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Glioblastoma (GBM) is the most common malignant primary brain tumor with a

poor 5-year survival rate. Autophagy is a conserved intracellular degradation

system that plays a dual role in GBM pathogenesis and therapy. On one hand,

stress can lead to unlimited autophagy to promote GBM cell death. On the other

hand, elevated autophagy promotes the survival of glioblastoma stem cells against

chemotherapy and radiation therapy. Ferroptosis is a type of lipid peroxidation-

mediated regulated necrosis that initially differs from autophagy and other types of

cell death in terms of cell morphology, biochemical characteristics, and the gene

regulators involved. However, recent studies have challenged this view and

demonstrated that the occurrence of ferroptosis is dependent on autophagy,

and that many regulators of ferroptosis are involved in the control of autophagy

machinery. Functionally, autophagy-dependent ferroptosis plays a unique role in

tumorigenesis and therapeutic sensitivity. This mini-review will focus on the

mechanisms and principles of autophagy-dependent ferroptosis and its

emerging implications in GBM.
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Introduction

Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults,

with an annual incidence of about 3.23 cases per 100,000 people and a median survival

(regardless of treatment) of approximately 8 months, with a one-, five- and ten-year survival

rates of 42.8, 7.2 and 4.7%, respectively, based on recent statistical analysis of the Central

Brain Tumor Registry of the United States (CBTRUS) (1, 2). Temozolomide is one of the

first-line chemotherapeutics for the treatment of GBM due to its DNA alkylating activity and

its ability to cross the blood-brain barrier (3). However, GMB patients often develop

temozolomide resistance after one year of treatment. One reason for this clinical challenge

is that glioblastoma stem cells (GSC) can survive after surgical resection and are highly

resistant to chemotherapy and radiotherapy (4). Specifically, autophagy is a cellular recycling

mechanism that confers robust chemoresistance and radiation resistance to GSC, resulting in
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GBM regeneration and the inability to kill them by standard therapies

(5). Therefore, understanding the process and function of autophagy

is important for developing effective anticancer approaches in GBM.

Autophagy is a catabolic process that promotes the recycling

of cellular components under stress conditions (such as

nutrient deficiency or microbial infection), thereby restoring cell

homeostasis (6). It can be divided into macroautophagy,

microautophagy and chaperon-mediated autophagy (CMA) (7).

Macroautophagy involves the formation of autophagosomes that

encapsulate senescent proteins or damaged organelles into

lysosomes for degradation and recycling (8). The macroautophagy

process is dynamically mediated by autophagy-related (ATG) family

proteins through the formation of distinct protein complexes under

the control of post-translational modifications (9). Microautophagy is

driven by direct engulfment of cytoplasmic cargo to lysosomes under

infectious conditions (10). In CMA, heat-shocked homologous 70

kDa (HSC70) proteins recognize KFERQmotifs in target proteins and

facilitate their transfer to lysosomes through the lysosome-associated

membrane protein 2A (LAMP2A) receptor (11). This review will

focus on macroautophagy, simply referred to as autophagy from

now on.

Autophagy is involved in the regulation of various cell death

modalities, thereby determining cell fate (12). In addition to

promoting cell survival, excessive autophagy can also trigger cell

death, especially the iron-dependent form of nonapoptotic

ferroptosis. Notably, ferroptosis was originally described as an

autophagy-dependent cell death (13). Growing evidence from

independent groups highlights that autophagy promotes iron

accumulation and lipid peroxidation, key metabolic hallmarks of

ferroptosis (14, 15). Consequently, genetic or pharmacological

inhibition of the autophagy machinery can suppress ferroptosis

sensitivity in various disease models. Moreover, pharmacological

induction of autophagy-dependent ferroptosis may be a game-

changing antitumor strategy compared to traditional inhibition of

autophagy to limit tumor growth (16).

In this review, we summarize the current understanding of the

process and basis of autophagy-dependent ferroptosis. We also

discuss the implications of induction of autophagy-dependent

ferroptosis for the treatment of GBM.
Molecular mechanism of autophagy-
dependent ferroptosis

The activation of autophagy machinery is significantly increased

within cells treated with classical ferroptosis inducers, such as small-

molecule compounds erastin and RSL3. Compared to wide-type cells,

autophagy deficient cells (e.g., ATG5-/- and ATG7-/-) exhibit higher

survival rate during ferroptosis (17). In vitro studies further show that

ferroptosis is dependent on autophagy machinery (18, 19). Indeed,

excessive formation of autophagosomes or abnormal increase of

lysosomal activity will cause the accumulation of intracellular iron

and lipid peroxides by selectively degrading proteins regulating iron

and redox homeostasis (e.g., ferritin, GPX4, ARNTL, and lipid

droplets), promoting the occurrence of ferroptosis (Figure 1). The

selective role of autophagy in promoting ferroptosis is discussed from

the following six aspects.
Frontiers in Oncology 02
Degradation of iron regulatory protein

Excessive ferrous iron can promote the generation of reactive

oxygen species (ROS) through Fenton reaction, thus causing toxic

effects on cells (20). Under normal physiological conditions,
FIGURE 1

Mechanism and significance of autophagy-dependent ferroptosis.
Autophagy promotes ferroptosis by selectively degrading anti-
ferroptosis proteins or organelles through multiple autophagy
receptors. DAMP release from ferroptotic cells can trigger
inflammatory and immune responses in macrophages by activating
the AGER pathway. AGER, advanced glycosylation end-product
specific receptor; BMAL1, brain and muscle ARNT-like 1; CDH2,
cadherin 2; DCN, proteoglycan; FTH1, ferritin heavy chain 1; GPX4,
glutathione peroxidase 4; HPCAL1, hippocalcin like 1; HMGB1, high
mobility group box 1; IL, interleukin; MHC, major histocompatibility
complex; NCOA4, nuclear receptor coactivator 4; RAB7A, member
RAS oncogene family; SLC40A1, solute carrier family 40 member 1;
SQSTM1, sequestosome 1; TLR, toll-like receptor; TNF, tumor necrosis
factor; VEGF, vascular endothelial growth factor.
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intracellular ferrous iron is absorbed by the ferritin heavy chain 1

(FTH1, also known as FTH). Ferrous iron is then oxidized to ferric

iron and stored in ferritin. In addition, excess ferrous iron is

transported out of the cell via iron exporter solute carrier family 40

member 1 (SLC40A1, also known as ferroportin-1 or FPN1) on the

cell membrane (21). Ferroptosis can be induced by increasing iron

absorption and decreasing iron storage or preventing iron release. At

least two mechanisms mediate iron accumulation and subsequent

ferroptosis by promoting autophagic degradation of ferritin or

SLC40A1 (Figure 1). The degradation of ferritin is mediated by

nuclear receptor coactivator 4 (NCOA4)-dependent ferritinophagy

in erastin-treated mouse embryonic fibroblasts and human pancreatic

cancer cells (17). In contrast, the autophagy receptor sequestosome 1

(SQSTM1, best known as p62) is required for the elimination of

SLC40A1 to promote iron-dependent ferroptosis in cancer cells in

vitro and in vivo (22). Although these studies highlight that autophagy

increases toxic iron accumulation to induce ferroptosis, whether

autophagy selectively affects iron accumulation in different

subcellular organelles remains unknown.
Degradation of lipid droplet

Lipid droplets are highly dynamic organelles that not only store

lipids but also release them under stressful conditions. The process of

lipid droplet degradation through autophagy is called lipophagy (23).

The free fatty acids generated by lipophagy promote adenosine 5′-
triphosphate generation through b oxidation in mitochondria. Unlike

lipid droplets known to play a role in preventing lipotoxicity

by storing fatty acids, lipid droplet degradation mediated by

RAB7A lipophagy (Figure 1) can promote RSL3-induced lipid

peroxidation and ferroptosis in human liver cancer cells (24). In

contrast, the overexpression of tumor protein D52 (TPD52)

effectively inhibits RSL3-induced lipid peroxidation and ferroptosis

by promoting lipid storage or inhibiting lipophagy (24). These

findings suggest that lipophagy provides a lipid supply for

subsequent lipid peroxidation during ferroptosis. In addition to

RAB7A, further identification of lipid droplet-specific autophagy

receptors is important for the development of inhibitors targeting

lipophagy-dependent ferroptosis.
Degradation of circadian regulator

The circadian clock is endogenous and controls numerous cellular

physiological processes, including iron metabolism, oxidative stress,

and cell death, by regulating circadian switches (25). Clockophagy is a

type of selective autophagy that degrades circadian rhythm-regulating

proteins during ferroptotic cancer cell death (26). The clockophagic

degradation of basic helix-loop-helix ARNT like 1 (BMAL1, also

known as ARNTL1), the core protein of circadian clock, promotes

lipid peroxidation and ferroptosis by increasing lipid storage in

droplets through the Egl-9 family hypoxia inducible factor 2

(EGLN2, also known as PHD1)-mediated hypoxia inducible factor

1 subunit alpha (HIF1A) degradation (27). Moreover, SQSTM1 is

required for clockophagy-mediated BMAL1 degradation (27)
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(Figure 1), supporting that SQSTM1 is a multisubstrate autophagy

receptor for ferroptosis.
Degradation of GPX4

Glutathione peroxidase 4 (GPX4), formerly known as

phospholipid hydrogen peroxide glutathione peroxidase (PHGPx),

is one of the core regulators and targets of ferroptosis (28). GPX4 is

the fourth member of the selenium-containing GPX family with a

unique ability to scavenge membrane lipid hydroperoxide products to

alcohols (29). In 2014, a targeted metabolomics study showed that the

overexpression or knockdown of GPX4 can regulate the cytotoxicity

of 12 ferroptosis inducers (28). Mechanistically, GPX4 uses its

catalytic activity to weaken lipid peroxide toxicity and maintain

membrane lipid bilayer homeostasis. RSL3, an inhibitor of GPX4,

covalently binds to GPX4 and inactivates GPX4, leading to the

accumulation of intracellular peroxides and triggering ferroptosis

(28). As a cofactor of GPX4, glutathione (GSH) deficiency

inactivates GPX4 and triggers ferroptosis. Therefore, the inhibition

of GPX4 activity and the decrease of GPX4 expression can destroy the

balance of cellular redox system, causing the accumulation of lipid

ROS and ferroptosis. Both erastin and RSL3 induce autophagy flux

and affect GPX4 levels through SQSTM1-mediated GPX4 protein

degradation in multiple cancer cells (22) (Figure 1). Moreover,

pharmacological inhibition of mammalian target of rapamycin

complex 1 (mTORC1) by rapamycin also reduces GPX4 protein

levels, while vice versa RSL3 inhibits mTORC1, supporting a

relationship between autophagy and ferroptosis (30). FIN56,

another ferroptosis inducer, also promotes GPX4 protein

degradation and lipid peroxidation in an autophagy-dependent

manner (31). Since CMA also mediates ferroptosis machinery

protein degradation, such as GPX4 and acyl-CoA synthetase long-

chain family member 4 (ACSL4) (32, 33), the receptors of which are

heat shock proteins, it is necessary to further elucidate the roles of

different types of autophagy in promoting ferroptosis.
Degradation of CDH2

Historically, hippocalcin like 1 (HPCAL1) is a neuron-specific

Ca2+-binding protein that control central nervous system responses

(34). In terms of tumor formation and development, HPCAL1

exhibits tumor-promoting activity in GBM by the activation of the

embryonic developmental signals, especially the WNT-CTNNB1/b-
catenin pathway (35). Recently, HPCAL1 was identified by

quantitative proteomic approach as a novel autophagy receptor that

triggers autophagy-dependent ferroptosis by selectively degrading

cadherin 2 (CDH2) (Figure 1) (36). Mechanistically, the

degradation of CDH2 is initiated by protein kinase C theta

(PRKCQ)-mediated HPCAL1 phosphorylation on Ter149. Notably,

starvation-induced autophagy does not require HPCAL1, which

establishes the first autophagy receptor to induce ferroptosis.

Furthermore, transmembrane protein 164 (TMEM164) acts as a

specific promoter of ferroptosis-related autophagosome formation,

but not ATG9A-dependent and starvation-induced autophagosome
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formation (37). These studies provide important insights into the

upstream signaling and downstream mediators of autophagy-

dependent ferroptosis.
Organelle-specific initiation of autophagy-
dependent ferroptosis

In addition to lipid droplets, other organelles play context-

dependent roles in mediating autophagy-dependent ferroptosis (38).

For example, the lysosomal cysteine protease cathepsin B (CTSB)

promotes autophagy-dependent ferroptosis via translocation from

lysosome into nucleus to cause DNA damage signals and to activate

stimulator of interferon response cGAMP interactor 1 (STING1, also

known as STING or TMEM173)-dependent DNA sensor pathways

(39) (Figure 2). In addition, the MAPK-STAT3-CTSB pathway is

required for erastin-induced ferroptosis in pancreatic cancer cells

(40). The inhibition of STAT3 through small molecules (e.g.,

cryptotanshinone and S31-201) or siRNA as well as blockade of

CTSB activity (using CA-074Me) or vacuolar type H+-ATPase (using

bafilomycin A1) limits ferroptosis (40). These findings suggest that
Frontiers in Oncology 04
there is organelle communication between the lysosome and the

nucleus to initiate autophagy-dependent ferroptosis.

Mitochondria play an important role in the process of ferroptosis,

including participating in mitochondrial DNA biosynthesis, ROS

metabolism and mitochondrial iron storage and transport (41, 42).

The DNA sensor hub STING1 links mitochondrial DNA damage,

autophagy, and ferroptosis. Specifically, anti-HIV drug zalcitabine-

induced mtDNA depletion and oxidative DNA damage activates the

cGAS-STING1 pathway, thereby triggering STING1-dependent

autophagy and subsequent autophagy-mediated ferroptosis (43)

(Figure 2). Mitochondria associating with lipid droplets in fat-

oxidizing tissues are recently identified as peidroplets mitochondria,

which have unique ATP synthesis and pyruvate oxidation capacities

(44), potentially suggesting a functional role in autophagy-dependent

ferroptosis through lipophagy. Furthermore, the iron-binding nuclear

protein pirin (PIR) can hijack HMGB1 in the nucleus, thereby

inhibiting the translocation of HMGB1 to the cytoplasm and

subsequent activation of beclin 1 (BECN1)-dependent autophagy

and ferroptosis in pancreatic cancer cells (45, 46). These findings

explain the persistent activation of DNA damage, DAMP release, and

autophagy flux during ferroptotic death.
FIGURE 2

Organelle-specific initiation of autophagy-dependent ferroptosis. There is crosstalk between lysosomes, nucleus and mitochondria. Oxidative damage to
nuclear or mitochondrial DNA triggered by iron-dependent CTSB translocation or anti-HIV drug zalcitabine can activate STING-dependent autophagy
and ferroptosis. BECN1, beclin 1; cGAS, cyclic GMP-AMP synthase; CTSB, cathepsin B; HMGB1, high mobility group box 1; PIR, pirin; STING1, stimulator
of interferon response cGAMP interactor 1.
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Targeting autophagy-dependent
ferroptosis signaling network in GBM

GBM cells promote autophagy under adverse conditions (e.g.,

nutrient deficiency, oxidative or hypoxic stress) to maintain their

survival and evade responses to cancer therapy (47–49). The

progression of GBM is associated with decreased autophagy

capacity (50). In a KRAS-driven mouse model of GBM, inhibition

of ATG significantly reduced tumor growth and oncogenic

progression, suggesting that autophagy is critical for GBM initiation

and growth (51). While temozolomide induces autophagy to kill

GBM, GSCs exert self-protection by activating autophagy (52). The

current study aims to find new therapeutic targets to improve patient

outcomes. Recent studies have shown that ferroptosis exists in GBM

tumor cells, and recurrent tumors are more prone to ferroptosis

treatment (53). These results confirm that exploiting the ferroptosis

process may be a possible new therapeutic strategy, especially in the

setting of recurrent GBM.

There is also evidence that GBMs have significantly increased iron

requirements compared to normal tissues, and GSCs uptake twice as

much iron as non-stem tumor cells (54). Thus, GBM cells have a

strong iron reliance. Targeting iron-related proteins or increasing

intracellular iron levels are considered as feasible methods for GBM

treatment (Table 1). Amentoflavone induces ferroptosis in glioma

cells though ATG7-mediated autophagy to break iron homeostasis

(55). Interestingly, both coatomer protein complex subunit zeta 1

(COPZ1) and tripartite motif containing 7 (TRIM7) are associated

with ferroptosis by regulating intracellular iron metabolism in GBM

(57, 59). Genetic inhibition of COPZ1 or TRIM7 suppresses tumor

growth in vitro and in vivo, mechanistically by inducing NCOA4

expression and promoting ferritinophagy, followed by increased

intracellular levels of ferrous iron and ultimately ferroptosis

(57, 59). More recently, multifunctional nanomaterials (including

ultrasmall iron oxide nanoparticles and iron oxide nanoparticles

loaded with paclitaxel) have the effects of increasing the

intracellular iron level, catalyzing fenton reaction, generating ROS

and lipid peroxidation, ultimately inducing ferroptosis via a BECN1-

dependent autophagy pathway (56, 58).

In addition to iron addiction, GBM has a strong capacity of lipid

synthesis, which is related to its malignant degree. Breaking lipid

metabolism balance in GBM can induce ferroptosis to inhibit tumor
Frontiers in Oncology 05
growth. Therefore, exploiting this metabolic alteration in GBM to

induce ferroptosis may be another effective therapeutic direction.

The damage-associated molecular patterns (DAMPs) released by

dead, dying, or stressed cells act as alarm signals to trigger innate and

adaptive immune responses (60). The early release of high mobility

group box 1 (HMGB1), proteoglycan core proteoglycan (DCN), or

mutated KRAS-G12D protein during ferroptosis is an active process

involving secretory autophagy, lysosomal exocytosis, and exosome

secretion (61–63) (Figures 1, 2). Once released by ferroptotic cells,

these extracellular DAMPs bind to the receptor advanced

glycosylation end-product specific receptor (AGER) on

macrophages and trigger either proinflammatory cytokine

production in a nuclear factor-kB (NF-kB)-dependent manner or

macrophage polarization-associated tumor progression (Figure1).

Hypoxic glioma-derived exosomes promote M2-like macrophage

polarization by enhancing autophagy induction (64). Taken

together, pharmacological or genetic inhibition of the DAMP-

AGER axis can limit the ability of ferroptotic cancer cells to induce

tumor-protective immune responses.
Conclusion and outlook

Autophagy is a degradation process controlled by a cascade of

ATG protein complexes, each of which regulates different stages of

initiation and formation of autophagic membrane structures.

Compared with autophagy to promote cell survival, the molecular

mechanism by which autophagy promotes cell death is poorly

understood (65, 66). The discovery of ferroptosis as an autophagy-

dependent cell death provides an opportunity to suppress cancers

with excessive autophagy (67). Selective autophagic degradation of

anti-ferroptosis proteins or organelles promotes iron-dependent

oxidative damage and cell death. For GBMs, induction of

autophagy-dependent ferroptosis facilitates clearance of drug-

resistant cancer stem cells. Although several experimental

ferroptosis activators are available, there is still a shortage of related

drugs that can be used in clinical trials. In the future, we need more

in-depth work to determine the specific mechanism of autophagy-

dependent ferroptosis (68), identify circulating biomarkers to

monitor the activity of this pathway (69), and design the next

generation of ferroptosis-related drugs (70).
TABLE 1 In vivo or in vitro studies targeting autophagy-dependent ferroptosis in GBM.

Compounds/methods Targets of autophagy-
dependent ferroptosis

In vitro models In vivo models Refs.

Amentoflavone ATG7-dependent autophagy Human GBM cell
lines U251 and U373

BALB/c nude mice bearing subcutaneous xenograft (55)

Ultrasmall iron oxide
nanoparticles (USIONPs)

Beclin1/ATG5-dependent
autophagy

Human GBM cell line
U251

NA. (56)

Silencing COPZ1 NCOA4 mediated autophagy Human GBM cell line
U87MG and U251

Nude mice bearing intracranial xenograft tumors (57)

Iron oxide nanoparticles loaded
with paclitaxel (IONP@PTX)

Degradation of GPX4 Human GBM cell line
U251

BALB/c-nu mice bearing GBM xenografts (58)

Silencing TRIM7 NCOA4-mediated
ferritinophagy

Human GBM cell line
A172 and U87MG

Non-obese diabetic-severe combined immunodeficient NOD-SCID
mice bearing subcutaneous and intracranial tumor xenograft

(59)
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