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Performance of deep learning algorithms
to distinguish high-grade glioma from low-grade
glioma: A systematic review and meta-analysis

Wanyi Sun,1,4 Cheng Song,2,4 Chao Tang,3 Chenghao Pan,1 Peng Xue,2,* Jinhu Fan,1,5,* and Youlin Qiao2,*

SUMMARY

This study aims to evaluate deep learning (DL) performance in differentiating low-
and high-grade glioma. Search online database for studies continuously published
from 1st January 2015 until 16th August 2022. The random-effects model was
used for synthesis, based on pooled sensitivity (SE), specificity (SP), and area
under the curve (AUC). Heterogeneity was estimated using the Higgins inconsis-
tency index (I2). 33 were ultimately included in the meta-analysis. The overall
pooled SE and SP were 94% and 93%, with an AUC of 0.98. There was great
heterogeneity in this field. Our evidence-based study shows DL achieves high
accuracy in glioma grading. Subgroup analysis reveals several limitations in this
field: 1) Diagnostic trials require standard method for data merging for AI; 2)
small sample size; 3) poor-quality image preprocessing; 4) not standard algorithm
development; 5) not standard data report; 6) different definition of HGG and
LGG; and 7) poor extrapolation.

INTRODUCTION

Glioma originates in the glial cells surrounding and supporting neurons in the brain and is the most com-

mon type of malignant brain tumor, representing approximately 80% of all cases.1 The estimated annual

incidence of glioma is in the range of 6 out of 100,000 worldwide.2 Although relatively rare compared to

other malignant tumors, glioblastoma, the most common and deadliest form of glioma, results in a remark-

ably high mortality rate. The median overall survival is only approximately 19 months regardless of care.3

The World Health Organization (WHO) categorizes glioma into 4 subtypes—grades I to IV based on their

aggressiveness.4 Clinically, gliomas are normally grouped into low-grade glioma (LGG) and high-grade

glioma (HGG).

Accurate categorization of LGG and HGG is indispensable to determining the treatment option and the

prognosis of patients. Histopathological characterization following biopsy is a routine procedure to

diagnose and grade glioma in clinical practice. However, the procedure is expertise-demanding,

workforce-intensive, and time-consuming.5 To fill in this gap, state-of-the-art medical imaging techniques,

especially magnetic resonance imaging (MRI), are widely applied to identify and classify glioma non-inva-

sively, yet both inter- and intraoperator variability cannot be fully avoided. The interpretation of medical

images is also highly dependent on the experience and skills of clinicians.

To overcome the aforementioned drawbacks, deep learning (DL), a subset of artificial intelligence (AI), has

shown great promise in the automatic classification of medical images.6,7 For instance, the recent advance-

ment of DL algorithms has rendered Food and Drug Administration (FDA) approves a few diagnosis tools

for clinical practice.8 In our context, numerous independent studies have investigated the performance

of DL in glioma classification worldwide. To date; however, there is no systematic review and meta-analysis

to assess the diagnostic performance of DL algorithms in grading glioma. This evidence-based study is

expected to contribute to the further implementation of DL-based models in routine clinical practice.

RESULTS

Study selection and characteristics

Through literature research, we identified 1178 records. After filtering 166 duplicated records, 1012 records

stayed. 901 records were excluded further after a title or abstract scanning, followed by filtering 64 records
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for no outcome, no target disease, no English article, etc. Finally, we included 49 articles that met our in-

clusion criteria for systematic review, among which 33 articles can fully provide data for meta-analysis

(Figure 1).

We totally included 19102 patients. The gold standard was histopathology in all articles. Among the 48

included studies, only 33 studies were included in the meta-analysis due to unextractable or calculation er-

rors in the contingency tables of 15 studies. 52% (17/33) were % 130 sample size, 48% (16/33) were > 130,

21% (7/33) were private data, 79% (26/33) were open data, 27% (9/33) were k-fold cross-validation. 73% (24/

33) were random split-sample validation, 73% (24/33) were not using the transfer learning, 27% (9/33) were

using, 61% were based on image data (20/33), 39% were based on patient data (13/33), 39% (13/33) used

grade IV to represent HGG, 61% (20/33) used III+IV, 82% (27/33) were based on internal validation, and 18%

(6/33) were based on external (Tables 1, 2, and 3).

Pooled performance of DL algorithms

Among 33 articles with sufficient data, when considering all the records in line with our criteria (including all

results in every study), the overall (54 contingency tables) pooled sensitivity (SE) and specificity (SP) were

94% (95% CI: 91–95%) and 93% (95% CI: 91–95%) (Figure 2), with the area under the curve (AUC) of 0.98

(95% CI: 0.96–0.99) for all DL algorithms (Figure 4A).

Considering the problem of reusing samples, we also used the highest accuracy as the criteria to select only

one reported performance for each study. The pooled results of highest accuracy for SE and SP were 94%

(95% CI: 90–96%) and 94% (95% CI: 90–96%) (Figure 3), with the AUC of 0.98 (95% CI: 0.96–0.99) (Figure 4B).

Figure 1. PRISMA flowchart of the study

The literature review and record screening processes followed PRISMA (preferred reporting items for systematic reviews

and meta-analyses).
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Table 1. Participant demographics for the 48 included studies (33 included in meta-analysis)

First author and year

Participants

Inclusion criteria Exclusion criteria Number of patients Mean or median age (SD; range)

Yu et al. (2022)9 (1) Histopathologically confirmed and

graded glioma according to the

current WHO criteria, (2) images

acquired before the operation, (3) data

sequences including T1w imaging, T2w

imaging, FLAIR imaging, and

enhanced T1w imaging.

NR 560 NR(NR; NR)

van der Voort et

al. (2022)10
Newly diagnosed with a glioma and

when preoperative pre- and post-

contrast T1w, T2w, and T2w-FLAIR

scans were available

The absence of one (or more) of the

required scans (T1, post-contrast T1,

T2w, T2w-FLAIR)

1748 NR(NR; NR)

Danilov et al. (2022)11 NR NR 707 NR(NR; NR)

Chen et al. (2022)12 Patients diagnosed with glioma after

case diagnostic screening; patients

with complete imaging and follow-up

data; and patients with complete

follow-up records

Patients with other malignant tumors at

the same time; patients with other

serious underlying diseases or with

dysfunction of important organs such

as the heart, lung, liver, and kidney;

those who died of diseases or

accidents other than glioma; and those

who suffered from claustrophobia.

66 53.6(11.3; NR)

Tripathi et al. (2022)13 The images which contain tumor

region

NR 322 NR(NR; NR)

Xiao et al. (2022)14 NR NR 24 NR(NR; NR)

Wang et al. (2022)15 NR NR 378 NR(NR; NR)

Tasci et al. (2022) NR NR 369 NR(NR; NR)

Li et al. (2022)16 (1) Pathologically diagnosed as diffuse

gliomas; (2) high-quality preoperative

T1w, T2w, and T1CE MR images were

available; (3) ageR18 years; (4) known

IDH status (detected by

immunohistochemistry or

pyrosequencing); and (5) known 1p19q

status (detected using fluorescence in

situ hybridization) for LGGs.

NR 1016 47(NR; NR)

Khazaee et al. (2022)17 NR NR 335 NR(NR; NR)

Jiang et al. (2021)18 NR NR 620 NR(NR; NR)

He et al. (2021)19 NR NR 499 NR(NR; NR)

(Continued on next page)
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Table 1. Continued

First author and year

Participants

Inclusion criteria Exclusion criteria Number of patients Mean or median age (SD; range)

Haq et al. (2021)20 NR NR 351 NR(NR; NR)

Raghavendra et al. (2021)21 NR NR 461 NR(NR; NR)

Chakrabarty et al. (2021)22 NR NR 2105 57(NR; 47–65)

Yahyaoui et al. (2021)23 NR NR 230 NR(NR; NR)

Yamashiro et al. (2021)24 NR NR 285 NR(NR; NR)

Yao et al. (2021)25 (1) All cases accepted MRI scan,

diagnosed by clinical imaging

physicians and neurosurgeons strictly

referring to MRI diagnostic criteria. (2)

The patients were diagnosed as BG

according to post operative

pathological results. (3) The patient

had no history of craniocerebral

surgery and substantial brain injury. (4)

Patients had clear consciousness, were

able to communicate normally, and

had no mental illness

(1) Cases diagnosed as having cerebral

infarction, (2) cases with severe

communication disorder or mental

illness, (3) cases with intracranial

hypertension and other characteristics

of intracranial lesions, and (4) patients

with liver and kidney dysfunction or

allergy to contrast agents

60 55.82(4.18; 20–60)

Bezdan et al. (2021)26 NR NR NR NR(NR; NR)

Shen et al. (2021)27 (1) Male or female; (2) suspected as

malignant glioma on preoperative

contrast enhancement MRI; (3)

voluntarily signed informed consent of

surgical treatment and additional

specimen beyond what was needed for

routine clinical diagnosis; and (4) no

contraindication of ICG.

NR 23 NR(NR; NR)

Irmak et al. (2021),28 NR NR 346 NR(NR; NR)

Al-Saffar et al. (2021)29 NR NR 160 NR(NR; NR)

Hu et al. (2021)30 The cases in BraTs had clearMR images

and tumor masks, and the cases in

TCGA and HuaShan had pathological

grading and IDH1 information

NR 800 NR(NR; NR)

Luo et al. (2021)31 These cases must contain complete

imaging data together with

histopathology

NR 655 NR(NR; mostly 18–60)

(Continued on next page)
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Table 1. Continued

First author and year

Participants

Inclusion criteria Exclusion criteria Number of patients Mean or median age (SD; range)

Decuyper et al. (2021)32 A histologically proven glioma of WHO

grade II, III or IV, the availability of

preoperative T1CEMRI together with a

T2 and/or FLAIR sequence of sufficient

quality and information on WHO

grade, IDH mutation and 1p19q co-

deletion status

NR 738 NR(NR; NR)

Gutta et al. (2021)33 NR NR 237 NR(NR; NR)

Ozcan et al. (2021)34 NR NR 104 NR(NR; NR)

Mzoughi et al. (2021)35 NR NR 284 NR(NR; NR)

Koyuncu et al. (2020)36 NR NR 285 NR(NR; NR)

Cinarer et al. (2020)37 NR NR 121 NR(NR; NR)

Mzoughi et al. (2020)35,38 NR NR 351 NR(NR; NR)

Zhuge et al. (2020)39 NR NR 315 NR(NR; NR)

Naser et al. (2020)40 NR NR 110 46(14; 20–75)

Alis et al. (2020)41 Diagnosed with whom grade I to IV

according to surgical or biopsy-derived

histopathological findings; >18 years

of age; having preoperative or pre

interventional brain MRI with T2W-

FLAIR and contrast-enhanced T1W

images

Motion or susceptibility artifacts on

MRI; history of radio therapy or

chemotherapy for prior brain tumor;

residual or recurrent brain tumors;

gliomas <1 cm in diameter; incomplete

clinical data

181 58(NR; 27–78)

Hollon et al. (2020)42 (1) Male or female; (2) subjects

undergoing CNS tumor resection at

Michigan Medicine, New York

Presbyterian/Columbia University

Medical Center or the University of

Miami Health System; (3) subject or

durable power of attorney able to give

informed consent; and (4) subjects in

whom there was additional specimen

beyond what was needed for routine

clinical diagnosis.

(1) Poor quality of specimen on visual

gross examination due to excessive

blood, coagulation artifact, necrosis or

ultrasonic damage or (2) specimen

classified as out of distribution by the

linear discriminant analysis classifier

using the Mahalanobis distance-based

confidence score.

693 NR(NR; NR)

Sharif et al. (2020)43 NR NR 1211 NR(NR; NR)

Lo et al. (2019)44 NR NR 130 NR(NR; NR)

Gonbadi et al. (2019)45 NR NR 285 NR(NR; NR)

(Continued on next page)

ll
O
P
E
N

A
C
C
E
S
S

iS
cie

n
ce

2
6
,
1
0
6
8
1
5
,
Ju

n
e
1
6
,
2
0
2
3

5

iS
cience

A
rticle



Table 1. Continued

First author and year

Participants

Inclusion criteria Exclusion criteria Number of patients Mean or median age (SD; range)

Ali et al. (2019)46 NR NR 285 NR(NR; NR)

Sultan et al. (2019)28 NR NR 73 NR(NR; NR)

Muneer et al. (2019)47 NR NR 20 NR(NR; 30–60)

Anaraki et al. (2019)48 NR NR 688 NR(NR; NR)

Sajjad et al. (2018)49,50 NR NR NR NR(NR; NR)

Shahzadi et al. (2018)49 NR NR 60 NR(NR; NR)

Yang et al. (2018)51 NR NR 113 NR(NR; 10–87)

Al-Zurfi et al. (2018)52 NR NR 30 NR(NR; NR)

Ge et al. (2018)53 NR NR 285 NR(NR; NR)

Khawaldeh et al. (2018)54 NR NR 109 NR(NR; 18–89)

Ye et al. (2017)55 NR NR 274 NR(NR; NR)

SD = standard deviation, WHO = world health organization, T1w = T1 weighted, T2w = T2 weighted, FLAIR = fluid attenuated inversion recovery, NR = not reported, T1CE = T1 contrast-enhanced, MR =

magnetic resonance, IDH = Isocitrate dehydrogenase, LGG = low-grade glioma, MRI = magnetic resonance imaging, BG = brain glioma, ICG = indocyanine green, CNS = central nervous system.
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Table 2. Model training and validation for the 48 included studies(33 included in meta-analysis)

First author

and year Focus

Reference

standard

Type of internal

validation

External

validation

DL versus

clinician

Yu et al. (2022)9 Brain tumor Histopathology Random split-sample validation No No

van der Voort et al. (2022)10 Brain tumor Histopathology Random split-sample validation Yes No

Danilov et al. (2022)11 Brain tumor Histopathology Random split-sample validation No No

Chen et al. (2022)12 Brain tumor Histopathology NR No No

Tripathi et al. (2022)13 Brain tumor Histopathology Random split-sample validation No No

Xiao et al. (2022)14 Brain tumor Histopathology Random split-sample validation No No

Wang et al. (2022)15 Brain tumor Histopathology Random split-sample validation No No

Tasci et al. (2022) Brain tumor Histopathology Random split-sample validation No No

Li et al. (2022)16 Brain tumor Histopathology Random split-sample validation No No

Khazaee et al. (2022)17 Brain tumor Histopathology Random split-sample validation No No

Jiang et al. (2021)18 Brain tumor Histopathology Random split-sample validation No No

He et al. (2021)19 Brain tumor Histopathology 5-fold cross-validation Yes No

Haq et al. (2021)20 Brain tumor Histopathology Random split-sample validation No No

Raghavendra et al. (2021)21 Brain tumor Histopathology 10-fold cross-validation No No

Chakrabarty et al. (2021)22 Brain tumor Histopathology Random split-sample validation Yes No

Yahyaoui et al. (2021)23 Brain tumor Histopathology Random split-sample validation No No

Yamashiro et al. (2021)24 Brain tumor Histopathology Random split-sample validation No No

Yao et al. (2021)25 Brain tumor Histopathology NR No No

Bezdan et al. (2021)26 Brain tumor Histopathology Random split-sample validation No No

Shen et al. (2021)27 Brain tumor Histopathology Random split-sample validation No Yes

Irmak et al. (2021)28 Brain tumor Histopathology 5-fold cross-validation No No

Al-Saffar et al. (2021)29 Brain tumor Histopathology Random split-sample validation No No

Hu et al. (2021)30 Brain tumor Histopathology Random split-sample validation No No

Luo et al. (2021)31 Brain tumor Histopathology Random split-sample validation Yes No

Decuyper et al. (2021)32 Brain tumor Histopathology Random split-sample validation Yes No

Gutta et al. (2021)33 Brain tumor Histopathology Random split-sample validation No No

Ozcan et al. (2021)34 Brain tumor Histopathology 5-fold cross-validation No No

Mzoughi et al. (2021)35 Brain tumor Histopathology Random split-sample validation No No

Koyuncu et al. (2020)36 Brain tumor Histopathology 2-fold cross-validation No No

Cinarer et al. (2020)37 Brain tumor Histopathology Random split-sample validation No No

Mzoughi et al. (2020)38 Brain tumor Histopathology Random split-sample validation No No

Zhuge et al. (2020)39 Brain tumor Histopathology 5-fold cross-validation No No

Naser et al. (2020)40 Brain tumor Histopathology 5-fold cross-validation No No

Alis et al. (2020)41 Brain tumor Histopathology 10-fold cross-validation No No

Hollon et al. (2020)42 Brain tumor Histopathology Random split-sample validation Yes Yes

Sharif et al. (2020)43 Brain tumor Histopathology Random split-sample validation No No

Lo et al. (2019)44 Brain tumor Histopathology 10-fold cross-validation No No

Gonbadi et al. (2019)45 Brain tumor Histopathology Random split-sample validation No No

Ali et al. (2019)46 Brain tumor Histopathology Random split-sample validation No No

Sultan et al. (2019)28 Brain tumor Histopathology Random split-sample validation No No

Muneer et al. (2019)47 Brain tumor Histopathology Random split-sample validation No No

Anaraki et al. (2019)48 Brain tumor Histopathology Random split-sample validation No No

Sajjad et al. (2018)50 Brain tumor Histopathology Random split-sample validation No No

Shahzadi et al. (2018)49 Brain tumor Histopathology Random split-sample validation No No

(Continued on next page)
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Heterogeneity analysis

The overall (54 contingency tables) pooled analysis showed I2 = 97.6% in SE and I2 = 96.7% in SP. Besides,

the highest accuracy pooled analysis indicated I2 = 98.31% and 96.32% in SE and SP, respectively.

To explore the causes of heterogeneity, we applied meta-regression containing suspectable variables.

Including:1) sample size; 2) data sharing; 3) type of internal validation; 4) transfer learning applied; 5)

data unit; 6) classification; and 7) type of validation. Among the first 5 variables, data sharing showed no

statistical significance (p = 0.39 in SE, p = 0.91 in SP), but the rest 4 variables showed significance at least

in one of SE or SP, which indicated heterogeneity. As for the classification and type of validation, both of

them had statistical significance in SE and SP, revealing heterogeneity (Table S1).

Subgroup analysis

All variables included in the meta-regression were divided into 2 groups for subgroup analysis.

Sample size: In % 130 subgroup, the SE was 96% (95% CI: 92–98%), SP was 92% (95% CI:85–96%) and AUC

was 0.98 (95% CI: 0.97–0.99), while in > 130 subgroup, they were 91% (95% CI: 85–95%), 94% (95% CI:

90–97%), and 0.98 (95% CI: 0.96–0.99), respectively. Heterogeneity still existed in two subgroups (% 130:

I2 = 74.08% in SE and 80.42% in SP; > 130: I2 = 99.05% in SE and 97.73% in SP) (Figures S1 and S18).

Data sharing: In private data subgroup, the SE was 88% (95% CI: 73–95%), SP was 82% (95% CI:74–88%) and

AUC was 0.89 (95% CI: 0.86–0.92), while in open data subgroup, they were 95% (95% CI: 92–97%), 96% (95%

CI: 92–97%), and 0.99 (95%CI: 0.97–0.99), respectively. Heterogeneity still existed in two subgroups (private

data: I2 = 98.71% in SE and 96.84% in SP; open data: I2 = 94.31% in SE and 91.89% in SP) (Figures S2 and S9).

Type of internal validation: In k-fold cross-validation subgroup, the SE was 96% (95% CI: 90–99%), SP was

97% (95% CI:89–99%), and AUC was 0.99 (95% CI: 0.98–1.00), while in random split-sample validation sub-

group, they were 92% (95% CI: 88–95%), 92% (95% CI: 88–95%), and 0.97 (95% CI: 0.95–0.98), respectively.

Heterogeneity still existed in two subgroups (k-fold cross-validation: I2 = 98.50% in SE and 97.92% in SP;

random split-sample validation: I2 = 98.27% in SE and 95.92% in SP) (Figures S3 and S10).

Transfer learning applied: In no applied subgroup, the SE was 94% (95% CI: 90–97%), SP was 93% (95%

CI:88–96%), and AUC was 0.98 (95% CI: 0.96–0.99), while in applied subgroup, they were 93% (95% CI:

85–97%), 95% (95% CI: 93–97%), and 0.98 (95% CI: 0.96–0.99), respectively. Heterogeneity still existed in

two subgroups (no applied: I2 = 98.70% in SE and 97.12% in SP; applied: I2 = 95.56% in SE and 90.05% in

SP) (Figures S4 and S11).

Data unit: In image subgroup, the SE was 95% (95% CI: 90–97%), SP was 96% (95%CI:92–98%), and AUCwas

0.99 (95% CI: 0.97–0.99), while in patient subgroup, they were 92% (95% CI: 87–95%), 88% (95% CI: 81–92%),

and 0.96 (95% CI: 0.94–0.97), respectively. Heterogeneity still existed in two subgroups (image: I2 = 99.21%

in SE and 98.21% in SP; patient: I2 = 86.03% in SE and 78.39% in SP) (Figures S5 and S12).

Classification: In grade IV represented HGG subgroup, the SE was 94% (95% CI: 91–96%), SP was 93% (95%

CI:89–96%) and AUC was 0.98 (95% CI: 0.96–0.99), while in grade III+IV represented HGG subgroup, they

were 93% (95%CI: 89–96%), 94% (95% CI: 89–96%) and 0.98 (95% CI: 0.96–0.99), respectively. Heterogeneity

Table 2. Continued

First author

and year Focus

Reference

standard

Type of internal

validation

External

validation

DL versus

clinician

Yang et al. (2018)51 Brain tumor Histopathology 5-fold cross-validation No No

Al-Zurfi et al. (2018)52 Brain tumor Histopathology Leave-one-out cross-validation No No

Ge et al. (2018)53 Brain tumor Histopathology Random split-sample validation No No

Khawaldeh et al. (2018)54 Brain tumor Histopathology Random split-sample validation No No

Ye et al. (2017)55 Brain tumor Histopathology Random split-sample validation No No

DLdeep learning, NR = not reported.

ll
OPEN ACCESS

8 iScience 26, 106815, June 16, 2023

iScience
Article



Table 3. Indicator, algorithm, and data source for the 48 included studies(33 included in meta-analysis)

First author

and year

Indicator definition Algorithm Data source

Device

Exclusion of

poor-quality

imaging

Heatmap

provided

Algorithm

architecture

Transfer

learning

applied

Source

of data

Number of training/

internal/external
Data

range

Open

access

dataImages Cases

Yu et al. (2022),9 MRI Yes No 3D U-Net No Retrospective study, data

from BraTS 2019

and the PACS system of

Henan Provincial

People’s Hospital

NR/NR/NR 448/112/NR 2012–2020 Yes

van der Voort

et al. (2022),10
MRI NR No CNN No Retrospective study, data

rom 4 in-house datasets

and 5 publicly available

datasets

6032/NR/960 1508/NR/240 NR Yes

Danilov et al. (2022),11 MRI NR No DenseNet,

Resnest200e

No Retrospective study,

data from N.N.

Burdenko Neurosurgery

Center, Russia

15957/1773/NR 636/71/NR 2009–2018 No

Chen et al. (2022)12 MRI NR Yes CNN No Prospective study, data

from The First People’s

Hospital of Lianyungang

NR/NR/NR NR/NR/NR 2019.03–

2020.03

No

Tripathi et al. (2022),13 MRI Yes No Residual

networks

Yes Retrospective study,

data from TCIA

6653/739/NR NR/NR/NR NR Yes

Xiao et al. (2022)14 Near-infrared

fluorescence

imaging

NR Yes DLS-DARTS Yes Prospective study,

data from Beijing

Tiantan Hospital,

Capital Medical

University

952//NR N163R/NR/NR NR No

Wang et al. (2022)15 MRI NR No 3D CNN No Retrospective study, data from

MICCAI 2020 CPM-Radpath

Challenge

NR/NR/NR 305/73/NR NR Yes

Tasci et al. (2022) MRI NR No Xception,

IncResNetv2,

EfficientNet

Yes Retrospective study, data

from BraTS 2020

17830/4457/NR NR/NR/NR NR Yes

Li et al. (2022),16 MRI Yes No 2.5D DCNN No Retrospective study, data from

Beijing Tiantan Hospital

NR/NR/NR 780/236/NR 2014.09–

2018.04

No

Khazaee

et al. (2022)17
MRI NR No EfficientNetB0 No Retrospective study, data

from BraTS 2019

21523/5381/NR NR/NR/NR NR Yes

(Continued on next page)
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Table 3. Continued

First author

and year

Indicator definition Algorithm Data source

Device

Exclusion of

poor-quality

imaging

Heatmap

provided

Algorithm

architecture

Transfer

learning

applied

Source

of data

Number of training/

internal/external
Data

range

Open

access

dataImages Cases

Jiang et al. (2021)18 MRI Yes No SE-ResNeXt Yes Retrospective study, data

from BraTS 2017 and 2019

21700/9300/NR NR/NR/NR NR Yes

He et al. (2021),19 MRI NR No HOMIF No Retrospective study, data

from TCIA and BraTS 2017

NR/NR/NR 172/42/166

and 228/57/95

NR Yes

Haq et al. (2021),20 MRI Yes No GoogleNet No Retrospective study, data

from BraTS 2018

201/84/NR NR/NR/NR NR Yes

Raghavendra

et al. (2021),21
MRI NR No VGG-16 No Retrospective study,

data from TCIA

1600/800/NR NR/NR/NR NR Yes

Chakrabarty

et al. (2021),22
MRI NR No 3D-CNN No Retrospective study, data

from Washing University

School of Medicine, BraTS

2018, BraTS 2019, TCIA,

and TCGA

415/108/348 415/108/348 2001.02–

2019.10

Yes

Yahyaoui

et al. (2021),23
MRI NR No 3D-CNN No Retrospective study, data from

BraTS 2015 and 2019

190/40/NR NR/NR/NR NR Yes

Yamashiro

et al. (2021),24
MRI NR No 3D-CNN No Retrospective study, data

from BraTS 2018

6602/46/NR NR/NR/NR NR Yes

Yao et al. (2021)25 MRI NR Yes VGG-16 Yes Prospective study, data from

Hunan Cancer Hospital

NR/NR/NR NR/NR/NR 2019.07–

2020.02

No

Bezdan

et al. (2021)26
MRI NR No CNN-HEHO Yes Retrospective study, data

from three datasets in TCIA

7200/800/NR NR/NR/NR NR Yes

Shen

et al. (2021),27
Fluorescent

imaging

Yes Yes DCNN Yes Prospective study, data from

Beijing Tiantan Hospital,

Capital Medical

University

636/296/NR NR/NR/NR 2019.03–

2020.4

No

Irmak

et al. (2021),28
MRI NR No CNN No Retrospective study,

data from TCIA

3656/914/NR NR/NR/NR NR Yes

Al-Saffar

et al. (2021)29
MRI NR No MLP&SVM No Retrospective study,

data from TCIA

NR/NR/NR NR/NR/NR NR Yes

Hu et al. (2021)30 MRI NR No 3D U-Net No Retrospective study,

data from BraTS 2017,

TCGA, and HuaShan

Hospital

NR/NR/NR 533/267/NR 2001–2018 Yes

(Continued on next page)
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Table 3. Continued

First author

and year

Indicator definition Algorithm Data source

Device

Exclusion of

poor-quality

imaging

Heatmap

provided

Algorithm

architecture

Transfer

learning

applied

Source

of data

Number of training/

internal/external
Data

range

Open

access

dataImages Cases

Luo et al. (2021),31 MRI NR Yes 3D U-Net No Retrospective study, data from

two hospitals including Huashan

Hospital and Shanghai International

Medical Center

NR/NR/NR 188/411/56 2010–2017 No

Decuyper

et al. (2021),33
MRI Yes No 3D U-Net No Retrospective study, data from

TCGA, BraTS 2019, and from

Ghent University Hospital

NR/NR/NR 528/100/110 NR Yes

Gutta et al. (2021),34 MRI Yes No CNN No Retrospective study, data

from the Keck Medical Center

of the University of the

Southern California

560/100/NR NR/NR/NR 2007.05–

2019.01

No

Ozcan et

al. (2021)35
MRI NR No CNN, AlexNet,

GoogLeNet,

SqueezeNet

Yes Retrospective study, data

from Amasya University

NR/NR/NR 83/21/NR 2016.12–

2019.10

Yes

Mzoughi et

al. (2021)35
MRI Yes No 3D-CNN No Retrospective study, data

from BraTS 2018

NR/NR/NR 227/57/NR NR No

Koyuncu et

al. (2020),37
MRI NR No GM-CPSO-NN No Retrospective study, data

from BraTS 2017

NR/NR/NR 143/142/NR NR Yes

Cinarer et

al. (2020),38
MRI NR Yes CNN No Retrospective study, data

from TCIA

NR/NR/NR 95/26/NR NR Yes

Mzoughi et

al. (2020)38
MRI Yes No 3D-CNN No Retrospective study, data

from BraTS 2018

NR/NR/NR 284/67/NR NR Yes

Zhuge et

al. (2020),40
MRI Yes No 2D R-CNN,

3DConvNet

No Retrospective study, data from

BraTS 2018 data and TCIA

NR/NR/NR 252/63/NR NR Yes

Naser et

al. (2020),41
MRI Yes No VGG-16 Yes Retrospective study, data is

available at TCIA

652/163/NR 86/22/NR NR Yes

Alis et

al. (2020),42
MRI Yes No MLP No Retrospective study, Istanbul

Mehmet Akif Ersoy Thoracic

and Cardiovascular Surgery

Training and Research

Hospital, Turkey

NR/NR/NR 121/60/NR 2013.01–

2019.01

No
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Table 3. Continued

First author

and year

Indicator definition Algorithm Data source

Device

Exclusion of

poor-quality

imaging

Heatmap

provided

Algorithm

architecture

Transfer

learning

applied

Source

of data

Number of training/

internal/external
Data

range

Open

access

dataImages Cases

Hollon et

al. (2020),43
Stimulated

Raman

histology

imaging

Yes Yes Inception-

ResNet-v2

No Prospective study, data from

University of Michigan,

Columbia University,

and University of Miami

NR/NR/NR NR/NR/74 2015.06–

2019.02

No

Sharif et

al. (2020)43
MRI NR No Inception V3 No Retrospective study,

data from BraTS 2013,

2015, 2017 and 2018

NR/NR/NR 708/428/NR NR Yes

Lo et

al. (2019),45
MRI NR No AlexNet Yes Retrospective study, data

from TCIA

117/13/NR NR/NR/NR NR Yes

Gonbadi et

al. (2019),46
MRI NR No CNN No Retrospective study, data

from BraTS 2017

205/80/NR NR/NR/NR NR Yes

Ali et al. (2019),47 MRI NR No DCGAN No Retrospective study, data

from BraTS 2017

5220/1305/NR NR/NR/NR NR Yes

Sultan et

al. (2019),28
MRI Yes No CNN No Retrospective study,

data from the Repository

of Molecular Brain

Neoplasia Data, TCIA

439/77/NR NR/NR/NR NR Yes

Muneer et

al. (2019),48
MRI Yes No VGG-19 Yes Retrospective study,

data from Government

Medical College, India

389/168/NR

and 553/228/NR

NR/NR/NR NR Yes

Anaraki et

al. (2019),50
MRI Yes No CNN+GA Yes Retrospective study,

data from TCIA and

Hazrat-e Rasool

General Hospital

at Tehran, Iran

6500/1500/NR NR/NR/NR NR Yes

Sajjad et

al. (2018),49
MRI Yes No VGG-19 Yes Retrospective study,

data from Radiopaedia

81/30/NR and

2722/908/NR

NR/NR/NR NR Yes

Shahzadi et

al. (2018)49
MRI NR No CNN-LSTM Yes Retrospective study,

data from BraTS 2015

NR/NR/NR 48/12/NR NR Yes

Yang et

al. (2018)51
MRI NR No AlexaNet and

GoogLeNet

Yes Retrospective study, data from

Tangdu Hospital of the Fourth

Military Medical College

694/173/NR 90/23/NR NR No

Al-Zurfi et

al. (2018)52
MRI NR Yes DINN No Retrospective study, data

from TCIA

NR/NR/NR 29/1/NR NR Yes

(Continued on next page)
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Table 3. Continued

First author

and year

Indicator definition Algorithm Data source

Device

Exclusion of

poor-quality

imaging

Heatmap

provided

Algorithm

architecture

Transfer

learning

applied

Source

of data

Number of training/

internal/external
Data

range

Open

access

dataImages Cases

Ge et

al. (2018),54
MRI NR No Multistream CNN

fusion network

No Retrospective study, data from

BraTS 2017 competition

864/216/NR NR/NR/NR NR Yes

Khawaldeh

et al. (2018),55
MRI NR No AlexNet No Retrospective study, data

from TCIA

2627/448/NR NR/NR/NR NR Yes

Ye et al. (2017),56 MRI NR No 3D CNN with

GMU fusion

Yes Retrospective study, data

from BraTS 2015

NR/NR/NR 241/33/NR NR Yes

MRI = magnetic resonance imaging, BraTS = brain tumor segmentation, PACS = picture archiving and communication system, NR = not reported, CNN = convolutional neural network, TCIA = the cancer

imaging archive, DLS-DARTS = double-learnable-stem differentiable architecture search, MICCAI =medical image computing and computer assisted interventions, CPM-Radpath = computational precision

medicine: radiology-pathology, DCNN = deep convolutional neural network, HOMIF = hierarchical-order multimodal interaction fusion network, VGG = visual geometry group network, TCGA = the cancer

genome atlas, HEHO = hybridized elephant herding optimization, MLP&SVM = multi-layer perceptron and support vector machine, GM-CPSO-NN = Gauss-map-based chaotic particle-swarm optimization

neural network, R-CNN = residual convolutional neural network, DCGAN = deep convolutional generative adversarial networks, GA = genetic algorithms, LSTM = long short term memory, DINN = deep

iteration matrix of neural network, GMU = gated multimodal unit.
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still existed in two subgroups (IV: I2 = 85.92% in SE and 92.73% in SP; III+IV: I2 = 98.60% in SE and 97.41% in

SP) (Figures S6 and S13).

Type of validation: In internal subgroup, the SE was 94% (95%CI: 91–96%), SP was 94% (95% CI:92–96%) and

AUCwas 0.98 (95%CI: 0.97–0.99), while in external subgroup, they were 92% (95%CI: 88–95%), 82% (95%CI:

58–94%) and 0.94 (95% CI: 0.91–0.96), respectively. Heterogeneity still existed in two subgroups (internal:

I2 = 97.83% in SE and 95.78% in SP; external: I2 = 48.29% in SE and 93.30% in SP) (Figures S7 and S14).

Publication bias evaluation

In the overall pooled analysis, the p value of Deeks’ funnel plot was 0.873. In the highest accuracy pooled

analysis, which value was 0.493. Neither of these analyses indicated publication bias (Figure S15).

Quality assessment

The quality of the total 48 included studies was assessed usingQUADAS-2 and a summary of the risk of bias

and applicability concerns for 48 studies was provided in Figure S16. The detailed results were also

supplied in the Figure S17. In the patient selection domain of risk of bias, 35 studies were deemed high

or unclear risk due to unreported inclusion and exclusion criteria, or unknown patient enrollment proced-

ure. For index test, 35 studies were considered at an unclear risk because of a lack of pre-specified

Figure 2. Forest plot of the pooled performance of deep learning (DL) algorithms, based on all 54 tables in 33 studies.
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thresholds. No risk of bias was observed in the reference standard domain while the bias of flow and timing

was unclear for 9 studies due to the following exclusion of patients for further analysis.

In the applicability concerns, 25 studies were considered at high or unclear applicability in the patient se-

lection domain, 11 studies at unclear applicability in the index test domain, while low applicability concerns

were observed for all studies in the reference standard domain.

Table 4 introduced supplemental figures, tables, and other information.

DISCUSSION

Up to now, previous systematic reviews and meta-analyses on AI applied to glioma focused on the

following topics: prediction of AI on the molecular classification of glioma,57–59 prediction the prognosis,60

differential diagnosis between glioma and other brain tumors,61,62 glioma image segmentation,63 and

grading of glioma.64–66 As for the grading of glioma, two studies pointed out the current obstacles of AI

deployment,64,65 and one study conducted a meta-analysis on machine learning (ML) of grading.66 Howev-

er, though DL showed sufficient superiority in other cancers, such as cervical cancer and breast cancer,67 it

still remained vacant in grading glioma. Moreover, it is notable that glioma grading combined with AI

exhibits some traits that are not present in other cancers, such as extensive use of public databases, and

the importance of classification for prognosis.22,66 Glioma grading based on open databases accounted

for 26 of 33 in our study, which indicated a large number of applications for open-access data. Besides,

Figure 3. Forest plot of the pooled performance of deep learning (DL) algorithms, reporting the highest accuracy of 33 studies.
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tumor grading is critical in glioma progression and prognosis; glioblastoma multiforme (grade IV) has a

5-year survival rate of less than 5%68 while the survival rate of 15-year for grade II glioma is 86%.68,69

Compared with traditional diagnostic methods, DL has advantages such as shorter diagnostic time, labor

saving, and the ability to improve cancer screening in low-resource areas.68 Thus, DL performance on

glioma grading is worth lots of attention.

In our study the SE and SP were 94% (95% CI: 90–96%) and 94% (95% CI: 90–96%), respectively. A pertinent

systematic review andmeta-analysis focused onML, which pooled 5 studies and showed the pooled SE and

SP were 96% (95% CI: 93–98%) and 90% (95% CI: 85–94%).66 From above results we can’t differentiate the

superiority of DL over ML. The potential explanation is that DL outperforms ML when the sample size is

huge.70 However, in our study, the median sample size was 130, which indicated that most of the eligible

studies belonged to small sample data. Thus, DL performance might be hindered by data size limitations.

Moreover, DL automatically extracts image features while ML mainly relies on images whose features have

been extracted before, usually by clinicians or other experts.64 This trait of DLmakes it strongly hinge on the

quality of images. In our study, only 16 of 33 studies excluded poor-quality images before processing. How-

ever, since DL algorithm after exclusion of poor-quality images will hardly present the real clinical setting;

therefore, DL models should limit the exclusion of images.

It was noteworthy that we assessed DL from two different criteria: one used all available contingency tables;

the other used only one contingency table reporting the highest accuracy from each article. The pooled

results (SE:94% (95% CI: 91–95%), SP:93% (95%CI: 91–95%), and AUC:0.98 (95% CI: 0.96–0.99)) were modest

worse than those in highest accuracy (SE:94% (95% CI: 90–96%), SP: 94% (95% CI: 90–96%), and AUC: 0.98

(95% CI: 0.96–0.99)). Besides, when the sample size increased, the confidence interval narrowed, which ex-

plained the phenomenon that CIs of overall datasets was narrower than the highest accuracy datasets. By

the repeating use of samples in the overall analysis, it factitiously added the sample volume of duplicated

articles. The phenomenon of single article containing multiple DL algorithms is commonplace in the

oncology field,9,22,71 which requests further meta-analysis of diagnostic evaluations to be equipped with

the method to merge multiple sets within each study. Such an approach has already been used in clinical

trials, but still remains vacant in diagnostic trials.72

As for subgroup analysis, in sample size (% 130 or > 130) results, we didn’t find the expected results that the

bigger sample size group performed better than a smaller one. In views of the forest plot and original data,

we could see that the > 130 sample size group contained narrower confidence intervals than the % 130

group, but still incorporated poor results such as Shen et al. with 296 images (only 60.6% SE),27 and Danilov

et al. with 1773 images (only 58% SE and 78% SP).11 Thus, the heterogeneity was still high in the > 130 sam-

ple size group, whereas it was decreased in the % 130 group (% 130: I2 = 74.08% in SE and 80.42% in

SP; > 130: I2 = 99.05% in SE and 97.73% in SP). Our study implied that data quality varied enormously in

the glioma classification area, which inevitably hindered us from drawing the conclusion of DL. Also, further

study should embrace big data, which are the exact field DL experts in.73

Figure 4. Overall pooled performance of deep learning (DL) algorithms on glioma grading

(A) Hierarchical summary receiver operating characteristic (HSROC) curve of all contingency tables (54 tables).

(B) HSROC curve reporting the highest accuracy (33 tables).
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In data sharing (open data/private data) subgroup analysis, we found that DL in open data performed

superior than private data (SE: 95% vs. 88%; SP: 96% vs. 82%; AUC: 0.99 vs. 0.89). Glioma open-access

databases, such as The Cancer Imaging Archive (TCIA)74 and Brats75 were used in 37 out of 49 studies

included in the systematic review. Besides, these open databases were the standard databases in

MICCAI (an AI competition held by Medical Image Computing and Computer Assisted Intervention Soci-

ety), which is the top academic competition and play a cardinal role in AI. In these databases, the images

were labeled and quality-checked by experienced clinical specialists and had been processed with stan-

dardization. By contrast to private data, the images of open data were of higher quality, which led to better

results in the subgroup. Here, our results once again emphasized the great importance of data preprocess-

ing. Besides, some recent efforts, which devoted toward standardization of preprocessing, preprocess da-

tasets the same way as it is done for Brats. Thus, the data processed from these tools can be used alongside

Brats data.76 In this advanced field, there are not any regulations to ensure uniformity and high quality of

preprocessing. Recently, the US Food & Drugs Administration (FDA) has approved serial available AI/ML-

based medical devices and algorithms to standardize the process of AI tool development, which means

that developers of algorithms go through rigorous evaluation before they launch their program.8

As for the type of internal validation, k-fold cross-validation outperformed random split-sample validation

(SE: 96% vs. 92%; SP: 97% vs. 92%; AUC 0.99 vs. 0.97). K-fold cross-validation fits in small samples data and

can conduct parameter tuning throughmultiple times of training and testing sets segmentation in the same

database.77 Therefore, it can improve the efficiency of data utilization. However, random split-sample vali-

dation only carries out cross-validation through one training set and test set segmentation, which has a

large uncertainty, hardly to achieve true randomization.63 In our study, since only 27% of the included

research used k-fold cross-validation, we appeal for more k-fold cross-validation to be used in this field

in future.

Another DL-related item was transfer learning, but in this study, we couldn’t tell the superiority of transfer

learning. Transfer learning enables a previously trained model used in another domain. Therefore, it skips

the effort required to collect training data.78 An article indicated that due to differences in demographic

characteristics, transfer learning used on underrepresented patients might exert a negative influence on

AI integration with oncology.79 In this study, except for transfer learning used for open data, there were

many studies using it from open data on private data with the discrepancy in the patient characteristics

Table 4. introduction of supplementary

Title Introduction

Data S1 Search strategies for different databases

Figure S1 HSROC curves of different sample sizes

Figure S2 HSROC curves of open access data or not

Figure S3 HSROC curves of different internal validation types

Figure S4 HSROC curves of using transfer learning or not

Figure S5 HSROC curves of different data units

Figure S6 HSROC curves of glioma classification types

Figure S7 HSROC curves of validation types

FigureS8 Forest plot of different sample sizes

Figure S9 Forest plot of open access data or not

Figure S10 Forest plot of internal validation type

Figure S11 Forest plot of using transfer learning or not

Figure S12 Forest plot of data unit

Figure S13 Forest plot of glioma classification types

Figure S14 Forest plot of validation types

Figure S15 Funnel plot

Figure S16 QUADAS-2 summary plot

Figure S17 QUADAS-2 plot for each detailed item

Table S1 Meta regression result
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with previous studies. For example, Shen et al., based on patients from a Chinese hospital, transferred the

DL method from another study using the Brats database containing patients of the USA,27 which indicated

poor SE of 60.6%. Therefore, our result doesn’t mean that transfer learning isn’t suitable in this domain,

since transfer learning from different population might create dissatisfying results due to populations

but not the AI algorithm itself. Further, we hope that in the future when researchers apply transfer learning,

they are supposed to take population heterogeneity into consideration.

With suspect to using images or patients as data unit, we concluded that image-based dataset showed bet-

ter SE (95% vs. 92%) and SP (96% vs. 88%). It is noteworthy that whether the study reported image number or

patient number, the AI process is still based on the image. Therefore, articles only reporting patient

number were somehow without preciseness. Especially in contingency tables, if the article only provided

patient numbers instead of image numbers, we inevitably underestimated the sample size of these studies,

since every patient usually generates more than 1 image. Therefore, to obtain high-quality results, articles

should exactly report not only patient numbers but also image numbers, and better report the image-con-

tained results in contingency tables.

In the classification of HGG and LGG, 56% contingency tables (30/54) included in our study defined IV grade

as HGG, such as Luo et al.31 and Decuyper et al.,32 while others defined III and IV(24/54) grades as HGG,

such as Danilov et al.11 and Li et al.16 Here, our study found that IV represented HGG in classification

was similar to III+IV(SE: 94% vs. 93%; SP:93% vs. 94%; AUC 0.98 vs. 0.98). In WHO glioma classification,

diffuse glioma is defined as WHO grade II, anaplastic, or in case of 1p/19q-non-codeleted tumor as grade

III and glioblastoma as grade IV.80 In the image diagnosis, glioblastoma has the most invasive feature,

which can be distinguished from diffuse astrocytoma and anaplastic astrocytoma.81 However, distinguish-

ing anaplastic astrocytoma and diffuse astrocytoma features in the images is another story. If researchers

deem III+IV as HGG, which is to distinguish grade III from grade II, it cannot be easy to achieve.82 Recent

studies indicated that molecular profiling differences existing between these two grades might be used in

classification. Important molecular diagnostic markers, such as isocitrate dehydrogenase (IDH) mutation,83

1p/19q co-deletion84 and O-6-methylguanine-DNA methyltransferase promoter methylation,85 had been

included into guideline since WHO glioma classification 2016.80 Therefore, in the future, DL algorithms

evaluation in image-based glioma grading should also take molecular diagnostic markers into consider-

ation, especially in the distinguishment of grade IIand III glioma.

As for internal validation or external validation, in our study, internal subgroup was superior to external sub-

group (SE: 94% vs. 92%; SP: 94% vs. 82%; AUC 0.98 vs. 0.94). Internal validation is that in the validation

phase, the testing set is separated from the original dataset, whereas external validation is that using a

completely independent dataset out of the original one.86 Though DL performed inferiorly in the external

group, we still appeal to further studies to apply external instead of internal validation. One of the major

limitations of including studies is that the majority of them didn’t implement external validation, which

made them hard to be generalized and reproduced. DL development is supposed to consider data extrap-

olation. DL algorithm should generalize to the real-world usage, which means not only exerts well in online

database but also can show acceptable quality in clinical practice, such as being auxiliary with hospital

clinician or commune healthcare worker. Xian et al. used DL in near-infrared fluorescence imaging to

help intraoperative diagnosis,86 which requested not only accuracy but also celerity. Besides, as for the

application of AI technology in low-resource areas, the acceptance ability of healthcare workers also needs

to be considered.87 Therefore, in order to facilitate the practical application and promotion of DL merging

with glioma classification, in addition to algorithm optimization, time of DL diagnosis, maneuverability,

protection of patient information, etc, should also be under rigorous design.

To improve DL algorithms combinedwith glioma, based on previous analysis of our research, we try to sum-

marize limitations in this field: 1) diagnostic trials require standard method for data merging for AI; 2) small

sample size; 3) poor-quality image preprocessing; 4) not standard algorithm development; 5) not standard

data report; 6) different definition of HGG and LGG; and 7) poor extrapolation.

Moreover, we offered the following suggestions for further separate studies in AI development in glioma: 1)

use open databases; 2) before disclosure, be approved by FDA or other authoritative institutions first; 3)

embrace big data; 4) encourage the use of k-fold cross-validation; 5) consider the consistency of character-

istics of the two studies populations when using transfer learning; 6) report the number of images in
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contingency tables; and 7) encourage external validation. Besides, we expect diagnostic trials to

provide normative guidelines for data fusion, and top institutes can convene specialists from regarding

professions, such as clinicians, AI engineers, pathologists to standardize image preprocessing, and AI

development.

Our study usedmeta-analysis to integrate articles about the performance of DL algorithms in image-based

glioma grading. To the best of our knowledge, this is the first meta-analysis to explore the performance of

DL in this field. When analyzing the full data, we considered both the full use of data and the selection

of representative data (the highest accuracy) of an article, which might be a reference way in the absence

of the standard of combining multiple sets of data in diagnostic tests. We further used meta-regression to

explore the source of heterogeneity, which indicated that sample size, data sharing, type of internal vali-

dation, transfer learning applies, classification, and type of validation did play an important role in hetero-

geneity. In subgroup analysis, we find that DL displayed with distinguishment in different subgroups. In

explanation of difference, we gave recommendations under which DL performs more superior. More

importantly, we provided suggestions on how DL should be normalized in glioma grading in the future

based on the dilemma of DL development that existed in our results.

However, there are still some limitations in this study. Our results showed high heterogeneity, which was

not significantly reduced in subgroup analysis. The items used in subgroup analysis were proved to exert

an impact on heterogeneity in meta-regression, and they were considered as possible heterogeneity sour-

ces in previous studies. Liu et al. conducted a pooled analysis to evaluate the performance of healthcare

workers versus DL, which implied the separation of DL from clinician data in studies.88 Besides, DL-related

items also contained huge diversity, such as performing external validation or internal validation,89 using

open-access dataset or not,90 the application of transfer learning or not, as well as the validation type.91

Therefore, items included in this study were scientific and have been shown to contribute to heterogeneity.

Moreover, high heterogeneity was common in studies of the convergence of AI and medicine, such as the

DL study of breast and cervical cancer,67 glioma segmentation,63 gastrointestinal cancer classification, and

prognostication92 and so on. Admittedly, the reason why heterogeneity was not reduced might also be ex-

plained by other possible factors, such as prospective or retrospective studies and DL diagnoses or clini-

cian diagnoses.67 Due to the scarcity of articles containing prospective studies (2/33) or with a comparison of

DL versus clinician (3/33) in our study, we couldn’t perform meta-regression on them. Another limitation is

that in glioma classification, we failed to incorporate molecular information, which is becoming increasingly

important, since it marks a more refined classification of patients and is critical for clinical treatment choice

and prognosis.64 In addition, the QUADAS-2 assessment was not tailored for AI-based studies, which

resulted in risk of bias and applicability concerns.

In conclusion, though the SE, SP, and AUC of DL algorithms are high in glioma grading, we still couldn’t

prove the superiority of DL over ML. In the whole dataset pooled analysis, we considered both the full

use of data and the selection of representative data (the highest accuracy) for each article. Our study

suggested that the results were highly heterogeneous and sample size, data sharing, type of internal vali-

dation, transfer learning applies, classification, and type of validation were the possible reasons. In sub-

group analysis, we didn’t find the bigger sample size group displayed better than the smaller one. DL in

open data appeared superior to private data. As for type of internal validation, k-fold cross-validation

outperformed random split-sample validation. In transfer learning use, we couldn’t tell the superiority

of transfer learning appliance in comparison to not use. Image-based datasets showed better results

than the patients-based ones. In the classification of HGG and LGG, our study indicated that IV repre-

sented HGG excelled III+IV. As for internal validation or external validation, in our study, the internal sub-

group was superior to the external. Besides, from the perspective of the whole results of our study, we

strongly recommend separate research:1) use open databases; 2) before disclosure, be approved by

FDA or other authoritative institutions first; 3) embrace big data; 4) encourage the use of random

split-sample validation; 5) consider the consistency of characteristics of the two studies populations

when using transfer learning; 6) report the number of images in contingency tables; 7) include molecular

typing results to assist diagnosis if grade III incorporated in HGG; 8) encourage external validation; and

9) incorporation of AI-based quality of reporting tools (such as Quadas-AI, Probast-AI or Tripod-AI).

Moreover, we can’t emphasize more on normalization of image extraction, preprocessing, and algorithm

development in this field. However, since the heterogeneity still remained in subgroups, these recom-

mendations should be considered cautiously.

ll
OPEN ACCESS

iScience 26, 106815, June 16, 2023 19

iScience
Article



STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Search strategy and eligibility criteria

B Data extraction

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Quality assessment

d ADDITIONAL RESOURCES

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2023.106815.

ACKNOWLEDGMENTS

We appreciate Professor Yu Jiang for teaching meta-analysis courses. We also are grateful for involved ar-

ticles researchers to offer detailed diagnostic test results. We would like to thank Peking Union Medical

College Education Foundation (NO: B0202023F-11) for funding us.

AUTHOR CONTRIBUTIONS

W.Y.S. carried out data analysis and article writing. C.S. was responsible for research retrieval. C.T. and

C.H.P. took part in figures visualization and table compiling. J.H.F. and P.X. offered the idea of this research

and supervised this work. Y.L..Q reviewed the article and provided suggestions for revision.

DECLARATION OF INTERESTS

The authors declare that they have no competing interests.

Received: November 1, 2022

Revised: March 23, 2023

Accepted: May 2, 2023

Published: May 5, 2023

REFERENCES
1. Ostrom, Q.T., Bauchet, L., Davis, F.G.,

Deltour, I., Fisher, J.L., Langer, C.E.,
Pekmezci, M., Schwartzbaum, J.A., Turner,
M.C., Walsh, K.M., et al. (2014). The
epidemiology of glioma in adults: a "state of
the science" review. Neuro Oncol. 16,
896–913. https://doi.org/10.1093/neuonc/
nou087.

2. Weller, M., van den Bent, M., Preusser, M., Le
Rhun, E., Tonn, J.C., Minniti, G., Bendszus,
M., Balana, C., Chinot, O., Dirven, L., et al.
(2021). EANO guidelines on the diagnosis
and treatment of diffuse gliomas of
adulthood. Nat. Rev. Clin. Oncol. 18,
170–186. https://doi.org/10.1038/s41571-
020-00447-z.

3. Di Carlo, D.T., Cagnazzo, F., Benedetto, N.,
Morganti, R., and Perrini, P. (2019). Multiple
high-grade gliomas: epidemiology,
management, and outcome. A systematic
review and meta-analysis. Neurosurg. Rev.
42, 263–275. https://doi.org/10.1007/s10143-
017-0928-7.

4. Louis, D.N., Perry, A., Wesseling, P., Brat,
D.J., Cree, I.A., Figarella-Branger, D.,
Hawkins, C., Ng, H.K., Pfister, S.M.,
Reifenberger, G., et al. (2021). The 2021WHO
classification of tumors of the central nervous
system: a summary. Neuro Oncol. 23, 1231–
1251. https://doi.org/10.1093/neuonc/
noab106.

5. McGirt, M.J., Woodworth, G.F., Coon, A.L.,
Frazier, J.M., Amundson, E., Garonzik, I.,
Olivi, A., and Weingart, J.D. (2005).
Independent predictors of morbidity after
image-guided stereotactic brain biopsy: a
risk assessment of 270 cases. J. Neurosurg.
102, 897–901. https://doi.org/10.3171/jns.
2005.102.5.0897.

6. Coiera, E. (2018). The fate of medicine in the
time of AI. Lancet (London, England) 392,
2331–2332. https://doi.org/10.1016/s0140-
6736(18)31925-1.

7. Kleppe, A., Skrede, O.J., De Raedt, S., Liestøl,
K., Kerr, D.J., and Danielsen, H.E. (2021).

Designing deep learning studies in cancer
diagnostics. Nat. Rev. Cancer 21, 199–211.
https://doi.org/10.1038/s41568-020-00327-9.

8. Benjamens, S., Dhunnoo, P., and Meskó, B.
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37. Çinarer, G., Emiro�glu, B.G., and Yurttakal,
A.H. (2020). Prediction of glioma grades using
deep learning with wavelet radiomic features.
Appl. Sci. 10, 6296.

38. Mzoughi, H., Njeh, I., Wali, A., Slima, M.B.,
BenHamida, A., Mhiri, C., and Mahfoudhe,
K.B. (2020). Deep multi-scale 3D
convolutional neural network (CNN) for MRI
gliomas brain tumor classification. J. Digit.
Imag. 33, 903–915. https://doi.org/10.1007/
s10278-020-00347-9.

39. Zhuge, Y., Ning, H., Mathen, P., Cheng, J.Y.,
Krauze, A.V., Camphausen, K., and Miller,
R.W. (2020). Automated glioma grading on
conventional MRI images using deep
convolutional neural networks. Med. Phys. 47,
3044–3053. https://doi.org/10.1002/mp.
14168.

40. Naser, M.A., and Deen, M.J. (2020). Brain
tumor segmentation and grading of lower-
grade glioma using deep learning in MRI
images. Comput. Biol. Med. 121, 103758.
https://doi.org/10.1016/j.compbiomed.2020.
103758.

41. Alis, D., Bagcilar, O., Senli, Y.D., Isler, C.,
Yergin, M., Kocer, N., Islak, C., and Kizilkilic,
O. (2020). The diagnostic value of quantitative
texture analysis of conventional MRI
sequences using artificial neural networks in
grading gliomas. Clin. Radiol. 75, 351–357.
https://doi.org/10.1016/j.crad.2019.12.008.

42. Hollon, T.C., Pandian, B., Adapa, A.R., Urias,
E., Save, A.V., Khalsa, S.S.S., Eichberg, D.G.,
D’Amico, R.S., Farooq, Z.U., Lewis, S., et al.
(2020). Near real-time intraoperative brain
tumor diagnosis using stimulated Raman
histology and deep neural networks. Nat.
Med. 26, 52–58. https://doi.org/10.1038/
s41591-019-0715-9.

ll
OPEN ACCESS

iScience 26, 106815, June 16, 2023 21

iScience
Article

https://doi.org/10.3233/shti220163
https://doi.org/10.3233/shti220163
https://doi.org/10.1155/2022/4938587
https://doi.org/10.1155/2022/4938587
https://doi.org/10.1016/j.cmpb.2021.106597
https://doi.org/10.1016/j.cmpb.2021.106597
https://doi.org/10.1109/tmi.2022.3166129
https://doi.org/10.3389/fbioe.2022.841958
https://doi.org/10.3389/fbioe.2022.841958
https://doi.org/10.1007/s00330-021-08237-6
https://doi.org/10.1007/s00330-021-08237-6
https://doi.org/10.5812/ijcm.120638
https://doi.org/10.1049/ipr2.12374
https://doi.org/10.1049/ipr2.12374
https://doi.org/10.1088/1361-6560/ac30a1
https://doi.org/10.1088/1361-6560/ac30a1
https://doi.org/10.1007/s12652-021-03535-9
https://doi.org/10.1002/ima.22646
https://doi.org/10.1002/ima.22646
https://doi.org/10.1148/ryai.2021200301
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref59
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref59
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref59
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref59
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref60
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref60
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref60
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref60
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref60
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref60
https://doi.org/10.1155/2021/6778009
https://doi.org/10.1155/2021/6778009
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref62
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref62
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref62
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref62
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref62
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref62
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref62
https://doi.org/10.1007/s00259-021-05326-y
https://doi.org/10.1007/s00259-021-05326-y
https://doi.org/10.1109/ACCESS.2019.2919122
https://doi.org/10.1109/ACCESS.2019.2919122
https://doi.org/10.1016/j.cmpb.2021.105945
https://doi.org/10.1016/j.cmpb.2021.105945
https://doi.org/10.1016/j.compbiomed.2021.104403
https://doi.org/10.1016/j.compbiomed.2021.104403
https://doi.org/10.1038/s41374-020-0472-x
https://doi.org/10.1038/s41374-020-0472-x
https://doi.org/10.1016/j.compmedimag.2020.101831
https://doi.org/10.1016/j.compmedimag.2020.101831
https://doi.org/10.3174/ajnr.A6882
https://doi.org/10.3934/mbe.2021080
https://doi.org/10.3934/mbe.2021080
https://doi.org/10.1007/s11042-020-09786-6
https://doi.org/10.1007/s11042-020-09786-6
https://doi.org/10.1007/s11517-020-02273-y
https://doi.org/10.1007/s11517-020-02273-y
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref70
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref70
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref70
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref70
http://refhub.elsevier.com/S2589-0042(23)00892-1/sref70
https://doi.org/10.1007/s10278-020-00347-9
https://doi.org/10.1007/s10278-020-00347-9
https://doi.org/10.1002/mp.14168
https://doi.org/10.1002/mp.14168
https://doi.org/10.1016/j.compbiomed.2020.103758
https://doi.org/10.1016/j.compbiomed.2020.103758
https://doi.org/10.1016/j.crad.2019.12.008
https://doi.org/10.1038/s41591-019-0715-9
https://doi.org/10.1038/s41591-019-0715-9


43. Sharif, M.I., Li, J.P., Khan, M.A., and Saleem,
M.A. (2020). Active deep neural network
features selection for segmentation and
recognition of brain tumors using MRI
images. Pattern Recogn. Lett. 129, 181–189.
https://doi.org/10.1016/j.patrec.2019.11.019.

44. Lo, C.-M., Chen, Y.-C., Weng, R.-C., and
Hsieh, K.L.-C. (2019). Intelligent glioma
grading based on deep transfer learning of
MRI radiomic features. Appl. Sci. 9, 4926.

45. Gonbadi, F.B., and Khotanlou, H. (2019).
Glioma Brain Tumors Diagnosis and
Classification in MR Images Based on
Convolutional Neural Networks, 24–
25, pp. 1–5.

46. Ali, M.B., Gu, I.Y.-H., and Jakola, A.S. (2019).
In Multi-stream Convolutional Autoencoder
and 2D Generative Adversarial Network for
Glioma Classification, G. Percannella, ed.
Held in Cham, 2019//. M. Vento (Springer
International Publishing), pp. 234–245.

47. Ahammed Muneer, K.V., Rajendran, V.R., and
K, P.J. (2019). Glioma tumor grade
identification using artificial intelligent
techniques. J. Med. Syst. 43, 113. https://doi.
org/10.1007/s10916-019-1228-2.

48. Kabir Anaraki, A., Ayati, M., and Kazemi, F.
(2019). Magnetic resonance imaging-based
brain tumor grades classification and grading
via convolutional neural networks and genetic
algorithms. Biocybern. Biomed. Eng. 39,
63–74. https://doi.org/10.1016/j.bbe.2018.
10.004.

49. Shahzadi, I., Tang, T.B., Meriadeau, F., and
Quyyum, A. (2018). CNN-LSTM: Cascaded
Framework for Brain Tumour Classification,
3–6, pp. 633–637. .

50. Sajjad, M., Khan, S., Muhammad, K., Wu, W.,
Ullah, A., and Baik, S.W. (2019). Multi-grade
brain tumor classification using deep CNN
with extensive data augmentation. Journal of
Computational Science 30, 174–182. https://
doi.org/10.1016/j.jocs.2018.12.003.

51. Yang, Y., Yan, L.F., Zhang, X., Han, Y., Nan,
H.Y., Hu, Y.C., Hu, B., Yan, S.L., Zhang, J.,
Cheng, D.L., et al. (2018). Glioma grading on
conventional MR images: a deep learning
study with transfer learning. Front. Neurosci.
12, 804. https://doi.org/10.3389/fnins.2018.
00804.

52. Al-Zurfi, A., Meziane, F., and Aspin, R. (2018).
Automated Glioma Grading Based on an
Efficient Ensemble Design of a Multiple
Classifier System Using Deep Iteration Neural
Networks Matrix, 6–7, pp. 1–6.

53. Ge, C., Gu, I.Y., Jakola, A.S., and Yang, J.
(2018). Deep learning and multi-sensor fusion
for glioma classification using multistream 2D
convolutional networks. Annual international
conference of the IEEE engineering in
medicine and biology society. IEEE
engineering in medicine and biology society.
Annual International Conference, 5894–5897.
https://doi.org/10.1109/embc.2018.8513556.

54. Khawaldeh, S., Pervaiz, U., Rafiq, A., and
Alkhawaldeh, R. (2017). Noninvasive grading
of glioma tumor using magnetic resonance

imaging with convolutional neural networks.
Appl. Sci. 8, 27.

55. Ye, F., Pu, J., Wang, J., Li, Y., and Zha, H.
(2017). Glioma Grading Based on 3D
Multimodal Convolutional Neural Network
and Privileged Learning, 13–16, pp. 759–763.

56. Russakovsky, O., Deng, J., Su, H., Krause, J.,
Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., et al. (2015).
ImageNet large scale visual recognition
challenge. Int. J. Comput. Vis. 115, 211–252.
https://doi.org/10.1007/s11263-015-0816-y.

57. Zhao, J., Huang, Y., Song, Y., Xie, D., Hu, M.,
Qiu, H., and Chu, J. (2020). Diagnostic
accuracy and potential covariates for
machine learning to identify IDH mutations in
glioma patients: evidence from a meta-
analysis. Eur. Radiol. 30, 4664–4674. https://
doi.org/10.1007/s00330-020-06717-9.

58. van Kempen, E.J., Post, M., Mannil, M.,
Kusters, B., Ter Laan, M., Meijer, F.J.A., and
Henssen, D. (2021). Accuracy of machine
learning algorithms for the classification of
molecular features of gliomas on MRI: a
systematic literature review and meta-
analysis. Cancers 13, 2606. https://doi.org/10.
3390/cancers13112606.

59. Jian, A., Jang, K., Manuguerra, M., Liu, S.,
Magnussen, J., and Di Ieva, A. (2021).
Machine learning for the prediction of
molecular markers in glioma on magnetic
resonance imaging: a systematic review and
meta-analysis. Neurosurgery 89, 31–44.
https://doi.org/10.1093/neuros/nyab103.

60. Zhou, Q., Xue, C., Ke, X., and Zhou, J. (2022).
Treatment response and prognosis
evaluation in high-grade glioma: an imaging
review based on MRI. J. Magn. Reson. Imag.
56, 325–340. https://doi.org/10.1002/jmri.
28103.

61. Subramanian, H., Dey, R., Brim, W.R.,
Tillmanns, N., Cassinelli Petersen, G.,
Brackett, A., Mahajan, A., Johnson, M.,
Malhotra, A., and Aboian, M. (2021). Trends in
development of novel machine learning
methods for the identification of gliomas in
datasets that include non-glioma images: a
systematic review. Front. Oncol. 11, 788819.
https://doi.org/10.3389/fonc.2021.788819.

62. Nguyen, A.V., Blears, E.E., Ross, E., Lall, R.R.,
and Ortega-Barnett, J. (2018). Machine
learning applications for the differentiation of
primary central nervous system lymphoma
from glioblastoma on imaging: a systematic
review and meta-analysis. Neurosurg. Focus
45, E5. https://doi.org/10.3171/2018.8.
Focus18325.

63. van Kempen, E.J., Post, M., Mannil, M.,
Witkam, R.L., Ter Laan, M., Patel, A., Meijer,
F.J.A., and Henssen, D. (2021). Performance
of machine learning algorithms for glioma
segmentation of brain MRI: a systematic
literature review and meta-analysis. Eur.
Radiol. 31, 9638–9653. https://doi.org/10.
1007/s00330-021-08035-0.

64. Merkaj, S., Bahar, R.C., Zeevi, T., Lin, M., Ikuta,
I., Bousabarah, K., Cassinelli Petersen, G.I.,
Staib, L., Payabvash, S., Mongan, J.T., et al.
(2022). Machine learning tools for image-

based glioma grading and the quality of their
reporting: challenges and opportunities.
Cancers 14, 2623. https://doi.org/10.3390/
cancers14112623.

65. Bahar, R.C., Merkaj, S., Cassinelli Petersen,
G.I., Tillmanns, N., Subramanian, H., Brim,
W.R., Zeevi, T., Staib, L., Kazarian, E., Lin, M.,
et al. (2022). Machine learning models for
classifying high- and low-grade gliomas: a
systematic review and quality of reporting
analysis. Front. Oncol. 12, 856231. https://doi.
org/10.3389/fonc.2022.856231.

66. Sohn, C.K., and Bisdas, S. (2020). Diagnostic
accuracy of machine learning-based
radiomics in grading gliomas: systematic
review and meta-analysis. Contrast Media
Mol. Imaging 2020, 2127062. https://doi.org/
10.1155/2020/2127062.

67. Xue, P., Wang, J., Qin, D., Yan, H., Qu, Y.,
Seery, S., Jiang, Y., and Qiao, Y. (2022). Deep
learning in image-based breast and cervical
cancer detection: a systematic review and
meta-analysis. NPJ Digit. Med. 5, 19. https://
doi.org/10.1038/s41746-022-00559-z.

68. Erson-Omay, E.Z., Henegariu, O., Omay, S.B.,
Harmancı, A.S., Youngblood, M.W., Mishra-
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d The original code is stored in the Science Data Bank to make publicly accessible. DOI is listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Search strategy and eligibility criteria

The online database search consisted of Ovid-Medline, Embase, IEEE Xplore, Web of Science Core Collec-

tion, and the Cochrane Library for studies continuously published from 1st January 2015 until 16th August

2022. Keywords including ‘glioma OR astrocytoma OR glioblastoma’, ‘DL OR AI NOT traditional ML, ‘diag-

nosis OR classification OR grading’, and ‘performance OR (sensitivity and specificity) OR area under the

curve’ were used to explore pertinent studies. The detailed search strategies among these 5 databases

were available in the supplemental information.

Any studies reporting the performance of DL algorithms on grading gliomas were included during the

identification phase while only duplicates were removed. Further exclusion criteria were applied during

the first round screening phase as follows: (1) studies published before January 1st 2015, when DL

algorithms were not mature at this stage56; (2) non-clinical studies, reviews, letters, or comments; (3) studies

to investigate the glioma segmentation; (4) investigations exclusively on brain tumor classifications and

genetic or molecular subtypes of glioma, not related to glioma grading.

Eligibility assessment was then performed by two independent researchers (W.S. and C.S.) who had re-

viewed the titles and abstracts of all records, during which the full-text studies were reviewed and assessed

in detail. Discrepancies were settled by a third senior researcher (P.X.). The studies using archived histo-

pathological images, not in English, not using DL algorithms for classification, reporting no classifying out-

comes, with no target disease, and no access were ruled out from the study while the remaining studies

were included for systematic review and further meta-analysis.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Original data this paper https://doi.org/10.57760/sciencedb.07885

Software and algorithms

Original code this paper https://doi.org/10.57760/sciencedb.07886
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Data extraction

Two independent researchers (W.S. and C.S.) reviewed the full-text articles (and supplemental information

if available) and extracted study characteristics (patients’ information, imaging modality, DL algorithms,

etc.) and diagnostic performance of DL (true-positives, false-positives, true-negatives, and false-negatives)

into a predetermined data extraction form. Conflicts were resolved through a team discussion and

consensus. All classifications other than HGG and LGG were then converted into an exclusive binary clas-

sification of HGG and LGG to generate contingency tables for meta-analysis. The extracted data was used

to calculate the pooled sensitivity, specificity, and area under the curve (AUC).

QUANTIFICATION AND STATISTICAL ANALYSIS

To assess the performance of DL algorithms to differentiate HGG from LGG, the definition of true positive

(TP) was set for HGG while that of true negative (TN) was LGG. The included studies with inconsistent defi-

nition were redefined for our calculation. A hierarchical summary receiver operating characteristic (HSROC)

curve with 95% confidence intervals (CI) and 95% prediction regions was employed to assess the overall

performance of DL algorithms along with diagnostic parameters including pooled AUC, sensitivity, and

specificity.93–95 Given the inherent differences among the included studies, a bivariate random-effect

model was implemented. Heterogeneity was estimated using the Higgins inconsistency index (I2) statistic,

of which 50% was defined as moderate and higher than 75% was defined as high respectively. Important

variables affecting heterogeneity were assessed using meta-regression. The variables finally included in

meta-regression analysis were: 1) sample size (%130/>130; 130 is the median of sample size); 2) data

sharing (open data/private data); 3) type of internal validation (random split-sample validation/k-fold

cross-validation); 4) transfer learning applied (applied/no applied); 5) data unit(image/patient); 6) classifi-

cation (grade IV represented HGG/grade III+ IV represented HGG; According to the WHO classification

standard and the actual classification of articles); 7) type of validation(internal/external). The first 5 variables

did not differ in multiple DL performances in one study, so the meta-regression based on the highest ac-

curacy pooled analysis was applied for these 5 factors. However, the rest 2 variables displayed diversely in

one study, which requested the overall pooled analysis. Further subgroup analysis was performed by

variables with statistically significant heterogeneity contribution. Meta-analysis was only conducted only

when the number of studies was equal to or greater than three. Data analysis was conducted by STATA

(version 15.1) software and the MIDAS module was used. The p value less than 0.05 was considered

statistically significant. The original data and code were deposited at Science Data Bank and were publicly

available (key resources table).

Quality assessment

The risk of bias and applicability concerns of the included studies were assessed by two researchers (W.S.

and C.S.) using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool,96 which allows

for more transparent rating of bias and applicability of diagnostic accuracy studies. QUADAS-2 tool

consists of four key domains: patient selection, index test, reference standard, flow and timing. Publication

bias was assessed by a funnel plot.

ADDITIONAL RESOURCES

The study was registered with the open-access PROSPERO International prospective register of systematic

reviews (CRD42022360385). The study was performed strictly following the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement.97 Both ethical approval and informed

consent were not applicable since this study was a secondary analysis of publicly available data.
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