PCA) scatterplots and hierarchical clustering analysis of 
LTS GBMs, weak agreement of primary GBM was seen 
with both low-grade glioma (LGG) and with secondary 
GBM (arising from a low-grade lesion). All but one of the 
28 GBM were primary GBMs and thus not arising from a 
former LGG. We could, therefore, argue that LTS GBMs 
represent a unique subset of GBM rather than a misclas-
sification of LGG or a mixed entity with low-grade ele-
ments. However, this was not true for astrocytoma grade 4 
IDH1mt, whose expression profile indeed resembled that 
of LGG. This study did not identify a unique set of molec-
ular markers to distinguish LTS GBM from other GBM.

3.4  |  Exceptional responders

Several studies identified exceptional therapy responders, 
but only one described unique patient-specific molecular 
data.78

In non-responders to PD-1 immunotherapy, GBM more 
often harbors a phosphatase and tensin homolog (PTEN) 
mutation which was linked to a distinct TME with less T-
cell infiltration.119,120 As previously mentioned, the same 
trend was found in LTS-patients of Sonoda et al. although 
due to a small cohort size, no significance was relative 
to STS.17 A possible explanation is that in all tumors ge-
nomic loss of PTEN is associated with decreased Th1 and 
CD8+ T-cells, and increased Th2 cells; and therefore with 
an immunosuppressive state of the TME.152 Moreover, 

the study by Sonoda et al. established an apparent recip-
rocal relationship between tumor cell cycle activity and 
the host's immune functions. This points to the hypoth-
esis that a balance exists between tumor mechanisms on 
the one hand and host antitumor defenses on the other. 
Therapeutic interventions could shift this balance in favor 
of the antitumoral host response.

Another study found a missense mutation in only one 
gene, FLG (encoding for the key protein filaggrin which is 
a filament-associated protein that binds to keratin fibers 
in epithelial cells), in 6 GBM patients with an exceptional 
response.10 The survival of the exceptional responders in 
this study by Wipfler et al. ranged from 2.4 to 10.6 years. 
However, this finding seems to us to be a passenger mu-
tation, rather than a driver mutation, since mutations in 
this gene are among the most common single-gene alter-
ations, affecting up to 10% of northern Europeans; and its 
function (as part of the barrier function of the skin) is not 
directly related to GBM tumorigenesis.153,154

The study by Wipfler et al. found 1201 GBM-associated 
CNVs, of which only six were present at significantly 
higher levels in non-exceptional therapy responders (a 
very heterogeneous group as the given treatment modality 
differed between patients). All these genes were located 
adjacent to genes encoding for EGFR and the tumor sup-
pressor genes cyclin-dependent kinase inhibitor 2A&B 
(CDKN2A and CDKN2B). Only for the latter gene, non-
exceptional responders were more likely to have a loss or 
deletion.

4   |   CONCLUSION

In this literature review, we summarize the so far under-
studied cellular and molecular prognosticators associated 
with (extreme) long-term survival and exceptional ther-
apy response in GBM patients.

Regarding cellular analysis, several trends are found 
in €LTS: in general, it can be said that a more profound 
immunological response with a higher cytotoxic (CD8+) 
T-cell infiltration, more activated T-cells, and less im-
munological inhibition by Tregs, has inverse correlation 
with tumoral development and expansion. A higher load 
of activated cytotoxic T cells was seen €(e)LTS compared 
with STS. While some T-cell subsets indicate moderate an-
titumor capacity, myeloid cells in GBM generally behave 
protumorally. However, this statement needs to be qual-
ified. For example, lower microglial density was found 
to be a favorable prognostic factor, as it leads to less stem 
cell-induced heterogeneity and thus less therapy-resistant 
cellular subsets.46

In terms of molecular features, the spectrum of pos-
sible underlying alterations is extensive. This should be 
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kept in mind when analyzing reported molecular varia-
tions between LTS and STS, as confounding rather than 
true causal prognosticators are much more likely to occur 
(this is also true, probably to a lesser extent, for the cel-
lular analysis). It may also explain the variation between 
studies in the observed molecular features associated with 
LTS. Regarding IDH mutations and MGMTp methylation, 
many studies are available. IDH mutations are associated 
with favorable outcomes and, therefore, IDHmt grade 4 
astrocytomas are no longer classified as GBM according to 
the 5th edition of the WHO CNS classification.14 However, 
IDHwt, which is in general more numerous than its mu-
tated counterpart, is also more frequently encountered in 
LTS.155 MGMTp methylation is reported to be a favorable 
prognosticator in GBM. However, this finding cannot be 
readily extrapolated to LTS patients, as the evidence in 
these patients is more controversial.109,127 Furthermore, 
p53 expression, but not TP53 mutations, was found to be 
a favorable prognosticator in LTS, possibly due to better 
treatment response if present. In contrast, PTEN muta-
tions were considered an unfavorable prognostic factor 
and were more common in STS, although not specific to 
this subgroup.

As an epigenetic characterization of tumors is clearly 
gaining momentum to be included in clinical evaluation, 
future discoveries are likely to lead to more consensus on 
epigenetic prognosticators in GBM patients. For now, suf-
fice it to say that hypermethylation of genomic regions in 
GBM is associated with improved survival.

The prognostic value of single markers to predict LTS is 
clearly of limited value, as evidenced by the diverse find-
ings in the previous sections. The importance of a com-
bined model, integrating multiple levels of analysis, was 
shown by Lu et al.107 They observed, for example, that 
caveolin 1 (CAV1), a tumor suppressor gene, was a much 
stronger predictor in a pooled regression model.

Exceptional responders tend to express a similar cellu-
lar constitution than LTS patients as a higher number of 
CD8+ T-cells was seen. However, the number of studies 
looking at cellular and molecular characteristics in these 
patients was too limited to draw any conclusions.

We should acknowledge that the great diversity and 
discrepancy in terms of favorable survival factors in GBM 
can be at least partially explained by the underlying inter-
and intrapersonal heterogeneity in GBM. This finding 
explains not only that (molecularly different) GBMs may 
behave differently in a similar host, or that molecularly 
nearly identical GBMs may behave differently in a differ-
ent host, but also that the study of these tumors should 
attempt to take this heterogeneity into account. This is 
given that examination of a single sample may not be rep-
resentative of the whole tumor or cannot always be ex-
trapolated to other GBM. Therefore, the development of 

an integrated multilevel model based on multiple speci-
mens is preferable to more simplistic models and should 
be the focus of future research on this prognostic topic.

Another point of interest is the definition of LTS used 
in literature. It is often defined as a survival of 3 years or 
even less. This remains a highly arbitrary cutoff with no 
real clinical correlation, especially from the patient's per-
spective. Consequently, it seems logical that the molecular 
and cellular features of these tumors are not significantly 
different from GBM patients with average survival. 
Therefore, we advocate defining LTS at a minimum as pa-
tients who survive more than 5 years, and eLTS as patients 
who survive 10 years or more, as these may represent a 
unique subset of GBM.

Finally, it is important to overcome the many method-
ological flaws due to overinterpretation of the very scat-
tered data on this topic, often obtained from uncontrolled 
cohorts. To this end, it seems necessary to investigate the 
phenomenon of (e)LTS in properly matched and well-
defined patient cohorts to unravel the underlying mech-
anisms. Currently, there are no individual or combined 
cellular and/or molecular features that can fully grasp 
the complexity of extreme long-term survival in GBM 
patients.
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