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Abstract

Glioblastoma (GBM) is the most common primary central nervous system tumor,

whose prognosis remains poor under the sequential standard of care, such as

neurosurgery followed by concurrent temozolomide radiochemotherapy and

adjuvant temozolomide chemotherapy in the presence or absence of tumor

treating fields. Accordingly, the advent of molecular targeted therapy and

immunotherapy has opened a new era of tumor management. A diverse range

of targeted drugs have been tested in patients with GBM in phase III clinical trials.

However, these drugs are ineffective for all patients, as evidenced by the fact that

only a minority of patients in these trials showed prolonged survival. Furthermore,

there are several published phase III clinical trials that involve immune checkpoint

inhibitors, peptide vaccines, dendritic cell vaccines, and virotherapy. Accordingly,

this review comprehensively overviews existing studies of targeted drugs and

immunotherapy for glioma and discusses the challenge and perspective of targeted

drugs and immunotherapy for glioma to clarify future directions.
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1 | INTRODUCTION

Glioblastoma (GBM), the most prevalent primary malig-
nant brain tumor, is associated with a dismal prognosis
and poor quality of life [1–4]. In addition, this tumor has
an annual morbidity rate of 3.26 per 100,000 [5]. GBM
usually recurs even after standard therapy, and it is
estimated that only an average of 6–11 months elapses
between tumor recurrence and progression [6]. The World
Health Organization (WHO) classification of glioma has
been rapidly modified since molecular alternation was
added to the third edition in 2000 and continually changed
in the latest fifth edition in 2021 [7–9]. Based on the fifth
edition of the WHO Classification of Tumors of the
Central Nervous System (WHO CNS5), diffuse astrocytic
glioma with wild‐type (WT) isocitrate dehydrogenase
(IDH) and WT Histone 3 (H3) should be diagnosed as
“IDH‐WT GBM, WHO grade 4” in the presence of at least
one of the following pathological and genetic features,
including (1) microvascular proliferation; (2) necrosis; (3)
telomerase reverse transcriptase (TERT) promoter muta-
tion; (4) Epidermal Growth Factor Receptor (EGFR) gene
amplification; and (5) chromosome 7 gain‐of‐function and
chromosome 10 loss‐of‐function copy number variants.
The previous diagnosis of “IDH‐mutant GBM” should be
corrected to “IDH‐mutant astrocytoma, WHO grade 4” in
the presence of at least one of the following features:
microvascular proliferation, necrosis, and homogeneous
deletion of the CDKN2A/B gene [10].

Treatment of GBM is complicated by multiple factors,
including tumor heterogeneity within and between patients
and a highly impermeable blood–brain barrier (BBB), which
limits the effectiveness of numerous standard therapies.
Currently, GBM patients still have a disappointing prognosis
even when receiving the standard of care, including
maximal surgical excision followed by temozolomide
(TMZ) radiochemotherapy and adjuvant TMZ chemo-
therapy with/without tumor treating fields (TTF), as
evidenced by a median overall survival (mOS) of 20.5 and
15.6 months, respectively [11]. Of note, advances in
molecular targeted therapy and immunotherapy have
started a new era of GBM treatment. National Comprehen-
sive Cancer Network guidelines recommend clinical trials as
a good practical point for research on GBM. Therefore, we
reviewed the phase III clinical trials of molecular targeted
therapy and immunotherapy for GBM (Tables 1 and 2) and
discussed the contemporary challenges and future land-
scape of these two therapies. For most of these trials, GBM
was diagnosed with the fourth editionWHO classification of
Tumors of the Central Nervous System, and others were
based on pathological diagnoses. Post hoc analysis of
previous clinical trials and prospective studies based on
WHO CNS5 are needed.

2 | MOLECULAR TARGETED
THERAPY

Because of the heterogeneity of GBM, key mutations
related to GBM pathogenesis are being elucidated for
the development of targeted therapies to effectively
combat the complexity of GBM. In the following
review, we will concisely analyze the progress in phase
III clinical trials of molecular targeted therapy for
GBM. As reported, most tumors involve recurrent
molecular alterations that can block core growth
pathways, such as mitogen‐activated protein kinase
(MAPK), receptor tyrosine kinase (RTK), and phos-
phoinositide 3‐kinase (PI3K) pathways, cell cycle, DNA
repair, and apoptosis.

2.1 | Monoclonal antibodies

The vascular endothelial growth factor receptor (VEGFR)
pathway has been widely recognized as a key factor in the
survival of GBM cells [28]. Moreover, VEGF is over-
expressed in GBM, which allows for the involvement of
many downstream pathways, including MAPK/ERK1/2,
endothelial nitric oxide synthase, and mTOR, in the
abnormal proliferation of tumor vessels [29]. Accordingly,
vascular proliferation is abnormal in GBM, while the
normalization of vessels can increase tumor blood flow and
improve the survival of GBM patients (NCT00305656) [30].
Of note, bevacizumab is a humanized monoclonal antibody
against the VEGF‐A ligand, which has been reported to
inhibit tumor angiogenesis [31]. Moreover, bevacizumab
has been confirmed to elevate the survival of GBM patients.
For example, a phase III trial revealed that bevacizumab
significantly improved progression‐free survival (PFS) but
insignificantly affected overall survival (OS) for patients
with newly diagnosed GBM (nGBM) and recurrent GBM
(rGBM) (NCT00884741) [15, 32]. Bevacizumab also pro-
longs the OS of patients with IDH1‐wt GBM
(NCT00943826) [16]. The combination of bevacizumab
and TMZ showed excellent efficacy and tolerability in
patients with recurrent/progressing GBM [33]. In addition,
bevacizumab combined with lomustine and radiotherapy
also alleviated PFS in patients with IGS‐18 or “classical”
GBMs [34].

2.2 | The mammalian target of
rapamycin (mTOR) inhibitor

Everolimus is an inhibitor of mTOR. According to a
phase III trial, this inhibitor is effective in reducing the
volume of subependymal giant cell astrocytomas [35].
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Conversely, several studies have unveiled the disappoint-
ing results of mTOR inhibition on the OS of GBM
patients [36].

2.3 | Small‐molecule inhibitors

The efficacy of small‐molecule inhibitors targeting RTKs,
particularly EGFR, has been extensively studied in GBM.
EGFR amplification is found in 50% of cases, of which
approximately half have EGFRvIII mutations [37]. EGFR
inhibitors have not been manifested to improve survival in
GBM patients despite their success in other cancers [38].
This phenomenon is attributed to relatively low intratu-
moral drug levels. Furthermore, the molecular heterogene-
ity of GBM and the simultaneous activation of multiple
RTK pathways may also limit the efficacy of single target
therapies [39]. EGFR antibodies have mostly failed in
clinical trials for the treatment of gliomas [40, 41].
Intriguingly, nimotuzumab, an anti‐EGFR monoclonal
antibody, is more effective in GBM patients with the
activated AKT/mTOR pathway [12]. In addition, depatux-
izumab mafodotin, an EGFR‐targeting antibody–drug
conjugate, is effective in the treatment of rGBM that
relapses after TMZ standard treatment [42] but is ineffective
in the treatment of nGBM [13] (NCT02573324). The
vaccine rindopepimut, in combination with TMZ demon-
strated efficacy in response to rGBM with EGFRvIII
mutations [43] (NCT00458601) but failed to show efficacy
in a phase III clinical trial [44] (NCT01480479). None-
theless, a small percentage of GBMs harbor driver
mutations, such as BRAF V600E, that responds to RAF
or RAF/MEK inhibitors or oncogenic fusions, such as
NTRK [45–47].

The use of small molecules with multitarget inhibi-
tion may overcome issues, including heterogeneity and
pathway redundancy, but may also increase toxicity.
Regorafenib, an oral multikinase inhibitor, was found in
a clinical trial to increase OS in patients with recurrent
diseases, motivating further research [48]. Additionally,
the effect of regorafenib on nGBM and rGBM is being
evaluated in GBM AGILE, an international phase II/III
trial designed to evaluate multiple treatment combina-
tions (NCT03970447) [49].

2.4 | Integrins

Integrins are a family of cell surface receptors composed
of 24 types of heterodimers. Integrin signal transduction
not only is involved in many cellular processes but also
mediates cell communication within the extracellular
matrix during adhesion, motility, migration, invasion,T
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and angiogenesis. Moreover, prior studies indicated that
integrin αvβ3 and αvβ5 were highly expressed in gliomas
and were potential preclinical therapeutic targets for
GBM [50, 51].

Cilengitide, a selective integrin inhibitor targeting
αvβ3 and αvβ5, exhibits excellent tolerability and
moderate efficacy in the treatment of rGBM as shown
by clinical trials [52–54] (NCT00979862). In contrast,
cilengitide cannot protect against invasion and improve
recurrence in nGBM [55, 56]. Moreover, it has been
reported that GBM patients with O‐6‐methylguanine‐
DNA methyltransferase (MGMT) promoter methylation
respond more favorably to cilengitide treatment than
those with MGMT promoter unmethylation [17, 57]
(NCT00689221). On the contrary, a phase III trial
demonstrated that the efficacy of cilengitide is
insignificant for GBM patients with MGMT promoter
methylation [58] (NCT00689221). Despite the current
dismal efficacy of targeting integrins for glioma treat-
ment, this strategy has an excellent tolerability profile.
Additionally, integrins are specifically expressed in
tumors. Therefore, targeting integrins remains one of
the most important research targets.

2.5 | Targeting the proteasome

The proteasome, an intracellular protein degradation site
[59], induces cancer cell apoptosis by regulating p53, ER
stress, cell cycle, and drug resistance [60]. Combination
of bortezomib (a proteasome inhibitor) and Vorinostat (a
histone deacetylase inhibitor) is ineffective for the
treatment of rGBM [61] (NCT00641706). Nevertheless,
bortezomib combined with standard radiotherapy is safe
and effective for nGBM patients [62] (NCT00998010). A
phase I/II trial revealed that the proteasome inhibitor
Marizomib in combination with bevacizumab is
ineffective in the treatment of GBM patients [63]
(NCT02330562). In addition, the combination of Mar-
izomib and TMZ for GBM is in phase III trials
(NCT03345095). The phase III clinical trials of molecular
targeted therapy for GBM are listed in Table 1.

2.6 | Antibody–drug conjugate (ADC)

An ADC, a combination of an antibody and a cytotoxic
compound, can be used for the targeted delivery of
biologically active molecules. Phase II trial results
showed that the survival of patients with EGFR‐
amplified rGBM was prolonged when Depatux‐M was
combined with TMZ (INTELLANCE 2). However, a
phase III trial of combination of Depatux‐M and TMZ for

nGBM (INTELLANCE 1) was terminated because the
interim analysis demonstrated no survival benefit
(NCT02573324) [64].

2.7 | Poly‐(ADP‐Ribose)‐DNA
polymerase (PARP) inhibitors

The efficacy of several PARP inhibitors against GBM has
rarely been evaluated in the clinic. However, recent
studies have illustrated that olaparib, veliparib, and
pamiparib can achieve therapeutic levels in situ
[65–67]. A phase III trial is underway to evaluate the
combination of Veliparib and adjuvant TMZ for MGMT‐
methylated nGBM, and the results will be available soon
(NCT02152982). Mechanisms underlying different
molecular targeted therapies for GBM in clinical trials
are detailed in Figure 1.

3 | IMMUNOTHERAPY

3.1 | Immune environment of GBM

The lymphatic vessels lining the dural sinus in the CNS
were found in a mouse model, which can drain cerebrospi-
nal fluids and lymphocytes to deep cervical lymph nodes.
This finding changes the previous perception of the brain as
an “immune‐privilege” organ and also provides support for
immunotherapy of brain tumors [68]. GBM is characterized
by a “cold” immune microenvironment with a relatively
low somatic tumor mutational burden (TMB) and T
lymphocyte infiltration [69]. The BBB, unique lymphatic
system, and regulation of immune components are
responsible for an immunosuppressive microenvironment,
which challenges immunotherapy of GBM [70]. Mecha-
nisms of GBM immunotherapy involved in phase III
clinical trials are shown in Figure 2.

3.2 | Phase III clinical trials of
immunotherapy for GBM

3.2.1 | Immune checkpoint inhibitors (ICIs)

ICIs induce antitumor immune responses by targeting
immunosuppressive pathways. CheckMate 143 [19] is the
first phase III randomized clinical trial of ICIs for GBM,
which involves Nivolumab and bevacizumab monother-
apy (the control). The results exhibited that the mOS of
patients was 9.8 and 10.0 months in the Nivolumab and
bevacizumab groups, respectively (p= 0.76), and that
median PFS (mPFS) was markedly longer in the
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bevacizumab group. Grade 3–4 adverse reactions in the
Nivolumab group were mainly malaise, elevated liver
enzymes, and elevated lipase. Omuro et al. conducted
CheckMate 498 for newly diagnosed supratentorial GBM
with MGMT promoter unmethylation in 2022 [20] and
evaluated the efficacy of concurrent radiotherapy with
Nivolumab followed by adjuvant Nivolumab by compari-
sons with standard STUPP regimen [71]. The results
revealed that mOS was 13.4 and 14.9 months in the
Nivolumab and STUPP groups, respectively (p= 0.0037).
CheckMate 548 was also performed in 2022 for nGBM
with MGMT promoter methylation [21], where patients
in the Nivolumab group were treated with concurrent
TMZ radiochemotherapy with adjuvant TMZ plus
Nivolumab with patients treated with the standard
STUPP regimen as a control [71]. This trial reported
that mOS was 28.9 and 32.1 months and mPFS was 10.6
and 10.3 months in the Nivolumab and STUPP groups,
respectively. In addition, subgroup analysis based on PD‐
L1 expression also showed no statistical difference in the
survival of patients.

All these three clinical trials showed negative results
of ICIs in GBM, and several studies were performed to

identify the features of responders to clarify indications
of ICIs. TMB, mismatch repair (MMR), and immune
checkpoints have been reported as potential biomarkers
for ICI treatment in most types of extra‐cranial tumors,
not similar in GBM because of low TMB and MMR and
immune suppression [72]. Responders of anti‐PD‐1
treatment demonstrated distinct patterns, including
tumor clonal evolution, enrichment of mutations in the
MAPK pathway, generation of more neoantigens, and
lower T cell clonal diversity [73]. An early phase clinical
trial manifested that neoadjuvant ICIs promoted the
release of immunogenic neoantigens and induced
immune responses [74]. More research is warranted on
the screening strategies of potential patients and the time
sequence of ICIs and others treatments.

3.2.2 | Antigenic peptide vaccine

Antigenic peptide vaccines, peptides comprising 8–25
amino acids, are constructed based on the specific
sequences of tumor‐specific antigens or tumor‐
associated antigens and can induce active antitumor

FIGURE 1 Overview of the mechanisms of different molecular targeted therapies in clinical trials of GBM. (a) Monoclonal antibodies
used for the treatment of GBM. (b) Therapeutic agents targeting mTOR pathways for the treatment of GBM. (c) The functional mechanisms
of the related small‐molecule inhibitors advanced in clinical trials of GBM. (d) Integrins used in the clinical trial of GBM. (e) Role of
proteasome inhibitors in GBM. (f) ADC application in the treatment of GBM and its targets and effect. (g) PARP inhibitors for the treatment
of GBM.
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immune responses [75]. EGFRvIII, a specific antigen for
GBMs, is expressed in approximately 20%–30% of GBMs
[76]. CDX‐110 (Rindopepimut) is an antigenic peptide
targeting EGFRvIII. A Phase III clinical trial of CDX‐110
was conducted with the involvement of 745 nGBM
patients expressing EGFRvIII [22]. Patients in the
experimental group were treated with the standard
STUPP regimen combined with adjuvant Rindopepimut
[71]. mPFS and mOS were not statistically different in
the subgroup of GBM that was evaluated as small
residual lesions (size of enhancement lesions on MRI <
2 cm2) after radiochemotherapy. For patients with
significant residual lesions, mOS was 16.1 and 15.6
months in the Rindopepimut group and the control
group, respectively. Common grade 3–4 adverse reactions
included thrombocytopenia, malaise, cerebral edema,
and seizures. Due to the heterogeneity, EGFRvIII‐
negative GBM can progress under Rindopepimut

treatment, similar to the results under treatment with
other peptide vaccines against a single antigen [75, 77].

Due to the long response time to activate native
tumor‐reactive cytotoxic T lymphocytes (CTLs), antitu-
mor immune responses can also be induced by screening
the precursor cells of peptide‐specific CTLs already
present in peripheral blood and constructing personal-
ized peptide vaccination (PPV) [78]. Previous research on
PPV for rGBM indicated that approximately 71% (15/21)
of patients developed cellular and humoral immune
responses [79] with tolerable adverse reactions [80]. A
following phase III clinical trial was carried out by
including rGBM patients who were positive for human
leukocyte antigen‐A24 [23] and had immune responses
to at least 2 peptides of a 12‐peptide library, in which
patients in the interventional group were treated with
PPV and compared with those treated with placebo. The
data demonstrated that mOS was 8.4 and 8.0 months in

FIGURE 2 Brief illustration of immunotherapy for glioblastoma (GBM) whose phase III clinical trials finished. (a) Immune checkpoint
inhibitors (anti‐PD‐1). (b) Antigenic peptide vaccine. (c) Dendritic cell vaccines (DCVax‐L). (d) Virotherapy.
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the interventional and placebo groups, respectively
(p= 0.621). Subgroup analysis results suggested that in
addition to age, body weight, and physical status, SART2‐
93 peptide was associated with worse prognoses.
Moreover, immune responses were higher in patients
without SART2‐93 peptide selection. However, addi-
tional immune features of patients should be clarified in
the future.

3.2.3 | Cellular vaccines

Dendritic cell (DC) vaccines are associated with T‐
lymphocyte infiltration in the CNS [81]. Liau et al. [82]
conducted a phase III clinical trial of DCVax‐L, a
dendritic cell vaccine loaded with autologous tumor
lysates, and published the preliminary results. In their
trial, patients in the interventional group were subjected
to DCVax‐L treatment, while patients in the control
group were treated with peripheral blood mononuclear
cells [71], and crossover therapy was available for tumor
progression, including DCVax‐L and other optimal
treatments. Based on the Intention‐to‐Treat cohort (331
cases), 90% of patients receiving DCVax‐L treatment had
a mOS of 23.1 months, and approximately 30% had a
mOS of up to 46.5 months. In addition, around 2.1% of
patients experienced DC vaccine‐related grade 3–4
adverse reactions, including cerebral edema, seizures,
nausea, and lymph gland infections. This team published
the final results of DCVax‐L in November 2022 [24]. For
nGBM patients, mOS was 19.3 and 16.5 months in the
DCVax‐L and external control cohorts, respectively (one‐
sided p= 0.002). For rGBM patients, mOS was 13.2 and
7.8 months in the DCVax‐L and external control groups,
respectively (one‐sided p< 0.001). Although matching‐
adjusted indirect comparison was performed, the histori-
cally published external control cohort was used in this
study for survival analysis, and the conclusion of the trial
of DCVax‐L should be interpreted causally in clinical
practice [83]. The chemotaxis of T cells was predicted as
a biomarker of DC vaccines, which needed to be
confirmed in vivo [84].

3.2.4 | Virotherapy

Virotherapy involves viruses that locally and limitedly
infect and target renewable cells and performs functions
via oncolytic virus and viral vectors carrying therapeutic
genes, which has been predicted as an antitumor
treatment unaffected by heterogeneity [85–88].

Retroviruses as vectors carrying the gene encoding
herpes simplex virus thymidine kinase (HSV‐tk) are the

first to be studied in clinical trials. Thymidine kinases
can convert ganciclovir into a nucleoside‐like precursor
through phosphorylation to block DNA replication and
to induce apoptosis, thereby exerting antitumor immune
effects. In a phase III clinical trial of nGBM published by
Rainov et al. in 2000 [25], patients in the interventional
group were treated with surgical resection and adjuvant
radiotherapy combined with HSV‐tk and ganciclovir, for
whom HSV‐tk was immediately injected into the residual
cavity after surgery, while patients in the control group
underwent surgery and radiotherapy. The mOS was 365
days and 354 days in the gene therapy and control
groups, respectively. Another study unraveled that
adenovirus‐mediated HSV‐tk treatment was more tolera-
ble and was associated with higher immune responses
than retrovirus treatment [89]. Westphal et al. [26] then
conducted a phase III clinical trial of adenovirus‐
mediated HSV‐tk (Sitimagene Ceradenovec, ADV‐tk) by
including patients with resectable newly diagnosed
supratentorial high‐grade gliomas. The results exhibited
a mOS of 497 and 452 days in the experimental and
control groups, respectively (p= 0.31) and that grade 3–4
adverse reactions in the experimental group were mainly
hemiplegia, aphasia, hyponatremia, and seizures.

Toca 511 (Vocimagene Amiretrorepvec) is a nonlytic
retroviral replicating vector carrying a codon‐optimized
gene encoding the yeast cytosine deaminase enzyme,
which can transform the extended‐release precursor drug
Toca FC (5‐fluorocytosine, 5‐FC) into 5‐fluorouracil (5‐
FU), therefore killing tumor cells and immuno-
suppressive cells in the microenvironment and inducing
antitumor immune responses [90]. Cloughesy et al. [91]
performed a phase II/III clinical trial of recurrent high‐
grade glioma in 2020, in which patients in the Toca 511
group were injected with Toca 511 into the surgical
cavity and administered oral Toca FC 6 weeks after
surgery, while patients in the control group were treated
with lomustine, TMZ, or bevacizumab. The data showed
that mOS was 11.1 and 12.2 months in the Toca 511 and
control groups, respectively (p= 0.62). Grade 3–4 adverse
reactions in the Toca 511 group mainly included aphasia,
hemiparesis, and headache.

VB‐111 (Ofranergene Obadenovec) is an adenoviral
vector‐based immunotherapy, which carries a hemisyn-
thetic pre‐proendothelin 1 (PPE‐1)‐3x promoter sequence
and expresses a chimeric receptor combined with tumor
necrosis factor receptor 1 (TNFR1) and Fas. VB‐111
exerts antitumor effects through two following mecha-
nisms: (1) mediating apoptosis and antiangiogenesis in
vascular endothelial cells; (2) inducing antitumor
responses of T‐lymphocytes [92]. In a phase III clinical
trial of rGBM published in 2020 [27], the efficacy of
VB‐111 plus bevacizumab was compared with that of
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bevacizumab monotherapy, which demonstrated that
mOS was 6.8 and 7.9 months in the VB‐111 and
bevacizumab groups, respectively (p= 0.19). In addition,
67.5% of the patients in the VB‐111 group developed
grade 3 or higher adverse reactions, including fever,
chills, and flu‐like symptoms.

In addition to three of these phase III clinical trials,
intra‐tumoral infusion of recombinant polioviruses (PVSRI-
PO) is neurologically safe and prolongs the survival of
patients with rGBM [93]. G47Δ, a triple‐mutated oncolytic
herpes simplex virus, is effective and safe for treating GBM
according to a phase II clinical trial and has recently been
approved in Japan [94]. Furthermore, the cytomegalovirus
vaccine (VBI‐1901) also can regulate peripheral CD4+ T
cells and benefit the survival of rGBM patients [95]. A
preclinical study revealed that the combination of ICIs and
oncolytic viruses had complex regulatory effects on both
subgroups of T cells and macrophages and showed
synergistic curative activity, highlighting the necessity of
laboratory study and clinical practice in the future [96].

4 | SUMMARY AND
PERSPECTIVE

4.1 | Current challenges and
perspectives of molecular targeted therapy
for GBM

In recent years, the development of cognition and the
establishment of the molecular pathology of glioma have
provided more options for the clinical treatment of glioma
and positively affected glioma treatment. For high‐grade
glioma, especially GBM, the classical Stupp protocol
prolongs the OS of nGBM patients to 14.6 months, and
the subsequent development of TTF increases the OS of
GBM patients to approximately 20 months. Nevertheless,
it is clear that overall treatment outcomes are disappoint-
ing, and standard treatments are lacking for rGBM in
particular. Numerous clinical trials of GBM have been
conducted over the past 20 years and have almost failed,
and even the strategies with significant efficacy in other
tumors have been repeatedly frustrated in GBM. This
phenomenon is mainly due to the following issues,
including the presence of the BBB, the heterogeneity of
tumor tissues, and the complexity of the tumor micro-
environment. Accordingly, the following attempts may be
the key to overcoming these issues: (1) It is highly
necessary to develop more effective drug delivery systems,
research on which has progressed tremendously and has
been detailed in the excellent reviews [97–100]; (2) for the
complex heterogeneity of tumors, more systematic molec-
ular pathological and mechanistic studies are effective.

For example, as WHO CNS5 is published, Gene and
Protein Nomenclature is formally recommended and
verified to be more clinically effective and beneficial. In
addition, it lists newly discovered glioma types, uses a
method of grading within types, and combines histological
and molecular grading, which provides greater clarity in
diagnosis and associated treatments. Nonetheless, there
still is a lack of molecular diagnosis and precise treatment
related to tumor evolution or recurrence at present; (3) the
GBM microenvironment is poorly understood relative to
GBM cells themselves. GBM has a unique brain tissue
environment, such as immune privilege, vast neuronal
interactions, and unique brain extracellular matrix com-
ponents [101, 102]. Therefore, in‐depth research on the
role of the microenvironment in which GBM cells reside
will advance the diagnostic development of the diagnosis
and therapy of GBM. For instance, targeting tumor vessels
with bevacizumab improves PFS [15, 32]. In addition,
there are positive reports on immunotherapy for GBM
[69]. These observations imply a great potential for in‐
depth investigation of the GBM microenvironment.

In addition, the history of clinical trials of glioma also
suggests that therapeutic strategies targeting a single
target or a single pathogenic mechanism often fail due
to the high plasticity and redundant survival mechanisms
of GBM. Therefore, it is highly imperative to develop
combination therapy strategies while developing precision
targeted therapies. Moreover, an excellent review has
detailed the importance of immune combination therapies
[103]. However, current research to develop optimized
combination therapies is challenged by the unclear tumor
mechanism and numerous combinable post‐permutation
therapeutic strategies, which perhaps can be advanced by
the development of big data technologies and intelligent
experimental platforms [104]. Perhaps the most pressing
issue at present is a decrease in efficacy or an enhance-
ment in toxicity when traditional therapies are combined
with emerging therapies, as this decrease or enhancement
can lead to the failure of clinical trials. For example, TMZ‐
induced reductions in PD‐L1 expression may be associated
with the treatment failure of nivolumab in rGBM [105].
Due to its immunosuppressive effects, dexamethasone
abrogates the efficacy of immunotherapy (particularly
PD‐[L]1 treatment) [106]. Therefore, it is extremely
necessary to deeply explore the interaction between
traditional and emerging therapies before clinical trials.

4.2 | Current challenges and
perspectives of immunotherapy for GBM

The causes of immunotherapy resistance in GBM are
complex and may include the following factors: (1) the
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immunosuppressive microenvironment and overall
immune response suppression in patients; (2) heteroge-
neity during tumor progression, as well as between
tumors and patients; (3) low TMB and immunogenicity;
(4) the presence of the BBB; (5) pathway redundancy and
escape through bypass pathways; (6) a lack of effective
biomarkers; and (7) a lack of experimental models
[107–109]. Unlike immunogenic tumors such as lung
cancer, GBM has a low level of TMB neoantigens.
Although many genetic variants are generated during
radiotherapy and TMZ treatment, they cannot effectively
transform GBM into a “hot” tumor [110]. Additionally,
little is known about the correlation of high levels of
TMB and T‐lymphocyte infiltration with responses to
immunotherapy [111]. GBM can also lead to T cell trap
in the bone marrow, which induces T cell dys-
function [112].

Some phase III clinical trials of GBM elucidated that
immunotherapy failed to substantially improve the
prognosis of patients. The efficacy of DCVax‐L illustrates
the potential of immunotherapy. Furthermore, neoadju-
vant therapies, modified drug delivery, researches on
new therapeutic targets and combination therapies still
have potential in the future [113, 114]. An early clinical
trial elaborated that neoadjuvant ICIs enhanced intra-
cranial and systemic antitumor immune responses in
rGBM, contributing to survival benefits [74]. Intratumor-
al drug delivery, nanoparticles, and adjuvant treatment to
enhance BBB permeability (such as radiotherapy and
focused ultrasound) are promising for overcoming the
issue of the BBB [115]. Intratumoral injection of ICIs
may prolong the survival of patients with surgically
resectable rGBM when compared to bevacizumab
treatment in historical cohorts [116]. Combination
therapy may be immune microenvironment modulation
therapy, other immunotherapy, and radiotherapy [113].

Registered phase III clinical trials of GBM whose
results have not been reported are displayed in Table 3.
Other immunotherapies, such as chimeric antigen
receptor T cells, monoclonal antibodies targeting other
immune checkpoints, and vaccine therapy, have also
yielded promising results in clinical trials [113, 114].

Due to the heterogeneity of GBM, monotherapy is
difficult to exert antitumor effects in GBM, and dynamic
changes of biomarker‐based treatments are neces-
sary [117].
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