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Abstract
Background: Despite aggressive treatment, more than 90% of glioblastoma 
(GBM) patients experience recurrences. GBM response to therapy is currently 
assessed by imaging techniques and tissue biopsy. However, difficulties with 
these methods may cause misinterpretation of treatment outcomes. Currently, 
no validated therapy response biomarkers are available for monitoring GBM 
progression. Metabolomics holds potential as a complementary tool to improve 
the interpretation of therapy responses to help in clinical interventions for GBM 
patients.
Methods: Saliva and blood from GBM patients were collected pre and postopera-
tively. Patients were stratified conforming their progression-free survival (PFS) 
into favourable or unfavourable clinical outcomes (>9 months or PFS ≤ 9 months, 
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1   |   INTRODUCTION

Glioma remains the most common brain cancer type in 
adults.1 Among gliomas, glioblastoma (GBM)1 is the most 
frequent and deadliest subtype.2,3 Patients undergo an ag-
gressive multimodal treatment; nevertheless, nearly all 
patients suffer from disease recurrence.4–8 GBM response 
to therapy is assessed by imaging techniques and tissue 
biopsy.9 Nevertheless, limitations within these techniques 
may result in misinterpretation of treatment response 
and delay clinical interventions.10,11 Additionally, tis-
sue biopsies are highly invasive and fail to identify dy-
namic alterations in the tumour. Currently, no clinically 
validated maker has been established to monitor GBM 
progression over the course of treatment.11,12 To over-
come these limitations, liquid biopsies, i.e., the analysis 
of tumour biomarkers sampled from body fluids,13 have 
emerged as a potential approach to capture tumour activ-
ity non-invasively.

Metabolic alteration is a cancer cell hallmark,14 al-
lowing cells to reprogram their metabolism to contin-
uously support their growth. Metabolomics is defined 
as the study of small molecules generated by metabolic 
reactions within a biological sample.15 Metabolomics 
data contain a wealth of information that reflects under-
lying diseases and has been applied in research for the 
detection of disease-specific biomarkers.16 These small 
molecules can be measured in blood, saliva and other 

body fluids,15,16 offering a minimally invasive approach 
to monitor metabolic changes in biological samples. 
Despite blood being widely studied in medical settings, 
saliva is emerging as a viable alternative for biofluid 
analysis.17,18 Collection is simple, affordable and no spe-
cial equipment or personnel is required. Saliva compo-
sition also changes under certain medical conditions, 
such as cancer, making it a valuable tool for diagnosis 
and monitoring cancer.17,19–23 As a subset of the metab-
olome, the lipidome can be explored using lipidomics 
(i.e., analysis of the structure and function of all lipids 
generated by a particular cell or organism).15,24

There is currently limited data relating to metabo-
lomics and lipidomics profile changes in body fluids of 
glioma patients. However, distinct metabolic profiles 
have been reported between high and low-grade brain 
tumours.25,26 Baranovičová et al. identified higher lev-
els of tyrosine and phenylalanine exclusively in plasma 
of GBM patients compared to other glioma types.27 
Altered levels of uracil, arginine, lactate, cystamine and 
ornithine in glioma patients correlated with the isoci-
trate dehydrogenase (IDH) mutation status.28 Also, 
the differential abundance of arginine, methionine 
and kynurenate detected in plasma samples was asso-
ciated with a 2-year overall survival in GBM patients.29 
Similarly, alterations in the lipid metabolism of gli-
oma patients have been described.30–32 Patients with 
IDH mutation had decreased levels of triglycerides and 

Group; Cure Brain Cancer Foundation
respectively). Analysis of saliva (whole-mouth and oral rinse) and plasma sam-
ples was conducted utilising LC-QqQ-MS and LC-QTOF-MS to determine the 
metabolomic and lipidomic profiles. The data were investigated using univariate 
and multivariate statistical analyses and graphical LASSO-based graphic network 
analyses.
Results: Altogether, 151 metabolites and 197 lipids were detected within all 
saliva and plasma samples. Among the patients with unfavourable outcomes, 
metabolites such as cyclic-AMP, 3-hydroxy-kynurenine, dihydroorotate, UDP 
and cis-aconitate were elevated, compared to patients with favourable outcomes 
during pre-and post-surgery. These metabolites showed to impact the pentose 
phosphate and Warburg effect pathways. The lipid profile of patients who experi-
enced unfavourable outcomes revealed a higher heterogeneity in the abundance 
of lipids and fewer associations between markers in contrast to the favourable 
outcome group.
Conclusion: Our findings indicate that changes in salivary and plasma metabo-
lites in GBM patients can potentially be employed as less invasive prognostic bio-
markers/biomarker panel but validation with larger cohorts is required.

K E Y W O R D S

blood, glioblastoma, lipids, metabolites, metabolomics, saliva

 20457634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cam

4.5857 by C
ochraneItalia, W

iley O
nline L

ibrary on [16/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



      |  3MULLER BARK et al.

sphingolipids while membrane phosphatidyl lipids were 
not altered.30,31 Interestingly, Wu et al. described a lipid 
metabolism-gene set as a prognostic factor in gliomas.32 
These findings highlight the importance of metabolo-
mics/lipidomics for identifying specific and sensitive 
biomarkers to improve the prognostication in GBM in 
a minimally invasive way. Therefore, this pilot study 
aims to identify salivary and plasmatic differentially ex-
pressed metabolites and lipids in pre and post-operative 
GBM patients and explore their potential prognostic 
value.

2   |   MATERIALS AND METHODS

2.1  |  Ethics approval

This study obtained approval from the human research 
ethics committees of Royal Brisbane and Women's 
Hospital (Approval number: HREC/2019/QRBW/48780), 
Queensland University of Technology (Approval num-
ber: 1900000292), and The Griffith University Human 
Research Ethics Committee (GUHREC Ref No: 2022/061). 
All patients in this study provided written consent to par-
ticipate and had blood and saliva samples collected before 
and after undergoing brain surgery or a needle biopsy. 
Sample collection was carried out between June 2019 and 
January 2021.

2.2  |  Patient cohort and sample 
collections

Newly diagnosed GBM patients were recruited for this 
study. Blood (n =  21) and saliva (n =  18) samples were 
collected before and after surgery (within 2 weeks). Saliva 
was collected using two different methods, unstimulated 
whole mouth saliva (‘drool’, UWMS) and oral rinse, as 
previously described.33–36 Briefly, before saliva collection, 
patients were requested to fast and to rinse their mouths. 
For unstimulated saliva, volunteers were asked to seat 
comfortably with the head slightly tilted forward for 
about 2–5 min, and then collect their saliva in 50 mL fal-
con tubes. For oral rinse samples, patients were asked to 
alternate between swishing and gargling a 0.9 (1)% saline 
solution for 1–2 min and samples (20 mL) were collected 
in 50 mL falcon tubes.37,38 Samples were put onto ice, ali-
quoted and stored at −80°C. For plasma samples, whole 
blood was collected in EDTA tubes by an accredited phle-
botomist or medical staff at the hospital. Blood samples 
were centrifuged at 500 g for 15 min to obtain plasma. The 
plasma was aliquoted and stored at −80°C until further 
analysis.

2.3  |  LC–MS-based metabolomics

The LC–MS-based metabolomics analysis was carried 
out as previously described by Gyawali et al39 using the 
Agilent Metabolomics dMRM Database and Method.40 All 
chemicals were sourced from Merck (Merck Australia). 
Internal standard isotopes were sourced from Cambridge 
Isotope Laboratories.

2.4  |  LC–MS-based lipid profiling

The LC–MS-based lipid extraction and analysis was per-
formed as previously reported39,41 using the Agilent 6546 
LC-QTOF-MS coupled with an Agilent Infinity II Flex 
UHPLC system employing the Agilent Metabolomics 
dMRM Database and Method.40

2.5  |  Chemometrics and 
statistical analysis

Chemometrics and statistical analysis were conducted as 
previously described by Gyawali et al39 and Beale et al,41 
in line with the guidelines of Metabolomics Standards 
Initiative {Sumner, 2007 #852}{Spicer, 2017 #853}{Cajka, 
2016 #854}. Briefly, univariate and multivariate statistical 
analyses were performed using SIMCA 16.1 (Umetrics 
AG) and MetaboAnalyst 5.0. Batch effect correction was 
done for metabolomics and lipidomics datasets using 
default single value decomposition (SVD) method, fol-
lowed by the Least distance analysis within Batch Effect 
Correction tool of Metaboanalyst 5.0. Metabolomic 
data were then normalised to internal standards L-
phenylalanine (1-13C) (RSD = 13.34%) and QC mix (1 QC 
mix per 10 samples; RSD = 1.31%–14.87%, Table S2).

The batch-corrected chromatographic data were sub-
jected to Log10 transformation and Pareto scaling before 
univariate and multivariate statistical analysis. Multivariate 
analyses of metabolomic and lipidomic datasets were done 
through principal component analysis (PCA), followed 
by partial least square-determinant analysis (PLS-DA). To 
determine the false discovery rate (FDR) univariate (using 
one-way anova) and multivariate (using Significance 
Analysis of Microarray (SAM)) analyses were performed.

Univariate analysis was performed through t test and 
one-way anova as per the previously reported study.42 The 
biomarker analysis was performed using Omics skin toolbox 
of SIMCA 16.1 and Biomarker tool box of Metaboanalyst 
5.0.43 Biomarker lipids and metabolites were shortlisted 
and ranked using an area under the ROC curve (AUROC) 
and T-statistics at 95% confidence interval as reported previ-
ously{Karpe, 2022 #855}. The metabolic pathway networks 
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obtained after statistical analyses were then manually cu-
rated in Omix visualisation software (Version 1.9.34; Omix 
Visualisation GmbH and Co. KG). In addition to the pre-
viously described analysis, basic comparisons of biomarker 
means were computed for lipids across all samples, along 
with an assessment using a linear mixed effects model 
(random effects for saliva sample type). Graphical network 
analyses using the graphical LASSO were performed for fa-
vourable/unfavourable patients.

3   |   RESULTS

3.1  |  Patient characteristic

We recruited 21 GBM patients for this observational study. 
This cohort consists of 10 men and 11 women with a mean 
age of 62, ranging from 37 to 82 years. A total of 20 patients 
presented with IDH wild type and one patient with IDH mu-
tant which at the time of collection was classified as GBM 
according to the WHO Classification of Tumours of the 
Central Nervous System.1 The clinical outcomes of these pa-
tients were classified as favourable or unfavourable accord-
ing to their progression-free survival (PFS). PFS rates longer 
or equal to 9 months were considered favourable outcomes, 
while PFS shorter than 9 months were considered unfavour-
able (Table S1). PFS data was determined using the amount 
of time between the sample collection date of preoperative 
blood or saliva and the time of progression, death or the last 
follow-up visit with an MRI scan image. Patients without 
information available to conclude their outcome or with a 
time elapsed of <9 months and no evidence of progression 
were excluded from the prognostic analyses. For plasma 
samples, out of the 21 patients, 12 presented with unfavour-
able outcomes, six with favourable and for three the out-
come data were not available. Due to COVID-19, there were 
restrictions at the hospital; therefore, not all patients had sa-
liva samples collected. For saliva samples, out of 18 patients, 
11 were considered to have unfavourable outcomes, 6 with 
favourable and one patient did not have outcome data avail-
able. No information was available regarding the prognosis 
of the only patient with IDH mutation, and this patient was 
excluded from the prognosis analysis.

3.2  |  Unique metabolomics and 
lipidomics profiles for GBM patients' 
pre- and post-surgery saliva and 
plasma samples

The LC-QQQ-MS analysis identified 161 metabolites 
across all samples (oral rinse, UWMS and plasma). Of 
these, Fisher's least significant difference testing via 

one-way anova revealed 151 metabolites to be statistically 
significant (FDR adjusted p ≤ 0.05). LC-QTOF-MS-based 
lipidomic analysis identified 227 lipids across all samples, 
of which 197 were statistically significant. Given inherent 
variability in the data set supervised, multivariate regres-
sion, partial least squares – discriminant analysis (PLS-DA) 
was applied. While differences were seen, some overlap of 
metabolic profiles between UWMS and rinse samples was 
observed with the PLS-DA model (Figure 1A,B).

The OPLS-DA indicated good linearity (R2) and pre-
dictability (Q2), with good separation between the metab-
olite dataset (R2X = 0.805; R2Y = 0.895; R2 = 0.93) profiles 
(Figure S1). The cross-validation analysis using CV-anova 
of metabolomics dataset indicated the model to be statis-
tically significant (regression sum of squares (SS) = 35.62, 
mean-squared error (MS) = 8.91 and p = 1.13e−07, stan-
dard deviation (SD) = 2.98).

The PLS-DA output of lipidomic profile was not as 
good as that of the metabolites, (R2X = 0.58; R2Y = 0.0.983; 
R2 = 0.948), it was enough to produce a statistically sig-
nificant discrimination (Figure  1C,D). When analysed 
through CV-anova validation, the lipidomic model 
showed statistical significance (SS = 118.19, MS = 29.55 
and p = 2.32e−36, SD = 3.47).

The 151 statistically significant metabolites were en-
riched in 49 metabolic pathways. Among these, nucleotide 
metabolism pathways and non-aromatic amino acid me-
tabolism were observed to be most represented (Table S2). 
The univariate analysis indicated enrichment in the ni-
trogen metabolism in the form of either nucleotide in-
termediates or amino acid intermediates (Figure  S2). In 
addition, the biochemical profile showed the predominant 
central carbon metabolites to have a higher level in saliva 
than in plasma, except for kynurenine (Figure S2) and cre-
atinine. The key metabolites and pathways observed in all 
salivary and plasmatic samples of patients pre and post-
surgery can be observed in Figure 2.

In contrast, the lipidome profile showed that the statis-
tically significant lipids had a greater abundance in plasma 
compared to UWMS and rinse. The major lipid subgroups 
(AUROC  =  1) observed across the samples consisted of 
ceramides, phosphatidylcholines and sphingomyelins. Of 
these, ceramides showed an elevation in saliva compared 
to plasma (Figure 3 and Figure S3).

3.3  |  Association of individual 
metabolites and lipidomic alterations with 
progression-free survival of GBM patients

To evaluate the potential prognostic utility of alterations 
in the metabolome and lipidome of GBM patients, we 
divided the cohort between patients with unfavourable 
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(PFS < 9  months) and favourable (PFS ≥ 9  months) out-
comes. The summary of findings for pre and post-surgery 
samples in saliva and plasma is shown in Table 1. Samples 
were considered statistically significant when meeting the 
p < 0.05 and a fold change >1.5 criteria. In the pathway 
analyses, altered metabolites shown in Table  1 were re-
lated to the valine, leucine and isoleucine biosynthesis in 
the pre-surgery groups (p = 0.0047, Figure S4) and pen-
tose phosphate pathway (p  =  0.0343, Figure  S5) in the 
post-surgery group. In both pre and post-surgery groups, 
partial least squares-discriminant analysis (PLS-DA) and 
volcano plots of up and downregulated metabolites for 
UWMS, rinse and plasma samples are shown in Figure 4 
and Figure  S6, respectively. When analysing the lipids 
identified in pre or post-surgery samples, no lipid detected 
had p < 0.05 and a fold change >1.5, therefore, not reach-
ing significant statistical alterations between both groups. 
For lipids, additional graphic network analyses using the 
graphical LASSO were performed (Figure 5). A more het-
erogeneous abundance of lipids, and fewer associations 
between them was found in patients with unfavourable 
outcomes in contrast to favourable outcomes. Patients 

who experienced favourable outcomes displayed a more 
homogeneous network with interlinked lipid clusters, 
whilst the patients with unfavourable outcomes showed 
fewer connections between markers, suggesting altera-
tions in key lipids in the unfavourable state.

4   |   DISCUSSION

GBM remains the most common and fatal cancer in the 
central nervous system, despite advanced surgical resec-
tion methods and standard of care chemoradiation. While 
current treatment shows initial efficacy, tumours often 
recur and develop resistance to treatment. This is in part 
due to the invasive capacity of GBM, which contributes to 
the tumour's aggressiveness and resistance to treatment, 
culminating in high recurrence rates.44 Post-treatment 
surveillance is currently done by MRI but even with op-
timal imaging, it is difficult to distinguish tumour recur-
rence from treatment effect.3 Therefore, investigating 
biomarkers to monitor disease progression and monitor 
treatment response in GBM patients is warranted. In this 

F I G U R E  1   PLS-DA dataset for the metabolic and lipidomic profiles across all samples of glioblastoma patients. (A) Spread of metabolite 
samples indicated by score scatter plot, with ellipse representing 95% confidence interval, and (B) Spread of metabolites concerning the 
groups, indicated by the loading scatter plot. N = 125, R2X = 0.802; R2Y = 0.956; R2 = 0.892. (C) Spread of lipid samples indicated by score 
scatter plot, with ellipse representing 95% confidence interval, and (D) Spread of lipids concerning the groups, indicated by the loading 
scatter plot. N = 125, R2X = 0.58; R2Y = 0.9825; R2 = 0.948.
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study, both saliva and blood were used as a source for the 
investigation of biomarkers. While blood has traditionally 
been the primary body fluid analysed in clinical settings, 
there has been a growing interest in using saliva as an al-
ternative biofluid for sampling. This is due to the fact that 
saliva collection is simple, inexpensive and does not re-
quire specialised staff or equipment.

We have investigated metabolomics and lipidomics pro-
files as potential prognostic biomarkers in GBM. We have 
detected 13 altered metabolites between GBM patients with 
favourable and unfavourable outcomes across preoperative 
plasma and saliva samples, whereas 16 metabolites were 
identified in post-operative samples. These metabolites are 
involved in regulating a number of pathways, including 

F I G U R E  2   Key metabolites and pathways observed in UWMS, rinse, and plasma samples of glioblastoma patients pre and post-surgery. 
The graphs in the figure indicate the Log2Fold Change of the statistically significant metabolites identified (FDR ≤ 0.05; ROAUC ≥ 0.85). 
AICAR, 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside; AMP, adenosine monophosphate; Cer, ceramides; CTP, cytidine 
triphosphate; dTMP, thymidylate; DNA, deoxyribonucleic acid; GMP, guanosine monophosphate synthetase; IMP, inosine monophosphate; 
RNA, ribonucleic acid; PC, phosphatidylcholines; SM, sphingomyelin; UMP, uridine monophosphate.

F I G U R E  3   Key representatives of ceramide, phosphatidylcholine and sphingomyelin lipids demonstrate the behaviour of those lipid sub-
classes across UWMS, oral rinse and plasma of glioblastoma patients. Note: The horizontal red line indicates the threshold cut-off for the true 
positive rate (sensitivity) of the metabolite within the 95% confidence interval. Cer, ceramides; PC, phosphatidylcholines; SM, sphingomyelins.
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pentose phosphate pathway, valine, leucine and isoleucine 
biosynthesis. The amino acid metabolism is commonly up-
regulated in several cancer types, enabling the survival and 
growth of cancer cells.45

Overall, we have identified higher metabolite levels in 
saliva compared to plasma and more elevated lipids ex-
pression in plasma than in saliva. When comparing the 

results obtained between UWMS and oral rinse, we no-
ticed some inconsistencies. This may be due to the fact 
that saliva is secreted from multiple glands within the oral 
cavity, therefore, salivary secretions from different glands 
have shown to have variable biochemical composition. 
While parotid gland secretion has been reported to have 
high content of proline-rich proteins, sublingual gland 
secretion has elevated levels of glycoproteins. Sampling 
methods have shown that UWMS (sublingual gland secre-
tion) produced higher levels of metabolites compared to 
secretions from other glands.

Across all samples tested, the glutamine and glutamate 
metabolism played a central role, particularly regarding 
the usual energy pathway of the citrate cycles. Similarly, 
several studies have suggested glutamine dependency by 
tumour cells.46–48 A considerable amount of glutamine/
glutamate metabolism seemed geared primarily towards 
nucleotide biosynthesis, followed by the generation of 
arginine and proline metabolism intermediates and end-
products such as creatinine and citrulline (Figure  2). 
Recent studies in GBM cell lines indicated that enzymes 
such as glutamine synthase drive the glutamate → glu-
tamine conversion as the first step towards de novo pu-
rine biosynthesis.49 Our observations support previous 
reports49 regarding an increase in purine levels caused 
by the glutamine input at the AICAR junction (Figure 2). 
Also, the glutamine/glutamate pathways were not geared 
towards glutaminolysis which is the usual route of energy 
pathways during cancer metabolism.

Arginine is an essential amino acid presenting key func-
tions in various metabolic processes, such as the synthesis 
of proteins. When arginine is removed from the culture 
media, it leads cancer cell lines to death in a rapid way.50 
Recently, it has been shown that increased citrulline lev-
els reduce the effectivity of arginine deprivation therapy 
in GBM cells.51 This correlation is noteworthy since argi-
nine deprivation therapy causes significant radio sensiti-
sation in GBM cells.51,52 Our results indicate that, when 
combined with the elevated purine levels, the increased 
arginine metabolism intermediates and byproducts might 
influence the clinical responses of patients.

Interestingly, we observed that creatinine and ky-
nurenine were elevated in plasma of all patients when 
compared to saliva. Excess levels of these metabolites, 
caused by a disrupted tryptophan metabolism in the neu-
ronal cells, have been shown to promote the kynurenine 
pathway, causing neurotoxicity and neuronal death.53 In 
addition, levels of metabolites in plasma, namely tyrosine, 
phenylalanine, glucose, creatine and creatinine presented 
a significant correlation with tumour grade.27 In contrast, 
greater abundance of ceramide lipid levels was observed 
in the saliva samples compared to plasma (Figure 3). An 
elevation in ceramide accumulation, primarily attributed 

T A B L E  1   Differentially abundant metabolites in patients with 
unfavourable outcomes compared to favourable outcomes across 
all samples.

log2(FC)
raw.
pval

Pre-surgery – UWMS

Indoline-2-carboxylate −2.9953 0.0212

Cytosine −1.8178 0.0333

2-Ketobutyrate −3.0748 0.0433

Adenosine 3-5-cyclic monophosphate 2.4282 0.0458

3-Hydroxy-dl-kynurenine 3.3036 0.0483

Pre-surgery – rinse

l-Dihydroorotic acid 6.9348 0.0391

dl-Valine (D8) −2.6159 0.0447

Pre-surgery – plasma

2-4-Quinolinediol −2.1424 0.0004

Folinic acid 6.8334 0.0008

S-2-Aminoethyl-l-cysteine 0.87297 0.0318

4-Hydroxy-l-glutamic acid −5.4118 0.0341

Oxamic acid −1.3963 0.0344

Galactonic acid −2.3856 0.0409

Post-surgery – UWMS

4-Hydroxybenzoic acid −1.492 0.0022

Uridine 5-diphosphate 7.2527 0.0022

L-Arabinose −2.373 0.0303

Post-surgery – rinse

O-Phosphorylethanolamine −6.3571 0.0231

Thymidine −8.088 0.0349

beta-Nicotinamide mononucleotide 9.4645 0.0379

Post-surgery – plasma

L-Gluthathione (oxidised) −3.6732 0.0042

Mevalonic acid 5-phosphate −3.9025 0.0069

Folinic acid −1.7127 0.0155

4-Quinolinol −4.3469 0.0165

beta-Nicotinamide mononucleotide −2.1142 0.0191

5-Methoxytryptamine −5.4377 0.0203

D-Fructose 1,6-biphosphate −2.2578 0.0251

cis-Aconitic acid 2.602 0.0332

2-3-Dihydroxybenzoic acid −1.7134 0.0344

d-Xylulose-5-phosphate −1.354 0.0371

Abbreviation: FC, fold change.
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to choline and tryptophan depletion, has been shown to 
trigger apoptotic pathways in PC12 cells54,55 and suppress 
immune activity.56 It is also suggested that a ceramide 
accumulation triggered the ceramide → sphingomyelin 
conversion, and ceramide-induced cellular apoptosis is 
avoided by this conversion.57,58 The elevated sphingomy-
elin in GBM cells has also been shown in a recent lipid-
omic biomarker identification study.59

We found very few differentially abundant metabolites 
and lipids between GBM patients with favourable and un-
favourable outcomes, most likely due to the small sample 
size. Similarly, Yu et al31 observed alterations in plasma me-
tabolites in high-grade glioma when compared to low-grade 
or healthy controls. They found glycolytic metabolites to be 
increased in plasma samples, whilst the tricarboxylic acid 
cycle, citrate and succinate were decreased. In their study, 
Yu et al31 observed two increased metabolites (tyrosine and 
phenylalanine) in GBM patients compared to low-grade gli-
oma patients and healthy volunteers.

We found decreased levels of oxamic acid in plasma 
of GBM patients with unfavourable outcomes compared 
to favourable outcomes. Oxamic acid acts as an inhibitor 

of lactate dehydrogenase (LDH), which is normally in-
creased in cancer cells. The overexpression of LDH cor-
relates with poor prognoses in cancer patients.60,61 In 
lipids, the samples from unfavourable groups appeared 
to have lost the association between markers when com-
pared to patients with favourable outcomes. Other studies 
have already explored the differences in lipid metabolism 
to predict the risk of poor prognosis.32 In their research, 
prognosis-related lipid metabolism genes were differen-
tially expressed between GBM and low-grade gliomas.31,32 
Similar to our findings, Zhou et al30 demonstrated a cor-
relation network of lipids with more interactions in gli-
oma patients with IDH mutation compared to wild-type 
glioma patients. Mutations found in IDH affect cell me-
tabolism, influencing patients' prognosis. Glioma patients 
with IDH1 and IDH2 mutations present a better outcome 
than patients with IDH wild-type.62

The small sample size is a limitation of our study. We 
must analyse more patients to obtain precise markers and 
early indicators of GBM progression. In addition, in fu-
ture studies, other groups, including healthy controls and 
non-tumoural patients undergoing brain surgery, should 

F I G U R E  4   Patients with favourable outcomes (PFS ≥ 9 months) are represented in blue, and patients with unfavourable outcomes 
(PFS <9 months) in red. (A) Partial least squares-discriminant analysis (PLS-DA) for the metabolic profiles of UWMS, oral rinse samples and 
plasma samples of glioblastoma patients pre-surgery. (B) Partial least squares-discriminant analysis (PLS-DA) for the metabolic profiles of 
UWMS, oral rinse and plasma samples of glioblastoma patients post-surgery.
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be analysed. The power analysis of the current study indi-
cated that a greater sample size (Figure S6) would improve 
the predictability of the high-throughput (cumulative 
Q2 ≥ 0.9). The future analyses of larger cohorts can help 
enable the prediction of GBM progression using metab-
olites as biomarkers, helping in decision-making in the 
GBM clinical setting.

5   |   CONCLUSION

Our findings suggest that metabolic alterations in plasma 
and saliva of GBM patients can be identified in a less in-
vasive way and may be useful as prognostic biomarkers in 
the future. Further studies with larger cohorts need to be 
performed to validate our findings.
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