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A B S T R A C T   

Background and purpose: Glioblastoma (GBM) patients face a strongly unfavorable prognosis despite multimodal 
therapy regimens. However, individualized mortality prediction remains imprecise. Harnessing routine radiation 
planning cranial computed tomography (CT) scans, we assessed cervical body composition measures as novel 
biomarkers for overall survival (OS) in GBM patients. 
Materials and methods: We performed threshold-based semi-automated quantification of muscle and subcutane
ous fat cross-sectional area (CSA) at the levels of the first and second cervical vertebral body. First, we tested this 
method’s validity by correlating cervical measures to established abdominal body composition in an open-source 
whole-body CT cohort. We then identified consecutive patients undergoing radiation planning for recent GBM 
diagnosis at our institution from 2010 to 2020 and quantified cervical body composition on radiation planning 
CT scans. Finally, we performed univariable and multivariable time-to-event analyses, adjusting for age, sex, 
body mass index, comorbidities, performance status, extent of surgical resection, extent of tumor at diagnosis, 
and MGMT methylation. 
Results: Cervical body composition measurements were well-correlated with established abdominal markers 
(Spearman’s rho greater than 0.68 in all cases). Subsequently, we included 324 GBM patients in our study cohort 
(median age 63 years, 60.8% male). 293 (90.4%) patients died during follow-up. Median survival time was 13 
months. Patients with below-average muscle CSA or above-average fat CSA demonstrated shorter survival. In 
multivariable analyses, continuous cervical muscle measurements remained independently associated with OS. 
Conclusion: This exploratory study establishes novel cervical body composition measures routinely available on 
cranial radiation planning CT scans and confirms their association with OS in patients diagnosed with GBM.   

Introduction 

Despite considerable scientific advances, diagnosis of a glioblastoma 
(GBM) remains associated with high mortality, resulting in a median 
survival of less than two years [1,2]. Over time, prognostic risk factors 
have been established, most importantly isocitrate dehydrogenase-1 
(IDH-1) mutation [3]. Given the outsized influence of this marker, 
only IDH-wildtype tumors remain classified as GBM in the most recent 

re-definition of World Health Organization (WHO) guidelines [4]. Other 
prognostic factors including O6-Methylguanine-DNA Methyltransferase 
(MGMT) methylation status [5], body mass index (BMI) [6], age [7], 
performance status [8], and extent of tumor resection [9] have also been 
explored. However, mortality risk prediction remains in need of 
improvement [10,11]. 

Body composition measurements have recently been introduced into 
risk prediction algorithms for cancer patients in a diverse set of tumors 
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including in gastrointestinal [12], lung [13,14], renal [15] and hema
tologic [16] malignancies. Most studies rely on measurements based on 
computed tomography (CT) scans at the level of the third lumbar 
vertebra (L3) which have been defined as the gold standard [17] and 
have been found to represent total body muscle mass [18]. However, 
investigations try to increasingly use different vertebral levels in an 
effort to harness routinely available local CT imaging [19,20]. 

In GBM, associations between CT-based body composition and 
prognosis have not been previously investigated. Meanwhile, numerous 
recent studies suggest a relationship between GBM outcome and tem
poral muscle thickness (TMT), a one-dimensional measure derived from 
diagnostic magnetic resonance imaging (MRI) [21–24]. Fat measure
ments or two-dimensional body composition quantifications have not 
been attempted. 

We developed this cohort study to assess the prognostic potential of 
CT-derived two-dimensional muscle and fat measurements using 
routinely available data from radiation planning CT scans in GBM pa
tients. We first assessed the validity of our measurements by comparing 
these newly quantified cervical markers with standardized measures at 
the L3 level in a cohort of whole-body CT scans. We then performed 
measurements in a cohort of GBM patients, hypothesizing that radiation 
planning CT-based body composition measures may be associated with 
overall survival (OS) in this patient group. 

Materials and methods 

This retrospective study was approved by the ethics committee of the 
Medical Association of Westphalia-Lippe (2021-685-f-S). 

Validation cohort 

Pre-therapeutic positron-emission tomography (PET)-CT scans from 
the ACRIN 6668 NSCLC FDG PET study [25] accessible through the 
Cancer Imaging Archive (TCIA) [26] were downloaded. We then used 
the CT scan series to perform body composition measurements. The 
open-source 3D Slicer Software (version 4.13.0) was used for 
segmentation. 

First, after uploading the CT scans into the workstation, images were 

reformatted to standardize patient positioning: Head tilt along the 
frontal axis was corrected by orienting the nasal septum in a vertical 
plain. Head tilt along the sagittal axis was corrected by similarly ori
enting the dens axis in a vertical plain. 

We chose to quantify cervical muscle at the levels closest to the 
cranium, i.e., at the levels of the first (C1) and second cervical vertebral 
body (C2). At each level, a single axial image visualizing the vertebral 
arch was selected. As oropharyngeal mucosa proves difficult to accu
rately differentiate from muscle given similar levels of radiodensity on 
non-contrast scans we decided to perform segmentations in the retro
cervical region, largely similar to previous studies at the C3 level [27]. 
Thus, all muscle and fat compartments located dorsally of the vertebral 
arch were included. Previously reported cutoff values were used for 
measurement of muscle (-29 to + 150 Hounsfield units) and fat tissue 
(-190 to -30 Hounsfield units). Segmentations are visualized in Fig. 1. In 
sum, the following muscle groups were included: the trapezoid, ster
nocleidomastoid, levator scapulae and the autochthonous muscles (M. 
longissimus capitis, splenius capitis, splenius cervicis, semispinalis 
capitis) also encompassing the short neck musculature (M. rectus capitis 
posterior major, obliquus capitis superior et inferior). Fat tissue located 
dorsally of the parotid glands and outside of the muscle facia – i.e., 
between muscles and skin – was defined as subcutaneous fat tissue. 
Measurements were not attempted if scans were visually deemed un
suitable by the readers and the supervisors. All measurements were 
performed by a trained analyst (B.O.T.) while its reproducibility was 
independently analyzed by a second trained analyst (A.S.T.) using a 
control sample of 38 scans. Interreader agreement was determined 
similar to previous studies [28]. 

Additionally, standardized measurements at the L3 level on the same 
scan were performed similar to previous studies [16] resulting in fat or 
muscle cross-sectional areas (in cm2). 

Glioblastoma cohort 

Consecutive adult patients undergoing radiotherapy planning for 
pathologically confirmed GBM at our institution, a large tertiary care 
brain tumor center, between January 1st, 2010, and December 31st, 
2020, were included. Only patients without previous irradiation to the 

Fig. 1. Cervical body composition mea
surements. Quantified skeletal muscle area 
was located dorsally of the C1 and C2 
vertebrae. Additionally, subcutaneous adi
pose tissue area was computed. Here, 
representative measurements are demon
strated for levels C1 and C2 for two male 
patients. 56-year-old Patient 1 demon
strates high-muscle area while measure
ments in 63-year-old patient 2 are reduced. 
Patient 1 survived for another 20 months. 
Patient 2 passed away after only 3 months. 
Note that the metal artifacts did not pre
clude analyses in these cases.   
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cranium were considered. Similarly, only IDH-1 negative tumors qual
ified for screening, reflecting recent modifications in GBM definition. 
Patients were included irrespective of prior surgical procedure. We only 
included patients with a primary GBM diagnosis whereas patients with 
recurring GBM were excluded. 

Patient data (demographics, co-morbidities, tumor, and treatment 
details) and outcomes were abstracted from an intra-institutional 
neurosurgical database as well as the cancer registry of the Western 
German Cancer Center (Westdeutsches Tumorzentrum, WTZ), a pro
spectively maintained resource. OS was defined as the primary outcome 
with survival time in months calculated from radiation planning CT to 
date of last contact or death as of June 2nd, 2022. Macroscopic tumor 
volume in cm3 was measured based on preoperative contrast-enhanced 
T1-weighted MRI images. Extent of resection was determined based on 
postoperative MRI images and abstracted from the radiological report 
or, if not explicitly stated, assessed by radiation oncologists (H.T.E., F.M. 
T.). Cases with removal of more than 95% of the contrast-enhancing 
lesion were deemed “gross total resections” (GTR) while all other re
sections were considered “subtotal resections” (STR), similar to previous 
definitions [29–31]. 

Patient CT scans were downloaded from the ARIA Oncology Infor
mation System (Varian Medical Systems, Inc., Palo Alto, CA, USA). 
Cervical measurements were performed as described above. The analyst 
(B.O.T.) was blinded to outcomes during measurements. Again, fat or 
muscle cross-sectional areas in cm2 were obtained. These parameters 
were then directly used for analyses. For group definition, we defined a 
low-muscle or low-fat group comprised of males or females with below- 
median muscle or fat measurements relative to their sex (“low-muscle/ 
low-fat group”). This group was compared to the remaining patients 
with above-median muscle or fat measurements relative to their sex 
(“high-muscle/high-fat group”) [20]. 

Finally, TMT (in mm) was measured on pre-operative MRI scans, as 
described previously [21–24]. 

Statistical analysis 

We used descriptive statistics for patient characteristics. We 
analyzed correlations between body composition measurements at 
different levels using spearman correlations. Intraclass correlation co
efficients were utilized to evaluate inter-reader agreement. 

Univariable relationships between parameters and OS were esti
mated using the Kaplan-Meier method and assessed for statistical sig
nificance with the log-rank test. Cox proportional hazard models were 
developed for multivariable analyses including pre-defined variables 
previously associated with survival in GBM patients: Sex [32], BMI [6], 
extent of resection (biopsy vs. subtotal vs. total resections) [9], comor
bidities and age (using the Charlson Comorbidity Index [CCI]) [33], 
postoperative performance status [8], tumor size at time of diagnosis 
[34], number of lesions at time of diagnosis (one vs. multiple) [35], 
bilateral glioblastoma (vs. unilateral) [36], and MGMT methylation 
status [5]. Analyses were performed using body composition measures 
at each level as continuous variables (in cm2) as well as group definitions 
(“low-muscle group” vs. “high-muscle group”). 

All analyses were conducted using STATA (version 13.0, StataCorp, 
College Station, TX). A type-1 error rate of 5% was assumed for all 
confidence intervals and hypothesis tests. 

Results 

Measurement validation 

A total of 193 patients (123 males, 70 females) qualified for analysis 
in the validation cohort. Exclusions are detailed in Supplementary 
Figure 1. Correlations between L3 and C1/C2 measurements were rated 
good for muscle (C1: spearman’s rho = 0.78, p < 0.001; C2: rho = 0.82, 
p < 0.001) and fat tissue (C1: rho = 0.68, p < 0.001; C2: rho = 0.69, p 

< 0.001). Correlations between C1 and C2 levels were excellent (mus
cle: rho = 0.91, p < 0.001; fat tissue: rho = 0.94, p < 0.001). Scatter 
plots are shown in Fig. 2. 

Inter-reader agreements were excellent for measurements at both 
levels (intraclass correlation coefficients greater than 0.965, Supple
mentary Table 1). 

Patient characteristics in the GBM cohort 

We included 324 of 331 (97.9%) consecutively screened patients. 
Three patients were excluded due to previously received radiation 
therapy for a different primary brain tumor. Two patients were excluded 
for missing data on the extent of the resection. One patient was excluded 
for dental implant-related metal artifacts precluding accurate mea
surements at both levels. In one patient, C1 and C2 levels were not 
visualized on planning CT. In one case for C1 and eleven cases for C2, 
artifacts or limited field of view precluded measurement of one but not 
the other level and we decided to keep these patients included in the 
study. Fig. 3 summarizes inclusion and exclusion criteria. 

The majority of patients (60.8%) were male and had previously 
undergone a resection (46.0% total, 38.6% subtotal resection) vs. a bi
opsy (15.4%). 53.4% of tumors demonstrated MGMT methylation. Pa
tient, tumor, and treatment characteristics are detailed in Table 1. 

After the radiation planning CT scan, most patients (84.3%) under
went standardized treatment with 60 Gy of irradiation in 2 Gy fractions. 
Some patients received different treatment regimens including hypo
fractionation due to deteriorating clinical status (n = 15), a higher total 
dose (66 Gy) to compensate for a pause in the radiation treatment 
following post-surgical complications (n = 1) or a premature termina
tion of radiation treatment due to worsening of symptoms and/or the 
patient’s preference (n = 26). 2 patients (0.6%) died before radiation 
treatment was commenced. 

Overall mortality amounted to 90.4% (293 of 324 patients) over a 
median follow-up of 13 months. Median survival time was 13.1 months 
(95% confidence interval 11.3–14.8 months). 

Body composition measurements 

Supplementary Fig. 2 demonstrates histograms of continuous body 
composition measurements. Median muscle CSA was higher at C2 
compared to C1 while median fat CSA was higher at C1 compared to C2. 
Both measures were also higher in male compared to female patients (p 
< 0.001 for all). Median fat CSA for males and females was 15.4 cm2 and 
12.3 cm2 at the C1 and 14.3 cm2 and 10.8 cm2 at the C2 level. Median 
muscle CSA for males and females were 31.4 cm2 and 21.7 cm2 at the C1 
and 35.6 cm2 and 23.4 cm2 at the C2 level, respectively. These cutoffs 
served to categorize patients into low-muscle and high-muscle or -fat 
groups. Patient characteristics in Table 1 are also demonstrated by 
stratified low-muscle and high-muscle groups based on C1 level mea
surements. Patients in the low-muscle group were more likely to be of 
older age and had a higher CCI, a higher ECOG score (all p < 0.001) and 
a higher weight (p = 0.022) and BMI (p = 0.005). 

Univariable analyses for body composition measurements and survival 

In univariable log-rank calculations, shorter survival was found in 
the low-muscle group compared to the high-muscle group for both C1 
and C2 (Fig. 4). Median OS was 10.4 months in the low-muscle and 15.1 
months in the high-muscle group (p = 0.014) for C1 and 10.2 vs. 15.1 
months (p = 0.012) for C2. Conversely, the low-fat group survived 
longer compared to the high-fat group at both levels. Median OS was 
14.8 months in the low-fat and 11.0 months in the high-fat group (p =
0.012) for C1 and 14.7 vs. 11.3 months (p = 0.066) for C2. 
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Multivariable analyses including novel body composition measurements 

We then performed multivariable Cox proportional hazard re
gressions, adjusting for parameters known to be associated with sur
vival. Here, both muscle groups and continuous muscle measurements 
were independently associated with OS (Table 2). Low muscle mea
surements were associated with reduced survival. Conversely, associa
tions were lost for subcutaneous fat tissue in a multivariable setting for 
group and continuous measurements (Table 2). 

Associations with ECOG score 

We subsequently assessed associations between muscle and fat 
measurements and performance status, as reflected in the ECOG score 
(Supplementary Fig. 3). Muscle and fat measurements did not show 
strong relationships with ECOG scores. We only found weak to moderate 
negative associations between muscle and ECOG score in males and 
weak positive associations between fat and ECOG score in females. 

Fig. 2. Correlation between measurements at the level of the first cervical (C1), second cervical (C2) and third lumbar vertebra (L3). Spearman correlation co
efficients and respective p values are presented. Muscle (panels A1-3) and fat (panels B1-3) measurements were correlated. 

Fig. 3. Glioblastoma cohort inclusion and exclusion criteria. IDH-1: isocitrate dehydrogenase 1. C1: first cervical vertebra. C2: second cervical vertebra. CT: 
computed tomography. 
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Comparison with temporal muscle thickness 

Finally, we performed correlation analyses between TMT and cer
vical muscle measurements. Preoperative MRI imaging allowed for 
successful TMT measurements in 307 of 324 patients (94.7%). The 
median time difference between preoperative MRI and postoperative 
radiation planning CT added up to 22 days (range 7–81 days). Corre
lations were only moderately strong between TMT and C1 (spearman’s 
rho = 0.40, p < 0.001) and C2 (rho = 0.44, p < 0.001, Supplementary 
Fig. 4). Upon inclusion of both measures into the multivariable model, 
both TMT and cervical muscle measurements were significantly asso
ciated with OS (Supplementary Table 3). 

Discussion 

In our study, we implemented and validated cervical body compo
sition measures obtained from routine radiation planning CTs as novel 
biomarkers associated with OS in GBM patients. Patients with low 
muscle or high fat measurements experienced shorter OS compared to 
those with high muscle or low fat measurements. Muscle measurements 
at levels C1 and C2 were independently associated with OS in multi
variable models. These findings indicate that body composition pa
rameters obtained from routine cranial radiation planning CT scans may 
help to improve the prediction of death in GBM patients. 

Our study introduces the concept of body composition into the 
context of brain tumor radiation planning CT imaging. As radiation 
treatment is routinely recommended in GBM patients, radiation plan
ning imaging is widely available in this cohort. Radiation planning scans 
have recently been used to evaluate non-cancerous features in lung [37] 
and head and neck cancer [38]. This novel approach takes advantage of 
routine imaging generated as part of clinical radiation therapy prepa
ration, underlining the value of radiotherapy-related data for 
prognostication. 

Here, we proceeded to implement novel measurements at the C1 and 
C2 levels in outcome prediction for GBM patients, consistently demon
strating that muscle measurements are novel risk predictors associated 
with OS. Fat parameters showed univariable associations with OS, but 
relationship was lost in multivariable modelling, indicating that cervical 
fat measurements do not improve existing risk stratification, contrary to 
muscle measurements. Measurements were investigated in a group- 
based setting based on cutoffs to demonstrate that these measure
ments may help identify specific groups at risk for shorter survival. 
However, multivariable testing also involved continuous body compo
sition measurements, leveraging the availability of more granular data. 
Ultimately, the continuous nature of the measurements may allow for a 
more individualized approach in prognostication. 

Body composition measures have been extensively investigated in 
abdominal malignancies based on the availability of standardized L3 
measurements [19]. More recently, thoracic imaging has similarly been 
utilized to demonstrate associations between body composition and 
mortality in cancer patients [39]. Cervical imaging has not been inves
tigated to a similar degree, resulting in a lack of understanding and 
standardization. Some studies noted reproducibility of muscle mea
surements at the level of the third [40] and fifth [41] cervical vertebra 
and introduced measurements to head and neck cancer patients 
[27,42,43]. Here, we provide data to show that body composition 
measurements at the level of C1 and C2 are feasible, reproducible and 
are correlated with standardized measurements from L3. Correlations 
between muscle measurements at C1/2 and L3 was strong and on par 
with correlations in the thorax [44]. Meanwhile, fat tissue measure
ments differed somewhat more strongly, possibly due to the old age of 
non-contrast CT scans used. Modern, high-quality CT scans will likely 
enable more accurate measurements and may result in stronger 
correlations. 

During patient screening, exclusion rates were minimal. Metal dental 
hardware may limit analyses in individual cases due to streak artifacts, 
but this phenomenon only precluded measurements in a single patient. 

Our pre-specified model considered the most relevant established 
risk factors for mortality in our patient cohort, including sex, BMI, 
performance status, multilesional tumors vs. single lesions, comorbid
ities and age (combined in the CCI), tumor size, extent of resection, 
bilateral tumor extent, and MGMT methylation. In accordance with 
previous findings [5,6,8,29,32,33,35,36], most of these parameters 
were associated with survival. Interestingly, tumor size and number of 
lesions held no prognostic relevance in a multivariable setting, poten
tially due to the inclusion of “postoperative resection status” and 
“bilateral tumor extent” as related and more relevant risk factors. 

Multiple studies have shown the value of TMT in GBM patients 
[21–24] while only a single small-scale study disagreed [45]. Notably, 

Table 1 
Patient characteristics. Median and interquartile range, mean and standard de
viation or number and percentage are given, as appropriate. Data are presented 
for all included patients (n = 324) and for patients with below-average (n = 162) 
and above-average (n = 161) muscle measurements at the first cervical vertebra 
(C1; measurements were not available in n = 1 patient).   

All (n =
324) 

C1 low 
muscle group 
(n = 162) 

C1 high 
muscle group 
(n = 161) 

p value 

General patient characteristics 
Age, years, median 

(range) 
63 (21–89) 67 (25–89) 60 (21–85) <0.001 

Body mass index, 
kg/m2, median 
(range) 

26.0 
(13.7–58.8) 

25.4 
(13.7–42.0) 

26.6 
(17.8–58.8) 

0.005 

Height, cm, median 
(range) 

174 
(148–198) 

174 
(150–198) 

174 
(148–195) 

0.72 

Weight, kg, median 
(range) 

80 (43–188) 79 (43–130) 81 (48–188) 0.022 

Male, n (%) 197 (60.8) 98 (60.5) 98 (60.9) 0.95 
Patient comorbidities 
Charlson 

Comorbidity 
Index, median 
(range) 

4 (2–12) 5 (2–12) 4 (2–11) <0.001 

Eastern 
Cooperative 
Oncology Group 
(EGOG) Score, n 
(%)    

<0.001 

ECOG 0–1 235 (72.5) 120 (63.0) 132 (82.0) 
ECOG 2–4 89 (27.5) 60 (37.0) 29 (18.0) 
Tumor characteristics & treatment details 
MGMT methylation 

status, n (%)    
0.62 

Un-methylated 151 (46.6) 73 (45.1) 77 (47.8) 
Methylated 173 (53.4) 89 (54.9) 84 (52.2) 
Extent of resection, 

n (%)    
0.32 

Gross total resection 
(GTR) 

149 (46.0) 71 (42.8) 77 (47.8) 

Subtotal resection 
(STR) 

125 (38.6) 69 (42.6) 56 (34.8) 

Biopsy 50 (15.4) 22 (13.6) 28 (17.4) 
Radiation dose, Gy 60 (0–66) 60 (0–60) 60 (0–66) 0.37 
Standard dose (60 

Gy) applied, n (%) 
273 (84.3) 135 (83.3) 137 (85.1) 0.67 

Tumor size at time 
of diagnosis, cm3 

30.6 
(0.3–170.9) 

32.9 
(1.7–170.9) 

28.9 
(0.3–140.6) 

0.11 

Bilateral tumor 
manifestation, n 
(%) 

45 (13.9) 20 (12.3) 25 (15.5) 0.41 

Number of lesions 
at time of 
diagnosis1, n (%)    

0.11 

Single lesion 246 (75.9) 129 (79.6) 116 (72.1) 
Multiple lesions 78 (24.1) 33 (20.4) 45 (28.0)  

1 Contrast-enhancing lesions on T1-weighted preoperative magnetic reso
nance imaging scans. 
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our study shows that cervical muscle measurements and TMT may 
reflect different body composition characteristics given only limited 
correlation. In our combined model, both measures significantly 
contributed to GBM risk prognostication independently of each other. 
Combining multiple different non-cancerous imaging features is 
increasingly given consideration in efforts to improve risk prognostica
tion [37]. In this setting, we propose the combination of TMT and cer
vical muscle measurements for prediction of survival in GBM patients. 
We hypothesize that future research in other imaging features may 
identify additional prognostic factors to further improve the existing 
model. 

Improving cervical muscle measurements themselves may also offer 
intriguing future potential. Our two-dimensional measures can easily be 
expanded to include three dimensions, e.g., by encompassing the entire 
C1-C2 segment. CT-based 3D body composition has previously been 
established via convolutional networks [46]. Given the capacity for 
population-scale body composition analysis using deep learning algo
rithms [47], there is substantial potential to both expand and simplify 
measurement acquisition. Fully automated algorithms eliminate mea
surement time and may facilitate implementation of measurements in 
clinical practice. 

Radiation planning CT scans are generally performed post-surgery. 
However, up-front surgery remains the gold standard in GBM patients, 
so we do not believe that pre-operative availability of parameters would 
impact clinical decision-making. This was reflected in our model as the 
extent of resection remained a key prognostic factor. We believe the 

immediate clinical value of our findings lies in a better understanding of 
individualized prognosis for patients and caregivers. Enhanced prog
nostic capabilities may allow for well-timed intensification of palliative 
support in end-of-life settings, potentially improving patient quality of 
life in this critical period. Here, measurements may support the clini
cian’s qualitative “eyeball test” with quantitative data. They may also 
enhance patient decision-making by providing a better prognostic un
derstanding to caregivers and patients. 

Interestingly, there was only limited association between physical 
status, as reflected in the ECOG score, and muscle and fat measurements. 
This indicates that body composition measurements are not a close 
surrogate for performance status but may include additional informa
tion. Numerous other parameters have previously been identified that 
influence body composition markers, including nutrition [48], hor
monal status [49], inflammatory status [50], stress [51], sleep [52], 
socioeconomic status [53], and genetics [54]. Thus, in our view, these 
body composition measures reflect a multitude of individual factors 
which in their sum show the potential to enhance GBM prognostication. 

Whether muscle or fat are modifiable variables, e.g., by exercise, 
remains unclear and warrants investigation. Exercise interventions are 
becoming more common in GBM patients [55–57] and prospective 
studies are currently underway to assess whether structured exercise 
programs may prolong survival. Additionally, diet, general physical 
activity and inflammatory status may also be modifiable variables 
[48,58,59]. In this setting, our retrospective study underscores the po
tential relevance of investigating these interventions in this patient 

Fig. 4. Kaplan Meier plots demonstrate relationship between overall survival and low-muscle or fat area group (orange) and high-muscle or fat area group (blue), 
according to C1 measurements (upper row) and C2 measurements (lower row). Low-muscle group patients experienced significantly shorter survival compared to 
high-muscle group patients (p = 0.014 for C1, median survival 10.4 vs. 15.1 months; p = 0.012 for C2, median survival 10.2 vs. 15.1 months), while low-fat group 
patients experienced longer survival (p = 0.012 for C1, median survival 14.8 vs. 11.0 months; p = 0.066 for C2, median survival 14.7 vs. 11.3 months). 
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cohort. However, notably, interventions need to be supervised by 
dedicated professionals and individualized according to patient prefer
ences, disease status, treatment and symptoms, thus conforming to the 
“adapted physical therapy” concept [60]. 

There are some notable limitations to this study. First, the retro
spective design did not allow for assessment of muscle strength and 
function or for analysis of exercise levels relative to imaging measures. 
Second, a single-center design may carry inherent biases, especially in a 
retrospective setting. However, a significant number of GBM patients 
was included in our analysis and patient characteristics were in line with 
previous studies. Third, for validation and C1/2-L3 correlation analyses, 
we relied on cancer patient data from lung cancer patients as whole- 
body CT scans of healthy participants are not routinely available. 
However, we chose pre-therapeutic scans of non-metastatic lung cancer, 
a tumor entity unlikely to affect body composition on C1/C2 or L3 levels 
disproportionately. Finally, this implementation study only assessed and 
established muscle measurements at a single timepoint. Future studies 
may allow for longitudinal assessments in patients undergoing re- 
irradiation. However, only selected patients typically undergo re- 
irradiation [61]. 

In conclusion, in this exploratory study, we implement cervical body 
composition parameters including muscle and subcutaneous fat tissue 
cross-sectional area at levels C1 and C2 and demonstrate validity and 
reproducibility of measurements. We proceed to demonstrate that 
muscle measurements are independent prognostic parameters for 
overall survival in glioblastoma patients. As these parameters are readily 
available from radiation planning CT scans, muscle parameters could be 
harnessed to improve prognostication in this patient cohort. 
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